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Radiotherapy plays a central role in the treatment of cancer patients. Over the past

decades, remarkable technological progress has been made in the field of conventional

radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions)

makes it possible to further improve dose deposition to the tumor, while sparing

the surrounding healthy tissues. Despite these improvements, radioresistance and

tumor recurrence are still observed. Although the mechanisms underlying resistance

to conventional radiotherapy are well-studied, scientific evidence on the impact of

charged particle therapy on cancer cell radioresistance is restricted. The purpose of this

review is to discuss the potential role that charged particles could play to overcome

radioresistance. This review will focus on hypoxia, cancer stem cells, and specific

signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling

involving PARP, as mechanisms of radioresistance for which pharmacological targets

have been identified. Finally, new lines of future research will be proposed, with a focus

on novel molecular inhibitors that could be used in combination with charged particle

therapy as a novel treatment option for radioresistant tumors.

Keywords: radioresistance, radiosensitization, X-rays, proton therapy, particle therapy, carbon ion therapy,

molecular targeted drugs, combination treatment

INTRODUCTION

Currently the main treatment options for cancer patients include surgery, chemotherapy,
radiotherapy and immunotherapy. About 50% of cancer patients receive radiotherapy during the
course of their treatment with themajority of patients being treated with conventional radiotherapy
using photons (X-rays) (1). Since the start of treatment with photons, many technological advances
and new treatment strategies have been implemented to optimize treatment delivery and to
decrease the occurrence of side effects in healthy tissues. Unfortunately, despite these advances,
resistance to radiotherapy, and recurrence of the disease is still observed.

Radioresistance of cancer cells implicates that to eradicate these cells, higher irradiation doses
than the usual doses are needed. In theory, every tumor can be controlled if a sufficient high
dose can be delivered, but in clinical practice, the radiation dose is unfortunately limited by the
tolerance of the surrounding normal tissue (2). Resistance of cancer cells can be either “intrinsic” or
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“acquired.” Intrinsic resistance is naturally present within the
cancer cell even before the treatment has started. Acquired
resistance is induced by the irradiation itself and is a process
in which the tumor cells or tissues adapt to the radiotherapy
induced changes and develop radiation resistance (3, 4).
Resistance to conventional radiotherapy is one of the major
factors leading to radiotherapy failure, leading to cancer
recurrences, metastases and a poor prognosis in cancer patients
(5). Over the years, tremendous progress has been made
to understand the treatment response of cancer cells and
to improve the curative rate by specifically targeting of the
DNA damage response pathways in order to obtain selective
radiosensitization of cancer cells (6). However, despite the
various efforts to overcome radioresistance, the concordant
molecular mechanisms of cellular resistance to radiotherapy are
still not completely understood.

Nowadays, particle therapy is an emerging treatment modality
in external beam radiotherapy, which makes use of charged
particles such as protons or carbon ions to treat cancer (7, 8).
Particle therapy has several advantages compared to conventional
radiotherapy with photons, of which the most important one
is the optimal dose distribution (9). Charged particles are
characterized by a low entrance dose, followed by a high energy
deposition near the end of their track in the so-called Bragg
peak. This energy deposition can be specifically focused on
the tumor, while almost no dose is delivered to the normal
tissue beyond the peak (see Figure 1 for proton therapy). As
a consequence, the healthy tissues surrounding the tumor will
receive a lower irradiation dose compared to treatment with
photons and it allows the treatment of lesions close to critical
structures. This dosimetric advantage of charged particles could
also allow the delivery of higher radiation doses to the tumor
tissue, which might help to overcome radioresistance in specific
tumor types. Another additional advantage of charged particles,
specifically of carbon ions, is the increased relative biological
effectiveness (RBE) of a factor 2–5 (9–11). The RBE is defined
as the ratio of a photon (usually 250 kVp, >1 MeV X-rays,
or Co-60 γ-rays) to charged particle dose that produces the
same biological effect. The underlying reason for the increased
RBE of carbon ions compared to photons is due to their
higher linear energy transfer (LET). This means that carbon
ion beams transfer their energy differently on a microscopic
scale which results in a higher ionization density along the
radiation track as compared to low-LET radiation types, such as
photons and protons. A fixed RBE of 1.1 is currently adopted
in clinical practice for protons, which is very similar to that of
sparsely ionizing high-energy photons. However, considerable
in vitro and in vivo studies indicate that the RBE of protons is
significantly higher in the distal fall-off region of the Bragg peak,
which gives rise to an ongoing debate on the implementation of a
variable RBE in proton treatment planning (12). Table 1 gives an
overview of the general RBE values which are applied in clinical
practice for external beam radiotherapy, specifically for the
radiation qualities relevant to this review. Although the majority
of patients is still treated with conventional radiotherapy, the
proportion of patients being treated by particle therapy is vastly
increasing (14). Unfortunately, there still remains a lack of

clinical prospective data to illustrate the benefit of charged
particle therapy compared to conventional radiotherapy in order
to fulfill evidence-based medicine requirements. Together with
the high cost-effectiveness, this feeds some of the criticisms
toward particle therapy. Despite these challenges, the clinical
results of particle therapy are convincing and several new
centers are under construction around the world. The patients
statistics, published by the Particle Therapy Co-Operative Group
in 2016, show that ∼180,000 patients have been treated with
particle therapy worldwide, with around 85% (± 150,000) of
the patients being treated with protons and around 12% (±
22,000) with carbon ions (15). While carbon ion therapy is
traditionally used for deep-seated hypoxic tumors that are
adjacent to radiosensitive structures and is still considered
to be an “experimental treatment,” this approach is slowly
changing toward new clinical indications where the distinct
signal response pathways of carbon ions is further exploited
(16). An extensive number of randomized clinical trials on larger
patient groups is currently ongoing for both charged particle
therapy modalities, so the number of accepted indications for
charged particle therapy will probably become more clear in
the coming years. Based on a recent questionnaire of the
European Organization for the Research and Treatment of
Cancer (EORTC), the indications for treatment with charged
particles in European particle therapy centers include soft
tissues sarcomas, chordomas/chondrosarcomas, meningiomas,
brain tumors (non-meningioma), head and neck tumors, and
prostate tumors (some of these clinical indications are illustrated
in Figure 2). Moreover, breast, lung and liver cancers can also
be treated with particle therapy, however, this is only done in a
minority of centers (13, 17).

As mentioned above, carbon ions have a higher RBE and
thus greater cell killing effectiveness (19, 20). This can overcome
radioresistance of hypoxic tumor regions, reduce the effect of
fractionation and decrease cell cycle dependence of the radiation
response (21). Hence it is expected that carbon ions can directly
overcome radioresistance whereas this is less evident for protons.
However, despite the fact that photons and protons are both low-
LET radiation types and are considered to have a similar RBE, an
increasing amount of studies show that protons actually produce
different biological effects compared to photon irradiation as
reviewed by Girdhani et al. (22, 23). Although much research has
been performed concerning the physical aspects of both protons
and carbon ions, the uncertainties concerning the biological
aspects of particle irradiation calls for further investigation. One
challenging question is whether the physical differences between
photons and charged particles are also reflected in a differential
biological response, which might also affect the underlying
mechanisms of resistance to radiotherapy.

It is already known from previous studies that many different
factors are associated with radioresistance of cancer cells and
multiple reviews have already described some of the possible
mechanisms underlying radioresistance during conventional
radiotherapy (24, 25). Examples are cancer stem cells (CSCs)
and hypoxia, as well as perturbations in survival pathways, DNA
damage repair pathways, developmental pathways (24, 25). In
contrast, the knowledge about the impact of particle therapy
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FIGURE 1 | Percentage depth-dose distribution of a modulated 200 MeV proton beam, resulting in a spread-out Bragg peak (SOBP). Note that a maximum dose is

delivered to the tumor tissue, while there is no dose deposited beyond the SOPB. In addition, a smaller dose is delivered to the entrance healthy tissue compared to

the SOBP. Created with BioRender.

on radioresistance is scarce. Therefore, this targeted review will
give an overview of selected literature related to the impact of
charged particle irradiation on therapeutic radioresistance. We
will specifically focus on the role of hypoxic regions and CSCs
as well as some molecular pathways involved in radioresistance
for which pharmacological targets have been identified. In
addition, new lines of future research will be proposed with a
special emphasis on novel molecular inhibitors and treatment
strategies where charged particle therapy could be beneficial
over conventional radiotherapy. This overview aims to illustrate
the great potential of particle therapy in the treatment of
radioresistant tumors.

SELECTED MECHANISMS OF
RADIORESISTANCE

Hypoxia
Tumor hypoxia is one of the well-described factors that can
lead to resistance to conventional radiotherapy. Because photons
induce most of their damage indirectly by the formation of free
radicals, the oxygen level in the tumor plays a crucial role in the
success of radiotherapy, which is also known as the oxygen effect.
Hence, the lower levels of oxygen in hypoxic tumor regions will
decrease the damaging effect of photon radiation on cells (26).
Several studies have already reported the link between hypoxia
and radioresistance, both in vitro and in vivo (27–29).

Besides the influence of oxygen on the induction of DNA
damage by photon irradiation, tumor hypoxia itself also affects
different molecular pathways. An important regulator in the
response to hypoxia is hypoxia inducible factor 1 (HIF-1),
which plays a key role in the radioresistance of hypoxic tumors
(Figure 3) (30–33). HIF-1 is a heterodimer consisting of two
subunits, an α-subunit (HIF-1α) and a β-subunit (HIF-1β).

TABLE 1 | Overview of commonly reported relative biological effectiveness (RBE)

values for radiation qualities that are used in external beam radiotherapy and

within the scope of this review.

Radiation quality RBE

Carbon-ions 2–5

Protons 1.1

Photons 1

Note that these RBE values are currently applied in clinical practice, but they are under

discussion and further experimentation and larger datasets are required to obtain more

accurate RBE values (13).

The expression of HIF-1α is dependent on oxygen levels,
and is induced under hypoxic conditions, whereas HIF-1β
is constitutively expressed (24). In this context, it has been
observed that photon radiation induces HIF-1 expression in
solid tumors (34, 35). Upon activation, HIF-1 can increase the
expression of different target genes involved in growth, energy
metabolism, endothelial cell function and neovascularization,
thereby promoting tumor growth (36, 37). These hypoxia-
induced changes could eventually give rise to metastasis of cancer
cells (38, 39). In conclusion, hypoxia is known to be a negative
prognostic and predictive factor, and it is generally acknowledged
as a major limitation for tumor control in conventional
radiotherapy resulting in a poor clinical outcome (40).

In contrast, the effect of high-LET ionizing radiation on
cancer cells, such as carbon ions, depends much less on the
presence of oxygen (26). This is due to the fact that high-
LET radiation primarily induces complex damage directly to the
DNA, which is more difficult to repair. As a consequence, high-
LET radiation can eradicate hypoxic tumor cells more effectively
than low-LET radiation (41–44). This is also reflected in the
oxygen enhancement ratio (OER), defined as the ratio of the
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FIGURE 2 | An overview of some of the clinical indications that can be treated with charged particle therapy based on ongoing clinical trials. Indications for proton

therapy (purple), carbon ion therapy (blue) and both (black) charged particle therapies are listed per body side (16–18). Created with BioRender.

FIGURE 3 | Overview of the molecular signaling pathways involved in

radioresistance.

dose needed in hypoxic cells divided by the dose needed in
normoxic cells to obtain the same biological effect. The OER
decreases with increasing LET, for example, the OER for low-
LET radiation such as photons and protons is around 2.5–3.0,
whereas the OER for carbon ions is around 1.6–2.0 (42, 45).
Since the OER of protons is similar to photons, the advantage

of proton therapy to overcome hypoxia-induced radioresistance
is less obvious than for carbon ions. Both in vitro and in vivo
evidence demonstrates that carbon ion irradiation is able to
reduce hypoxia-induced radioresistance (46–48). Moreover, ions
heavier than carbon, such as nitrogen and oxygen ions, could
have additional advantages, specifically for hypoxia-induced
radioresistant tumors (49).

The effect of charged particle irradiation on the molecular
pathways affected by tumor hypoxia, specifically HIF1-α
expression, is underexplored. Despite the limited number of
available studies, the first results illustrate that proton irradiation
is able to decrease HIF-1α and VEGF expression in vitro in
different cell types compared to non-irradiated controls (50).
This was in sharp contrast to photon irradiation, where VEGF

and HIF-1α were upregulated in a dose-dependent manner.
Another in vitro study illustrated that proton irradiation was able
to induce similar levels of apoptotic cell death in both hypoxic
and normoxic cells, but only for two of the three investigated cell
lines (51). The same effect could not be observed for photons.
An in vivo study using an orthotropic breast cancer model
reported lower levels of VEGF in breast tumors irradiated with
protons compared to non-irradiated controls (52). However,
this effect was only observed at a high proton dose of 30Gy
and not compared to the effect of similar photon doses (52).
Carbon ion irradiation is also able to decrease the expression
of the HIF-1α subunit in hypoxic conditions, both in vitro and
in vivo (53, 54). For VEGF on the other hand, conflicting results
exist about the response to carbon ion irradiation. Some studies
observed no altered VEGF expression while others observed an
increased VEGF expression after carbon ion irradiation (55–
57). Until now, clinical evidence of increased hypoxic tumor
control with proton therapy is still lacking and only one study
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with high-LET carbon ions has been published so far. In this
study of Nakano et al. patients with stage III and IV cervical
tumors were treated with carbon ion irradiation. After treatment,
patient follow-up showed a similar disease-free survival and
local control in both patients with hypoxic and normoxic
tumors (41). Overall, current data for proton and carbon ion
irradiation suggest that both radiation types can counteract the
hypoxia-induced radioresistance more efficiently compared to
conventional photon irradiation.

Cancer Stem Cells
CSCs, also referred to as cancer initiating cells, were first
identified in 1997 by Bonnet and Dick in acute myeloid
leukemia and later in many solid tumors (58). CSCs are
defined as a small subset of cancer cells, which constitute a
reservoir of self-sustaining cells with the unlimited potential
to self-renew and maintain the tumor (59). In addition, CSCs
display an innate resistance to chemotherapeutic agents and
conventional radiotherapy, and are therefore believed to play
an important role in treatment failure and recurrence. This
assumption directly implies that an anti-cancer therapy can
only cure a tumor if all CSCs are killed (60). In addition,
several studies observed an increase in the absolute number
of CSCs in the tumor bulk after conventional radiotherapy
(61). The mechanisms of radioresistance in CSCs compared to
non-CSCs were firstly described for glioblastoma multiforme
and breast cancer. Here, the observed radioresistance of
CSCs appeared to be related to differences in DNA-repair
capacity due to constitutive phosphorylation of the DNA
checkpoint kinases Chk1 and Chk2 (62), their quiescent
state and the hypoxic niche in which CSCs reside together
with the enhanced ROS defenses in response to conventional
radiotherapy (63, 64). Some studies failed to illustrate the
difference in DNA repair capacity between glioma cells
and glioma CSCs (65), while others could demonstrate an
enhanced ataxia-telangiectasia mutated-dependent DNA DSB
repair proficiency (66, 67). Next to these mechanisms, other
studies illustrated that the activation of survival signaling
pathways, such as anti-apoptotic Bcl-2 and PI3K/Akt/mTOR,
contribute to the radioresistance of CSCs (68, 69). Figure 4
highlights the hallmarks of radioresistance in CSCs, including
intrinsic determinants such as their increased DSB repair
capacity, enhanced cell-cycle checkpoint activation, reduced
apoptosis and increased autophagy as a pro-survival mechanism
to maintain homeostasis. As previously mentioned, CSCs
are preferentially localized in hypoxic niches of the tumor
microenvironment (70). Therefore, the hypoxic niche is
considered to be an important extrinsic determinant that can
potentially maintain or enhance the stem cell phenotype of
cancer cells and contribute to the emergence of metastatic
clones (71).

So far, the evidence regarding the applicability of charged
particle therapy to overcome radioresistance of CSCs is growing.
A recent in vitro study has shown that proton irradiation
preferentially targets CSCs and increases ROS levels in treatment
of resistant non-small cell lung cancer (NSCLC) to a greater
extent than photons of the same dose (72). Similar results

were obtained in a study using patient-derived glioma stem
cells, where proton irradiation generated greater cytotoxicity in
glioma CSCs compared to photon radiation resulting in reduced
clonogenic survival fractions after proton irradiation (73). The
underlying mechanism by which proton radiation eradicates
glioma stem cells more efficiently, might be the increased
production of ROS that induces greater DNA damage, cell cycle
alterations and cell apoptosis in glioma stem cells. In this study,
the authors could demonstrate that photon radiation produces
smaller quantities of ROS in CSCs compared to proton radiation,
while a ROS scavenger could abolish proton radiation-induced
ROS generation. In another study, proton radiation appeared
to be more efficient to kill breast CSCs compared to the same
dose of photons, resulting in lower cell survival and higher
DNA damage (74). Both studies support the enhanced ability of
proton irradiation to overcome CSC radioresistance compared to
photon irradiation.

In theory, the higher RBE of carbon ions and their ability to
induce DNAdamagemostly through direct interaction regardless
of oxygen levels, should make them more effective against the
hypoxic niche and enhanced ROS defense of CSCs (75). A
first study could show the advantage of carbon ion therapy
over conventional radiotherapy for putative colon cancer stem-
like cells (76). In a more recent study, carbon ions appeared
to reduce the number of colonies and spheroids in pancreatic
cancer stem-like cells compared to photon irradiation (77). This
is in line with previously published results that also illustrated
a superior capacity to kill pancreatic cancer stem-like cells by
carbon ions, which corresponded to an increased number of
residual γ-H2AX foci compared to photons (78). Furthermore,
an enhanced OER and cell killing could be observed after carbon
ion irradiation compared to photons in resistant head and
neck squamous cell carcinoma (HNSCC) CSCs (53). Recently,
the same authors postulated that the distribution of ROS
produced after photon irradiation can have an influence on
leading to invasion/migration-related mechanisms: a uniform
distribution of ROS after photon irradiation was able to induce
mechanisms leading to invasion/migration, while concentrated
ROS during carbon ion irradiation was unable to trigger
invasion/migration mechanisms (79). No difference between
hypoxic and normoxic conditions on cell killing could be
observed after carbon ion irradiation, while all cell lines were
more resistant to photon irradiation under hypoxic conditions.
These observations support the greater efficiency of carbon ions
to overcome radioresistance of CSCs residing in hypoxic niches.
Other studies could already demonstrate a better efficacy of heavy
ions to overcome pro-survival signaling (such as AKT survival
signaling), suggesting that carbon ions could enhance apoptosis
in radioresistant CSCs (80). And the evidence keeps on growing
with a recent study showing the efficiency of carbon ions to
eradicate radioresistant patient-derived glioma CSCs, leading to
growth inhibition and prolonged survival in mice (81). However,
there was one contradictory study showing an extended cell cycle
arrest in response to both photon and carbon ion irradiation,
indicating that carbon ion irradiation was not able to depress
cell cycle checkpoint activation in CSCs, making them resistant
to both photons and carbon ions (82).

Frontiers in Oncology | www.frontiersin.org 5 February 2020 | Volume 10 | Article 128

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Konings et al. Combination Therapy Particles Molecular Targeting

FIGURE 4 | The effect of photon and charged particle irradiation on cancer stem cell radioresistance. This schematic diagram shows the mechanisms of cancer stem

cell resistance to conventional photon radiotherapy on the top right corner of the figure, resulting in tumor recurrence and metastasis. In the bottom right corner, the

diagram shows how charged particle therapy could improve tumor control. Carbon ions were able to depress pro-survival signaling, which results in enhanced

apoptosis, and are known to have a lower OER, which makes them more effective against the protective hypoxic niche of CSCs. In addition, protons generated higher

ROS levels in CSCs, resulting in increased cell killing compared to photons. Created with BioRender.

Signaling Pathways Involved in Radiation
Resistance
Resistance to photon radiation can, apart from hypoxia and
the presence of CSCs, also be influenced by specific signaling
pathways. In contrast to photon radiotherapy, the modulation of
these signaling pathways in response to charged particle radiation
has only been studied to a limited extent. In the following
part, a comparison is made between the effect of photon and
charged particle irradiation on the signaling pathways that are
known to be involved in resistance of tumor cells to conventional
radiotherapy (Figure 3, Table 2). While there are a large number
of signaling pathways that are involved in radioresistance, this
review will particularly focus on those pathways for which
pharmacological targets have been identified, which led to the
development of small molecule inhibitors which will be discussed
in part 3. This could provide a roadmap to uncover potential
mechanisms and therapeutic indications where charged particle
therapy could be used instead of conventional radiotherapy in
order to overcome radioresistance.

EGFR Signaling Pathway
One of the most important pathways involved in cell survival,
growth, proliferation and differentiation is the epidermal growth
factor receptor (EGFR) pathway. The transmembrane protein
EGFR is an important modulator in photon radioresistance. In
this context, a positive correlation has been reported between the

expression of EGFR and resistance to photon irradiation (103–
105). Photon radiation can trigger the activation of EGFR, which
in turn activates other downstream pathways that modulate cell
processes, including cell migration, angiogenesis, apoptosis and
invasion (Figure 3) (106–108). One of the downstream pathways
is the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target
of rapamycin (mTOR) pathway, known to be one of the most
commonly activated signaling pathways in cancer, leading to cell
proliferation, survival and differentiation. Besides activation by
EGFR, the PI3K/AKT/mTOR pathway can also become activated
by photon radiation directly (109). Activation of EGFR induces
the phosphorylation of PI3K which in turn activates AKT (110,
111). AKT is one of the key players in the PI3K pathway since
it has many different downstream targets such as mTOR, NFκB,
DNA-PK, Bad and many others. More specifically, activation
of the PI3K/AKT/mTOR pathway results in the protection of
tumor cells by decreased apoptosis and autophagy and increased
activation of DNA repair molecules. In addition, the epithelial-
mesenchymal transition (EMT) is stimulated. This cascade
of events triggered by PI3K/AKT/mTOR pathway eventually
leads to photon radioresistance (112–114). An active PI3K
pathway has been implicated in the radioresistance of many
different tumor types, for example acute myeloid leukemia
(115), prostate (116–118), head and neck (119), brain (120)
and lung (121, 122) cancers. Another pathway activated by
EGFR is the RAS/RAF/MAPK pathway. Besides activation by
EGFR and photon irradiation, the MAPK pathway can also
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TABLE 2 | Overview of the different experimental parameters used in the studies with particle-irradiated cancer cells.

Type of

irradiation

Energy LET

(keV/µm)

Dose

(Gy)

Dose rate Experimental model References

Hypoxia/HIF/VEGF

Carbon ion 290 MeV/u Ranged from 14 to

74 depending on

depth

16 3 Gy/min NFSa fibrosarcoma cells implanted in hind leg of

mice

(43)

Carbon ion NA NA ∼1, 2, 4, or 6 NA A549, NCI-H1437

(Human lung cancer cells)

(44)

Carbon ion 290 MeV/u 18, 43, 50, and 74 0–10 0.037 and 1 Gy/min SCC VII tumors in hind leg of mice

(Murine squamous cell carcinoma cells)

(47)

Carbon ion 140–170 MeV/u Mean dose average

LET:75 (64-96)

33 and 37 NA R3327-H, -HI, and -AT1 (Syngeneic Dunning

prostate adenomacarcinomas) implanted in thigh

of rats

(48)

Carbon ion NA 100 and 150 0–6 NA CHO-K1 and RAT-1

(Dunning rat prostate cancer cells)

(49)

Proton 1 GeV/nucleon ≈0,24 0.5, 1, and 2 0.25–0.33 Gy/min A549 (Human lung cancer cells) and

HMVEC (Human Lung Microvascular Endothelial

Cells)

(50)

Proton 35 MeV NA 10 2.31 Gy/sec LLC, Molt-4 human leukemia cells and HepG2

human hepatocelllar carcinoma cells

(51)

Proton 100 MeV NA Cells: 2, 4, 8, and 16

Mice tumors: 10, 20,

and 30

NA 4T1 murine breast cancer cells + implanted in

mice

(52)

Carbon ion 72 MeV/n 33, 6 10 2 Gy/min SQ20B, SQ20B-CSCs, and FaDu

(Human squamous cell carcinoma)

(53)

Carbon ion 120, 45–135, 16

MeV/u (cells)

122,36–183,74

MeV/u

mean dose average

of LET 50–70

2 NA A549 and H1299

(Human lung cancer cells)

(54)

Carbon ion 290 MeV/u 13.3, 50, and 90 15 ∼7.2 Gy/min RERF-LC-AI

(Squamous cell lung carcinoma)

(55)

Carbon ion 9.8 MeV/u (on

target)

170 2 NA A549 (Human lung cancer cells) and

HUVECs (Human umbilical vein endothelial cells)

(56)

Carbon ion 350 MeV/u 15,4 2, 4, and 8 0.5 Gy/min C6 (Human glioma cells) and

HMEC-1 cells (Human microvascular endothelial

cells)

(57)

Proton 62 MeV NA 12 and 16 15 Gy/min HTB140

(Human melanoma cells)

(83)

Carbon ion 75 MeV/n 33.6 1, 2, 3, 4, and 5 NA SQ20B

(Human squamous cell carcinoma)

(84)

Cancer stem cells

Proton Therapeutic

proton beam

NA 2, 4, and 8 NA CSC-enriched cells from therapy-resistant

human H460 and A549

(Human lung cancer cells)

(72)

Proton Therapeutic

proton beam

NA 5 and 10 2 IN528 and T4213

(Patient-derived glioma stem cells)

(73)

Proton 7.5 MeV 2 2 and 4 0.24 Gy/sec CSC and non-CSC enriched from MCF-7 cells

(Human breast cancer cells)

(74)

Carbon ion 290 MeV/n 50 Cells: 1, 2, 4, and 6

Tumors: 5, 15

and 30

NA CSC and non-CSC enriched from HCT116 and

SW480

(Human colon cancer cells)

(76)

Carbon ion 290 MeV/n 50 1–6 NA CSCs and non-CSCs isolated from PK45,

PNAC1, MIAPaCa-2, and BxPc-3

(Human pancreatic cancer cells)

(77)

Carbon ion 290 MeV/n 13 2 and 10 2 Gy/min SQ20B, SQ20B-CSC’s, and FaDu (Human

squamous cell carcinoma)

(79)

Carbon ion 290 MeV/n 50 1, 2, and 3 NA CSC and non-CSC isolated from MIA PaCa-2

and BxPc-3 (Human pancreas cancer cells)

(78)

(Continued)
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TABLE 2 | Continued

Type of

irradiation

Energy LET

(keV/µm)

Dose

(Gy)

Dose rate Experimental model References

EGFR pathway

Proton 35 MeV NA 6 2.31 Gy/sec H460, H1299

(Human lung cancer cells)

(85)

Proton 35 MeV NA 0.5, 2, and 8 NA MDA-MB-231

(Human breast cancer cells)

(86)

Proton 35 MeV NA 0.5, 2, 8, and 16 2.31 Gy/sec HT-29

(Human colon cancer cells)

(87)

Carbon ion 120–135

MeV/nucleon

dose-averaged LET

≈ 100

2 and 6 NA wild-type EGFR, U87 EGFR++ and LN229

EGFR++

(Human glioblastoma cells)

(88)

Carbon ion 290 MeV/nucleon 50 keV/µm (middle

of SOBP)

0.25, 1, and 5 NA A549

(Human lung cancer cells)

(89)

Carbon ion 165 and 290

MeV/nucleon

Dose-averaged LET

13 or 75

2 NA HeLa

(Human cervical cancer cells)

(90)

Carbon ion 290 MeV/nucleon 50 (middle of SOBP) 2, 4, and 6 NA A427, A549, H1299, H1650, H1703, H1975,

H460, H520, H522, HCC827, LK2,II-18, H157,

Ma-24, PC9, A549-WT, –1E746-A750, and

–L858R

(Human lung cancer cells)

(91)

Pulsed

proton beam

45 MeV NA 4, 8, 10, and 12 1 Gy/pulse MCF-7, MDA-MB-231

(Human breast cancer cells)

(92)

Carbon ion NA 122.36–136.92

MeV/u

0.125, 0.5, 1, 2, and

3

0.5 Gy/min Hep3B, HepG2, PLC, and HuH7

(Human hepatic tumor cells)

(93)

NF-κB pathway

Carbon ion 62 MeV/n 197 and 382 (at

both positions used)

2, 4, 8, 12, and 16 11.45 ± 0.31

Gy/min

HTB140

(melanoma)

(94)

PARP

Carbon ion

NA 13–100 2 ∼3 Gy/min Ca9-22

(Human gingival squamous cell carcinoma)

(95)

Proton 160 MeV 4.3 (Bragg peak) 1, 2, 4, and 6 1 Gy/min A549 (Human lung cancer cells) MIA PaCa-2

(Human pancreatic cancer cells)

(96)

Carbon ion 62 MeV [5.2

MeV/u]

entrance LET 290 1, 2, and 4 Flux: 2 × 105

particles/cm2/sec

HeLa

(Human cervix adenocarcinoma)

(97)

Carbon ion 290 MeV/nucleon 13 and 70 1, 3, and 5 1.2 Gy/min MIA PaCa-2

(Human pancreatic cancer cells)

(98)

Carbon ion NA 50 2 NA R633 and TG1 (Human glioblastoma CSC) (99)

Carbon ion 290 MeV/n 13 keV/µm NA CHO wild type and repair deficient mutants

(Chinese hamster ovary cells)

(100)

Carbon ion 62 MeV [5.2

MeV/u]

entrance LET 287 1, 2, and 4 Flux: 2 × 105

particles/cm2/sec

HeLa

(Human cervix adenocarcinoma)

(101)

Hh pathway

Carbon ion 95 MeV/n 73 KeV/µm 0, 0.25, 0.5, 1, 2, 3,

and 4

NA PC3 and DAOY

Prostate cancer cells

Pediatric medulloblastoma cells

(102)

Proton 200 MeV/n 3.96 ± 0.20 keV/µm 0.25, 0.5, 2, 4, and,

6

NA PC3 and DAOY

Prostate cancer cells

Pediatric medulloblastoma cells

(102)

LET, linear energy transfer; MeV, mega electron volt; HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor; EGFR, epidermal growth factor receptor; PI3K,

phosphoinositide 3-kinase; MAPK, mitogen-activated protein kinases; PARP, Poly (ADP-ribose) polymerase; CSC, cancer stem cells; NA, not available.

become activated by mutations in the RAS proteins (121).
Mutated RAS has been linked to the resistance of cancer
cells to photon irradiation (123–127) which is caused by the
downstream targets of RAS including the MAPK and the PI3K
pathway. These targets are pro-proliferation and pro-survival,
respectively, and an increased activity of both pathways has also

been associated with radiation resistance (109, 114, 121, 123,
128).

In the context of particle radiation, different and contradicting
responses of the EGFR pathway and its downstream targets
have been observed. Data showed that proton irradiation is able
to increase EGFR expression as well as to activate the MAPK
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pathway, in this way protons might induce radioresistance
(51, 85, 129). In contrast, some studies have observed a
decreased phosphorylation of AKT and MAPK together with an
inhibited AKT signaling after proton exposure, which points to
a decrease in radioresistance (86, 87). For carbon ion irradiation,
Stahler et al. observed no activation of EGFR and downstream
targets AKT and ERK1/2 (88). In contrast, photon radiation
induced an increased activation, which supports again the
fact that carbon ions are superior to photons. In addition,
other studies observed decreased activation of the EGFR and
PI3K/AKT/mTOR pathway after carbon ion irradiation (89, 90).
Only the study of Ogata et al. included photon irradiation
experiments and used iso-effective doses for carbon ions. This
study could demonstrate that even low doses of carbon ions
reduced the levels of phosphorylated AKT in human lung
adenocarinoma cells, in contrast to photon irradiation where
this effect was not observed. Interestingly, the EGFR mutational
status can be used to predict the response to carbon ion
irradiation. More specifically, a wild-type EGFR status was linked
to a higher RBE compared to an EGFR-mutated status in a
NSCLC cell line. Therefore, patients without EGFR mutations
could benefit more from carbon ion irradiation (91). Overall
these data suggest that carbon ion irradiation is more likely to
inhibit the EGFR pathway and its downstream target pathways.
The data on proton irradiation are less clear and requires
further investigation.

NFκB-Pathway
The NFκB signaling pathway is activated by a number of different
stimuli, including exposure to photon radiation, thereby playing
an important role in radioresistance (130–132). Resistance to
radiation occurs since the activation of the NFκB pathway results
in the transcription of genes involved in evasion of apoptosis,
proliferation, cell cycle, metastasis, invasion, and inflammation
(24, 130, 133). Besides activation by photon irradiation, the NFκB
pathway can be constitutively activated through mutations in
the NFκB proteins, which play an important role in intrinsic
radioresistance (133).

The knowledge about the impact of particle radiation on
the NFκB-signaling pathway is limited. Proton beam irradiation
was found to suppress the phosphorylation of NFκB in breast
cancer cells, through the inhibited activation of AKT (86). In
contrast, no changes were observed in NFκB expression in
proton-irradiated liver cancer cells (134). However, another study
found an in vivo activation of NFκB in mouse bone marrow cells
after whole body proton irradiation, with a persistent activation
of NFκB up to 1 month after irradiation (135). Similar effects
were observed for the mice that were treated with whole body
photon irradiation. In non-cancerous cells (HEK 293), Hellweg
et al. observed that carbon ion irradiation was able to activate
the NFκB pathway similar to photon irradiation (136, 137). In
addition, activation of the NFκB pathway and its downstream
target genes was found to be highest for heavy ions with an
LET between ∼50–200 keV/µm (138). Moreover, another study
demonstrated significant activation of NFκB as early as 3 h
after carbon ion irradiation, with a peak at 6 h after irradiation
(139). Jelena et al. also found an increase in the protein levels

of NFκB after carbon ion irradiation, while no changes were
observed in the mRNA levels of NFκB in the same melanoma
cells (94). No comparison was made with photon irradiation in
these experiments. Taken together, the existing data indicates
that carbon ion irradiation increases NFκB expression in a LET-
dependent manner and thus could enhance radioresistance. In
this regard, the NFκB pathway could therefore be a good target
for inhibition in combination with carbon irradiation.

DNA Damage Signaling Involving Poly(ADP-Ribose)

Polymerase (PARP)
Poly(ADP-ribose) polymerase or PARP is an important factor
in DNA damage signaling due to its role in the repair of single
strand breaks as well as DSBs. PARP is one of the first molecules
to respond to DNA damage by binding to the DNA break,
which eventually leads to the recruitment of other DNA repair
molecules (140). In addition, cleaved PARP is an indicator of
apoptosis. An increased expression of PARP has been observed
in several tumor types and has been linked to drug resistance and
increased survival of genotoxic stress (141–145) as well as the
promotion and maintenance of cancer stemness (146–149). In
some animal studies, PARP has also been linked to the survival
response after photon radiation exposure, since the use of a
PARP inhibitor in combination with photon radiation was able to
enhance the effect of photon radiation, by decreasing cell growth
and cell survival (150–153).

Although only a limited number of studies have investigated
changes in the expression of PARP after particle irradiation,
many have used PARP inhibitors in order to see if this approach
could have sensitizing effects in combination with particle
irradiation. The use of PARP inhibitors in combination with
particle radiation will be explained in more detail in section
inhibition of PARP. Other studies that investigated cleaved PARP
levels after proton irradiation, observed an increased and more
sustained PARP cleavage compared to photon radiation, both in
normoxic as well as hypoxic environments (51, 73). In addition,
carbon ions have been found to induce an LET dependent
increase in cleaved PARP (95). Furthermore, PARP deficient cells
were found to have the largest decrease in OER after carbon
irradiation (100). From the current data it can be summarized
that particle irradiation has a more pronounced effect on PARP
expression and cleavage compared to photon irradiation. The
inhibition of PARP could enhance the effect of particle radiation
on PARP-mediated radioresistance even more, which makes it a
good target for radiosensitization in future treatment strategies.

Hedgehog Pathway
The Hedgehog (Hh) signaling pathway is a differentiation
pathway that is active during embryonal development as well
as in adults during stem cell maintenance, tissue repair and
regeneration (154–156). However, an aberrant signaling of this
pathway has been implicated in the development and progression
of several different tumor types (157–159). Activation of the
Hh pathway induces the transcription of genes involved in cell
cycle progression, apoptosis, angiogenesis and EMT. Moreover,
it has become apparent that the Hh signaling pathway plays a key
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role in the regulation of CSC, such as their self-renewal capacity
(160, 161).

An active Hh pathway has been linked to the resistance of
cancer cells to photon radiation. More specifically, Chen et al.
observed that in response to photon radiation the secretion
of soluble sonic Hedgehog (SHH) was induced which lead
to a radioprotective effect in hepatocellular cancer cells. In
addition, the Hh pathway was found to become activated
after photon exposure (162, 163). Furthermore, several other
groups have reported a link between the Hh pathway and
photon radioresistance in different cancer cell lines (164–167).
Clinically, Sims-Mourtada et al. observed that activation of the
Hh pathway could sustain esophageal tumor repopulation after
chemo-radiation (164). Other clinical studies were able to show
that Hh pathway activation was related to decreased disease-free
survival, progression-free survival and overall survival (168, 169).
To the best of our knowledge only two studies looked into
the effect of particles on the Hh pathway. Recently, we showed
that carbon ions were more effective in inducing significant
alterations in theHh pathway than photons (102) and that carbon
ions in combination with a Hh inhibitor was more efficient in
decreasing migration of MCF-7 breast cancer cells than X-ray
irradiation (170).

POTENTIAL TARGETS FOR SENSITIZING
CANCER CELLS TO CHARGED PARTICLE
IRRADIATION

From the overview given above, it is clear that there are
many different players that can lead to radioresistance. Different
signaling pathways are closely intertwined with hypoxia and
CSCs, which contribute all together to radioresistance and
eventually recurrence and metastasis. As illustrated above and
in Table 2, a growing body of scientific evidence indicates
that charged particles modulate the activity of some of these
molecular pathways differently than photons. In addition, while
CSCs have distinct signaling pathways that can regulate their
radiation response differently compared to non-CSCs, proton
and carbon ion irradiation seems promising to overcome CSC
radioresistance due to the increased production of ROS and their
impact on the hypoxic microenvironment, respectively.

Although the mechanisms of radioresistance are not fully
uncovered, the described signaling pathways below present
promising targets for inhibition in order to sensitize cancer
cells to ionizing radiation. So far, several novel molecular agents
have been developed to inhibit specific steps of these pathways
involved in radioresistance to conventional radiotherapy.
However, little is known on their use in combination with
charged particle radiation. Besides targeting molecular pathways,
adjustments can be made to the radiotherapy delivery by
applying dose- or LET-painting, in order to overcome tumor
hypoxia. In this way the physical and biological advantages
of particle therapy can be exploited to the fullest and used to
overcome therapy resistance.

In this part, we will focus on what is currently known on
the use of pathway inhibitors in combination with charged

particle therapy (Table 3). In addition, inhibitors that show
promising results in conventional radiotherapy will be discussed
for potential use with charged particle therapy (Figure 5). Since
there is a close link between CSCs, hypoxia and the described
signaling pathways, we will also discuss the use of some of
these inhibitors to improve the radiosensitization of CSCs to
charged particle irradiation and inhibit the tumor hypoxia
induced signaling pathways. Next to that, we will also focus on
the optimization of treatment delivery techniques to overcome
hypoxia-induced radioresistance.

Hypoxia
Counteracting Hypoxia-Induced Radioresistance by

Inhibition of HIF-1 or VEGF
Hypoxia-induced radioresistance can be counteracted by the
inhibition of HIF-1, since this protein plays an important role
herein. Some HIF-1 inhibitors have been developed and tested
in combination with conventional radiotherapy. The results for
this combination-therapy have been controversial, with some
studies observing no radiosensitizing effect and other studies
observing a suppressed tumor recurrence after treatment (172–
175). Combining particle therapy and HIF-1 inhibitors has not
been investigated so far. However, despite the fact that protons
have a similar OER as photons, evidence shows that protons
decrease the expression of HIF-1α in comparison to photons
(50), hence the use of HIF-1 inhibitors might be redundant
in combination with protons. Due to the high RBE and low
OER, carbon ions are known to be more effective in damaging
hypoxic cells. In addition, evidence of carbon ion irradiated
cells already showed decreased expression levels of HIF-1α (53,
54). In this regard, combining HIF-1 inhibitors with carbon
ions could have no added therapeutic value, but combination
studies are warranted to make a final conclusion. Finally, the
use of HIF-1 inhibitors in combination with photon therapy
has been controversial, due to the complexity of this pathway.
Moreover, most HIF-1 inhibitors target the HIF-1 pathway
indirectly and the timing of HIF-1 inhibitor administration
(before, during or after radiotherapy) can also affect the outcome.
Therefore, tackling of the HIF-1 pathway might be challenging in
combination with particle therapy (176).

Several studies already investigated the combination of VEGF
inhibitors (e.g., bevacizumab) with conventional radiotherapy,
and many of these studies observed a radiosensitizing effect
(177, 178). For particle irradiation, only one in vitro study has
been published combining bevacizumab with proton irradiation
(Table 3). In this study bevacizumab was able to increase
the radiosensitivity of melanoma cells to proton irradiation
compared to photon irradiation in the absence of the drug
(83). While conflicting results exist to whether VEGF expression
increases or decreases after carbon ion irradiation, no studies
investigating the combination of VEGF inhibitors with carbon
ion irradiation have been published so far (55–57). However,
since carbon ion therapy is used for more radioresistant tumors,
the addition of a VEGF inhibitor might be even more beneficial.
Specifically, since VEGF is also important in metastasis, its
inhibition could have an additional advantage to potentially
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TABLE 3 | Preclinical studies investigating possible radiosensitizers in combination with particle RT.

Target Small molecule

inhibitor

Type of

irradiation

Dose range Time of drug

administration

Experimental model References

Hypoxia/HIF/VEGF VEGF Bevacizumab Proton 12, 16Gy 24 h before irradiation HTB140

(Melanoma)

(83)

EGFR/PI3K/MAPK

pathway

EGFR Cetuximab Carbon ion 1, 2, 3, and 4Gy 1 h before irradiation SQ20B

(Human laryngeal squamous cell

carcinoma)

(84)

mTOR Temsirolimus Carbon ion 0.125, 0.5, 1, 2,

and

3Gy

4 h before irradiation Hep3B, HepG2, PLC, HuH7

(Human liver cancer cells)

(93)

ERK1/2 PD98059 Pulsed proton

beam

4 and 10Gy 3 h before irradiation CSC of MCF-7 and MDA-MB-231

(Human breast cancer cells)

(92)

P38 MAPK SB203580 Pulsed proton

beam

4 and 10Gy 3 h before irradiation CSC of MCF-7 and MDA-MB-231

(Human breast cancer cells)

(92)

EGFR Gefitinib Proton beam 3 and 6Gy NA NSCLC H460 and H1299 cells

(Human non-small Cell Lung Cancer

Cells)

(85)

PARP PARP1/2 AZD2281

(Olaparib)

Proton 1-6Gy 2 h before irradiation A549

(Human lung cancer cells),

MIA PaCa-2

(Human pancreas cancer cells)

(96)

Olabarib

B02 (RAD51

inhibitor)

Proton 0.5, 1, 2, and

3Gy

3–4 h before irradiation,

total duration of 24 h

A549 (Human non small-cell lung

cancer cells)

KP4 and PANC1

(Human pancreatic cancer cells)

(171)

Olaparib Carbon ion 1, 3, and 5Gy 2 h before irradiation MIA PaCa-2

(Human pancreas cancer cells)

(98)

PARP-1

knockdown

Carbon ion 1, 2, and 4Gy Before irradiation HeLa

(Human cervix carcinoma cells)

(97)

Talazoparib

Olaparib

AG14361

Carbon ion 2Gy 2 h before irradiation,

until the end of the

experiment

R633, TG1

(Human glioblastoma stem-like cells)

(99)

Hh GLI1/2 GANT61 Carbon ion 0, 0.25, 0.5, 1,

2, 3, and 4Gy

72 h before irradiation PC3 and DAOY

(Prostate cancer cells

Pediatric medulloblastoma cells)

(102)

GLI1/2 GANT61 Proton 0.25, 0.5, 2, 4,

and 6Gy

72 h before irradiation PC3 and DAOY

(Prostate cancer cells

Pediatric medulloblastoma cells)

(102)

GLI1/2 GANT61 Carbon ion 0, 0.25, 0.5, 1,

2, 3, and 4Gy

72 h before irradiation MCF-7 (human breast cancer cells) (170)

HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor; EGFR, epidermal growth factor receptor; PI3K, phosphoinositide 3-kinase; MAPK, mitogen-activated protein

kinases; PARP, Poly (ADP-ribose) polymerase; CSC, cancer stem cells.

reduce the migratory potential of the radioresistant tumor cells
even more.

Dose- and LET-Painting to Overcome Hypoxia
In order to overcome radioresistance due to tumor hypoxia,
the concept of dose painting has been introduced in which the
radiation dose is increased in hypoxic subvolumes within the
tumor. However, this creates several challenges in conventional
radiotherapy. Based on the OER of photons, a factor three
higher dose is required to eradicate hypoxic cells compared to
fully oxygenated cells. This requires very steep dose gradients,
which are difficult to achieve with photons. The better dose
confirmation of protons and carbon ions and the decrease of OER
with LET, make them an attractive solution to alleviate some of
the problems posed by hypoxia dose painting with photons (179).
In addition to dose painting, proton and carbon ion therapy may
also offer the possibility of modulating the LET over the tumor:

the so-called LET painting (180, 181). Cancer cell eradication
could be maximized if LET could be redistributed according to
the spatial hypoxia profile in radioresistant tumors. In others
words, it would be beneficial if the high-LET components of
the distal part of the proton Bragg peak or carbon ions beam
can mainly be co-localized with hypoxic regions. Despite the
large amount of preclinical research on both dose- and LET-
painting and the improved identification of hypoxic cells in
tumors by the help of new imaging and physiological techniques,
the real use of hypoxia information in the clinics is still missing
(182). Several modeling studies demonstrated the potential

higher tumor control probability that can be obtained with
dose- and LET-painting with charged particles. Dose-painting

resulted in higher tumor control probability compared to
LET-painting, particularly for protons, while LET-painting also
provided better results for carbon ions compared to conventional
carbon ion therapy with no LET- or dose-painting (179). Based
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FIGURE 5 | Molecular targets inhibited in combination with particle therapy. Mechanisms of cancer cell radiation resistance could be overcome by combining charged

particle therapy and molecular targeting of the different signaling pathways involved in cancer cell radiation resistance. Bevacizumab, VEGF inhibitor. PD98059,

ERK1/2 inhibitor. Cetuximab, EGFR inhibitor. Temsirolimus, mTOR inhibitor. Olaparib/Talazoparib/AG14361, PARP1/2 inhibitor. Created with BioRender.

on experimental data of OER at intermediate levels of oxygen
concentration and LET, an OER model was validated and
implemented in an ion treatment planning system TRiP98 (183).
This so called “kill-painting” approach would contribute to
biologically driven treatment planning, in which the biological
effective dose is optimized in the local tumor microenvironment.
This model has recently been expanded with the capability of
handling different ion beams simultaneously (MIBO version),
where 3D target oxygenation data can be used in the treatment
planning system (184). Although several simulation studies show
an increase in tumor control probability with charged particle
therapy for radioresistant hypoxic tumors by applying dose-
and/or LET-painting, further validation of thesemodels is needed
before they can be implemented in clinical practice. In addition,
it is important to take into consideration that LET-painting
might increase the normal tissue dose. In order to overcome
this problem, an interesting new strategy might be to perform
multi-ion LET painting, where low- and high-LET radiation is
combined to obtain dose and LET conformity in the tumor
(184, 185).

Inhibition of EGFR Pathway
Cetuximab, an antibody targeting EGFR, is a well-known and
widely-used anti-cancer monotherapy in clinical practice. The
combination of cetuximab with photon irradiation has been
investigated both in vitro and in vivo, illustrating its ability
to sensitize cancer cells to conventional radiation (186–190).
This resulted in a phase III clinical trial where head and

neck squamous cell carcinomas patients showed an improved
clinical outcome when treated with conventional radiotherapy
in combination with cetuximab (191). Other inhibitors that
target the tyrosine kinase domain of EGFR show also promising
results for combined use in conventional radiotherapy (192–
194). In the study of Park et al. it was found that the EGFR-
inhibitor Gefinitib repressed DNA repair after proton irradiation,
making them more prone to cell death when compared to
photon-treated cells (85). So far, only one study investigated
the radiosensitizing effect of an EGFR inhibitor in combination
with carbon ion irradiation. In this study, cetuximab was

not able to sensitize head and neck CSCs in vitro to carbon
irradiation compared to carbon ion irradiation alone (84). It

should be noted that in this paper, no colonies were observed
after the combination of cetuximab and carbon ion radiation,
which the authors contribute to the cytoxicity of cetuximab.
In addition, the SQ20B cells that were used in this study
overexpress EGFR, so these results should be interpreted with
caution. Furthermore, the combined use of cetuximab, intensity-
modulated radiotherapy (IMRT) and a carbon ion boost has been
investigated for its toxicity and efficacy (195, 196). Unfortunately,
these phase I/II studies were terminated due to the low number
of patients recruited.

Numerous inhibitors of the PI3K pathway, which is one
of the downstream targets of EGFR, have been developed
and extensively tested in combination with photon irradiation.
The PI3K pathway can be targeted at the level of PI3K,
AKT and mTOR and even dual inhibitors of the pathway
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exist, targeting both PI3K and mTOR. The general response
that has been observed for the combination of PI3K pathway
inhibition with photon irradiation is an enhanced sensitivity
of the cancer cells to radiation (197–201). No studies have
investigated the combination of PI3K pathway inhibitors with
proton irradiation. In contrast, for carbon ion irradiation
the mTOR inhibitor Temsirolimus was not able to sensitize
hepatic cancer cells (Table 2) (93). The lack of increased
sensitization compared to carbon ion irradiation alone can be
explained by the previously published evidence that carbon
ions decrease the activity of the PI3K pathway and therefore
the additional inhibition of this pathway does not result in
extra radiosensitization. However, previously discussed studies
showed that protons are able to activate EGFR signaling, so it
would be interesting to test PI3K inhibitors in combination with
proton radiation.

Several MAPK pathway inhibitors have been developed,
targeting RAF, RAS, ERK, or MEK. Inhibitors of Ras have
been combined with photon radiation and most have proven
to be radiosensitizing, both in vitro and in vivo (128, 202, 203).
For particle irradiation, inhibition of ERK, or p38 MAPK was
able to sensitize breast CSCs to proton irradiation (92). The
sensitizing effect of MAPK pathway inhibitors was expected since
activation of EGFR and the MAPK pathway has been observed
in response to proton radiation (51, 85, 129). However, besides
their dosimetric advantage, the potential added value of protons
was not evaluated since the study did not compare the results of
the MAPK inhibitors in combination with proton irradiation to
conventional photon irradiation. To the best of our knowledge,
the combination of MAPK pathway inhibitors with carbon ion
irradiation has not been investigated so far. Although current
data show that carbon ion irradiation is most likely to decrease
the expression of the MAPK pathway, it would be interesting
to further investigate the combination of carbon ion irradiation
with inhibition of the MAPK pathway especially in tumors with
mutations in the MAPK pathway.

Inhibition of NFκB Pathway
Currently, more than 750 inhibitors of the NFκB pathway
have been developed (204). Despite this abundance of NFκB
inhibitors, only few have been tested in vitro in combination
with conventional radiotherapy. The overall outcome of these
studies suggests that radiosensitivity can be induced by inhibiting
the NFκB pathway (205–209). Unfortunately, the combined
use of NFκB inhibitors with particle irradiation has not been
explored yet. As evidence has shown, the NFκB pathway can
become activated upon irradiation with carbon ions. Therefore,
it would be of interest to test NFκB inhibitors in combination
with carbon ion radiation. Specifically, since the combination
of charged particles with NFκB inhibition would also offer an
added dosimetric advantage compared to the combination with
photons. So far, the impact of proton irradiation on the NFκB
signaling pathway remains unclear. Therefore, more studies are
needed to increase our understanding of the effect of proton
irradiation on the activation of the NFκB pathway and the
potential effect of a combination treatment with NFκB inhibitors.

Inhibition of PARP
The PARP protein is important in DNA repair and is therefore a
promising target for radiosensitization of resistant tumors. Many
PARP inhibitors have been developed of which three (olaparib,
rucaparib, and niraparib) have been approved by the Food and
Drug Administration (210). The combination of PARP inhibitors
with photon irradiation has been investigated extensively in
preclinical studies and phase I and II clinical trials (211). Results
from preclinical studies show that PARP inhibition is an effective
target for enhanced sensitivity to photon irradiation, and could
even circumvent hypoxia-induced radioresistance. However, the
results from clinical trials are conflicting, with some even
reporting negative results.

In a study with proton irradiation, the inhibition of PARP
resulted in the sensitization of lung cancer and pancreatic
cancer cells, due to the disturbed DNA damage response (96).
When both PARP signaling and homologous recombination
was inhibited, lung cancer and pancreatic cancer cells showed
enhanced proton radiation-induced cell killing (171). For carbon
ion irradiation, multiple in vitro studies have shown that the
use of a PARP inhibitor can sensitize cancer cells to carbon
ion irradiation (Table 3) (97, 98, 212). Interestingly, some
of these studies showed that PARP inhibition has a higher
radiosensitizing effect in combination with carbon ion radiation
compared to photon irradiation (97, 98, 101). Overall, combining
particle radiation with PARP inhibition shows very promising
results concerning radiosensitization. In addition, the fact that
particle radiation induces more complex DNA damage compared
to photons can be an advantage. By additionally inhibiting
PARP, repair of more complex DNA damage will be hampered
and cells will more likely go into apoptosis instead of cell
cycle continuation.

Inhibition of Hedgehog Pathway
Hedgehog signaling can be inhibited at different stages of
the pathway and many Hh pathway inhibitors have been
developed over the years. Some preclinical studies performed
experiments combining Hh inhibitors with photon irradiation.
Hh inhibitors cyclopamine, LDE225 and GANT61 have been
reported to sensitize cancer cells in vitro and in vivo to photon
irradiation (115, 165, 213–215). Several small clinical studies
investigated the combination of photon irradiation with the Hh
inhibitor vismodegib and reported that this combination has
radiosensitizing effects in basal cell carcinomas (216–218). In
addition, Hh signaling is an important pathway in CSC evolution
and may have an impact on the intrinsic radioresistance of these
cells. Several issues regarding the precise role of Hh signaling
in CSC remain unresolved at this point, but a growing number
of studies investigates the clinical use of Hh inhibitors to target
CSC (219), which could also have a positive impact on their
radioresistance. Despite the lack of prior knowledge on the
effect of particle irradiation on the Hh pathway, it would be of
interest to investigate this further. Specifically, for Hh driven
cancers, such asmedulloblastomas or basal cell carcinomas where
the combination of Hh inhibition with particle therapy could
be of interest for the patient. For example, sonic Hedgehog-
driven medulloblastomas are mostly observed during infancy or
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adult life. The treatment involves craniospinal irradiation (CSI)
and chemotherapy to prevent metastasis. However, CSI involves
many challenges for conventional radiotherapy due to the close
proximity of the organs at risk. Therefore, particle therapy in
combination with Hh inhibitors could offer an additional benefit
for these patients due to the superior targeting. In a recent study,
inhibition of Hh signaling radiosensitized medulloblastoma cells
to both proton and carbon irradiation (102).

DISCUSSION AND OPEN QUESTIONS

Despite the many advances made in the field of conventional
radiotherapy, radioresistance is still observed and has an
unfavorable, adverse or even harmful impact on the outcome
of cancer patients. The dosimetric advantage of charged particle
therapy has led to a vast increase in the number of patients treated
with charged particles for specific clinical indications. However,
little is known on their impact on underlying aspects of the
tumor microenvironment and molecular mechanisms involved
in radioresistance.

Carbon ions offer a clear benefit to overcome hypoxia-induced
radioresistance due to their low OER. For protons however,
this is less obvious since they have a similar OER as photons.
However, some studies have observed a decreased expression of
HIF-1α and VEGF after proton irradiation. This could therefore
be an advantage in comparison to photons in the treatment of
hypoxic tumors.While there are some studies available on the use
of HIF-1 inhibitors in conventional radiotherapy with varying
results, no one investigated the inhibition of hypoxia related
pathways in combination with proton radiation. Due to a lack
of these studies, there is no evidence so far on the potential
benefit of combining HIF-1 inhibitors and proton therapy
for hypoxic tumors and therefore future research is urgently
warranted. Besides this, particle therapy offers additional options
to overcome hypoxia-induced radioresistance, more specifically
by applying dose- and LET-painting. The redistribution of
the high-LET region of the distal part of the Bragg peak
by dedicated treatment plan optimization allows to maximize
LET in specific regions of the target volume. Dose-painting
in intensity-modulated proton therapy seems promising and
provides similar dose conformity of the dose-painted target
compared to IMRT. However, the additional benefit of dose-
painting protons is the significant reduction of radiation dose
to surrounding normal tissue (220). While both dose- and LET-
painting seem to be beneficial in carbon therapy, dose-painting
looks more promising than LET-painting for proton therapy.
However, more fundamental biophysical research is needed
to bring this to clinical practice. In this context, the use of
dose- and LET-painting in combination with HIF-1 inhibitors
might provide promising perspectives for the treatment of
radioresistant hypoxic tumors with charged particles.

Targeting CSCs has gained significant interest in cancer
treatment, since it is believed that CSC eradication is essential
for a successful treatment. A handful of studies have shown
that particle radiation (protons or carbon ions) is more effective
against CSCs than photon radiation, due to the increase in ROS

production in the case of proton irradiation and the additional
beneficial effect of carbon ions on the radioresistant hypoxic
niche of CSCs. Since CSCs have distinct intrinsic mechanisms
that are responsible for their enhanced radioresistance, more
fundamental research is needed to understand the full extent of
particle radiation on the outcome of DNA repair and survival in
CSCs. Future research should preferably focus on the combined
use of charged particle radiation with inhibitors that target
specific pathways involved in CSCs radioresistance.

Several molecular pathways in cancer cells have been
implicated in resistance to photon radiation. Whether these
pathways also concur resistance to particle radiation is currently
unclear. In addition, many molecular inhibitors have been tested
in combination with conventional radiotherapy, while only very
few have been tested in combination with protons or carbon ions.
Since particle therapy is on the rise, this calls for the further
exploration of these combination therapies in a preclinical
setting. Previously, particle radiation facilities provided limited
access for biological experiments, which limited the time to
perform such experiments. However, international consortia on
particle therapy research, such as the EuropeanNetwork for Light
ion Hadron Therapy (ENLIGHT—https://enlight.web.cern.ch/)
and the well-established Particle Therapy Co-Operative Group
(PTCOG—https://www.ptcog.ch), are growing and recognize
the potential of radiobiological experimental work. Therefore,
the European Particle Therapy Network is investing a lot of
efforts to form a network of research and therapy facilities in
order to coordinate and standardize radiobiological experiments
(221). For carbon ions specifically, limited data on combination
therapies are available. This is mainly due to the high RBE
of carbon ions by which the additional benefit of molecular
inhibitors might be difficult to demonstrate. Furthermore, the use
of carbon ions worldwide is limited, which could also explain
why fewer studies have been published regarding combination
treatment with carbon ions. However, it is important to consider
that although several molecular inhibitors have been tested
in combination with photon radiation, many did not result
in an increased radiosensitizing effect. This could be due to
improper preselection of cell lines in which the chosen pathway
to inhibit is not active. Therefore, a careful selection of the
experimental set-up is crucial in future combination experiments
with pathway inhibitors and particle radiation. In addition,
a proper comparison with conventional photon irradiation is
advisable, in order to have a clear idea of the additional biological
advantage proton and/or carbon ion therapy might bring next to
the dosimetric advantages.

From literature it is clear that there is a huge variety in physical
parameters used in the charged particle radiation experiments,
reflected by the range of beam energies and LET values in
Table 2, for this type of fundamental radiobiological research. In
addition, the experimental models range from in vitro normal
cells to cancer cells and in vivo models. While it is anticipated
that an experimental condition should be tested on more than
one cell line in vitro, it is important to select which is relevant
to clinical practice. This wide variety in experimental models
and designs, together with the limited number of studies could
be an explanation for some of the contradictory results that
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are observed. Therefore, future experiments should first of all
use clinically relevant beam qualities. For example, in proton
therapy, the energy is directly related to the depth in tissue
and the therapeutic range starts at ∼70 MeV, for superficial
tumors, up to 250 MeV for deeper-seeded tumors in the human
body. In addition to the different energies and LET values that
are used, also the drug concentration as well as the time of
drug administration can have an influence on the final result.
Cell lines derived from different tissue types have variable half
maximal inhibitory concentration (IC50) values which can also
influence the drug concentration that is eventually chosen for
further experiments. As previously mentioned, it is important
to select cell lines for in vitro experiments that represent a
clinical indication for particle therapy when one aims to study
the signaling pathways. In addition, more attention should be
paid to CSCs in future preclinical studies. However, the tumor
microenvironment is in reality much more complex than the
in vitro 2D cell cultures and growing evidence supports that
future research efforts should focus on 3D in vitro models and
animal models. These animal studies are particularly important
to design combination therapies with molecular targeting and
fractionated particle irradiation. For instance, the inhibition of
HIF-1 at an unsuitable timing can suppress rather than enhance
the effect of radiation therapy because its anti-angiogenic effect
increases the radioresistant hypoxic fraction. While the first
in vitro results illustrate different effects for charged particles
compared to photons, it remains important to determine
the treatment regimen and critical timing of HIF-1 inhibitor
administration to enhance rather than inhibit the therapeutic
effect of radiation. Despite the fact that in vitro models can
provide valuable insights and a first indication of the effectiveness
of the combined therapy, pre-clinical animal studies with charged
particles are warranted to get a better understanding of how
the combination therapy should be designed. Preclinical animal
studies with charged particles present an important gap in
current scientific literature and such studies are urgently needed
to broaden the clinical scope of charge particle therapy in
combination with molecular targeting.

In conclusion, more research needs to be performed regarding
the potential superior role of particle therapy in treating
radioresistant cancers. An in-depth evaluation of the impact of
carbon ion and proton irradiation on hypoxia, the potential
to eradicate CSCs and the potential targetable pathways in

combination with particle radiation is warranted. Since the

current clinical-base supports the use of particle therapy in a
limited range of clinical indications, this research might broaden
the clinical scope of particle therapy, especially in the context
of radioresistant tumors. In addition, novel molecular strategies
were designed to interfere with the molecular pathways involved
in radioresistance. Moreover, several clinical trials have been
undertaken to evaluate their effect in conventional photon-based
radiotherapy, but only a limited number of studies evaluated the
use of these inhibitors in particle therapy so far. Furthermore, this
review highlights the wide variety in the experimental conditions
of in vitro studies that have been performed up to now and
calls for clinically relevant experimental designs in order to get
a more uniform body of results. Lastly, in vivo experiments
are necessary to confirm the most promising in vitro results
in relation to new potential advantages of particle therapy to
overcome radioresistance.
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