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Abstract

Metabolic syndrome is a multi-faceted disease. The microbiota, as a newly discovered organ, 

contributes to the pathogenesis and progression of metabolic syndrome. Recent studies have 

demonstrated that nuclear receptors play critical roles in metabolic diseases. In the current review, 

we discuss the general role of the microbiome in health and metabolic syndrome. We summarize 

the functions of the nuclear receptor vitamin D receptor (VDR) in metabolism. The focus of this 

review is the novel roles of vitamin D/VDR signaling in regulating inflammation and the 

microbiome, especially in obesity. Furthermore, we extend our discussion of potential gut-liver 

axis mediated by VDR signaling and microbiota in obesity. Finally, we discuss the potential 

clinical application of probiotics and fecal microbiota transplantation in prevention and treatment 

of metabolic syndrome. Insights into nuclear receptors in metabolism and metabolic diseases will 

allow us to develop new strategies for fighting metabolic diseases.
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1. Introduction

Metabolic syndrome (MetS) is a challenging medical problem characterized by the 

association of insulin resistance (IR)/type 2 diabetes (T2DM), hyperlipidemia, hypertension, 

and abdominal obesity [1]. Obesity can induce chronic, low grade inflammation in adipose 

and other tissues, which promotes insulin resistance. The important risk factors for MetS are 

diet, genetics, aging, stress, sedentary behavior or low physical activity, disrupted 
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chronobiology/sleep, mood disorders/psychotropic medication use, and excessive alcohol 

use. The increasing prevalence of obesity and its role in contributing to cardiovascular 

disease (CVD) and T2DM are fueling interest in MetS. Lifestyle changes to improve diet 

and exercise or gastric bypass surgery can reduce obesity and improve insulin resistance [2]. 

However, MetS is a multi-faceted disease, and there is no one ‘gold standard’ treatment 

option.

Gut bacteria have been implicated as critical regulators of host metabolism [3]. Gut 

microbial dysbiosis is emerging as one of the crucial risk factors for developing obesity, 

atherosclerosis, CVD, T2DM, and MetS [4–11]. Recent studies in both genetic and diet-

induced animal models of obesity have shown that imbalance in the microbiota is related to 

an increased Firmicutes/Bacteroidetes phyla ratio [12, 13]. The bacteria Clostridium 
coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and 

Staphylococcus aureus are altered in obesity [14, 15]. The impact of the gut microbiota on 

host metabolism makes it a potentially viable target for treating MetS.

In the current review, we will discuss the general role of the microbiome in health and MetS, 

focusing on the role of the nuclear receptor vitamin D receptor in this interaction.

2. Vitamin D and VDR in Metabolism

1,25-dihydroxyvitamin D (l,25(OH)2D3), the active form of vitamin D, is generated in the 

skin after exposure to UV light or absorbed from a diet of vitamin D-rich foods. l,

25(OH)2D3acts primarily through its receptor VDR. VDR is a nuclear receptor and 

transcription factor that directly or indirectly regulates over 900 genes [16]. VDR mediates 

most known functions of l,25(OH)2D3. Once VDR binds with l,25(OH)2D3,VDR 

heterodimerizes with the retinoid X receptor (RXR). Activated VDR then binds to the 

vitamin D-response element (VDRE) in the target gene promoter to regulate gene 

transcription. VDR is expressed in a variety of tissues, including the intestines, adipose, and 

liver (https://www.proteinatlas.org) [17], and modulates metabolic and immune system 

processes [18–22].

VDR is a critical regulator of host metabolic health. Low levels of vitamin D or inactivating 

polymorphisms in VDR have been associated with inflammatory and metabolic disorders 

[23–30]. Vitamin D deficiency causes rickets, characterized by hypoparathyroidism and 

impaired bone mineralization. Results from studies on mice given vitamin D-deficient diets 

and Vdr knockout (‘Vdr−/−mice) mice show the importance of vitamin D/VDR in health [20, 

31–34]. Vitamin D-deficiency or loss of VDR results in inflammation, impaired adiposity, 

and weakened bones. Vitamin D regulates bone development and calcium homeostasis 

through its actions in the intestine, kidney, and bone. Vitamin D regulates calcium 

absorption in the intestine and resorption in the kidney by activating transcellular calcium 

transport, and intestine-specific Vdr knockout mice (VDRΔIEC) exhibit reduced calcium 

absorption [35].

VDR promotes cellular health by regulating autophagy. Autophagy is critical in maintaining 

cellular health and protecting cells from apoptosis by degrading malfunctioning organelles 
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and invasive bacteria. During cellular starvation, autophagy is activated to break down 

organelles and cell components to release needed nutrients. The protein ATG16L1 mediates 

autophagosome formation and is transcriptionally regulated directly by VDR. Loss of 

ATG16L1 or VDR expression impairs autophagy, resulting in cellular dysfunction, and has 

been associated with intestinal dysbiosis and inflammatory diseases, including inflammatory 

bowel disease (IBD) [31,36].

3. Gut Microbiome Greatly Affects Host Metabolism

The gut microbiome has the metabolic functions to provide the host with energy through 

fermentation. Bacteria break down carbohydrates indigestible by the host to increase nutrient 

absorption. There are several hypotheses regarding how gut microbial imbalance contributes 

to obesity, and many studies suggest dysbiosis in the gut microbiota causes disequilibrium in 

energy homeostasis that eventually leads to obesity [37–39]. Regardless, obesity, IR and 

MetS result as a consequence of complex interaction between immune and microbial factors 

with the host genetic factors [40]. Studies in both humans and mice indicate that decreased 

short-chain fatty acids (SCFAs) significantly contribute to the development of obesity [41–

44]. Furthermore, increased levels of the bacterial endotoxin lipopolysaccharide (LPS) can 

promote low-grade inflammation associated with increased IR, obesity and MetS [45–47]. 

An abnormal increase in gram-negative bacteria, including Enterobacter cloacae, is 

associated with high levels of LPS in obesity [48]. In support, another report showed that 

mice fed the obesogenic ‘Western’ diet, containing high fat and low fiber, exhibit 

significantly increased levels of the pro-inflammatory cytokine IL-6 and endotoxemia 

marker LPS binding protein (LBP) in plasma. These effects were diminished remarkably 

after the obese mice were treated with antibiotics to suppress their gut microbiota [49]. 

Additionally, dysbiosis can contribute to the development of obesity by altering the 

production of gastrointestinal peptides related to satiety, resulting in an increased food intake 

and progression of disease state [50]. Interestingly, in mice, many of these metabolic disease 

phenotypes are transferable via feces [51]. These findings strongly implicate the vital role of 

microbiota in both development and advancement of metabolic conditions [52].

Microbial metabolites, including SCFAs and secondary bile acids, are taken up and affect 

host physiology beyond the intestine. Secondary bile acids directly stimulate host receptors 

farsenoid X receptor (FXR), Takeda G-protein-coupled receptor 5 (TGR5), and VDR in the 

intestine and liver [53]. One microbial metabolite, trimethylamine N-oxide (TMAO), is 

associated with diet-induced weight gain, CVD, and T2DM [54, 56, 57]. ‘Western’ diet fed 

mice develop an altered microbiota composition along with obesity. An obesogenic diet 

causes loss of microbial diversity, increased Firmicutes and Proteobacteria, and decreased 

Bacteroidetes populations; this diet-induced shift in the microbiome is sufficient to cause 

obesity. Transfer of the ‘obese’ microbiome to lean, germ-free animals induced weight gain 

in the recipients [40,58]. Dietary emulsifiers and artificial preservatives and sweeteners in 

processed food also contribute to dysbiosis and insulin resistance. Studies by Chassaing et al 
have found that obese individuals have increased microbial encroachment on the host 

epithelium, contributing to chronic, lowgrade inflammation and insulin resistance [57, 59]. 

A high fat diet alters the gut microbiota and increases bacterial LPS production and 

intestinal permeability, promoting inflammation, dysbiosis, and insulin resistance. These 
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studies show that the microbiota mediates diet-induced obesity and contributes to metabolic 

syndrome.

Technological advances in bacterial sequencing have led to the exciting discovery that 

bacteria can mediate the metabolic benefits of interventions for obesity. An intriguing aspect 

of bariatric surgery is that insulin sensitivity improves before any significant weight loss is 

observed. Tremaroli et al have found that surgery leads to alterations in the gut microbiome 

that mediate at least some of the benefit of bariatric surgery [60]. Similarly, oral 

supplementation of the T2DM drug metformin is superior to injection partly because the 

drug is metabolized by gut bacteria [61]. Fecal microbiome transfer from healthy patients 

has been used to treat Clostridium difficile infection, but it has been observed that the 

metabolic profile of the donor can be unintentionally transmitted to the recipient [58]. These 

studies emphasize the critical role of the microbiome in regulating host metabolic health. 

This makes gut microbial modulation an attractive target in the development of treatments 

for obesity and metabolic disease.

4. VDR Regulation of Microbiome and Inflammation

Cross talk between the gut microbiome and VDR signaling affects host responses and 

inflammation. We have found that intestinal VDR expression regulates the host microbiome 

and mediates the anti-inflammatory effects of probiotics [31, 62]. Mice with intestine-

specific loss of VDR expression are more susceptible to chemical models of colitis [31, 63]. 

Vdr−/− mice are more susceptible to autoimmune diseases and have impaired differentiation 

of two subsets of regulatory T cells (invariant NKT and CD8αα/TCRαβ T cells) [64]. VDR 

signaling also promotes mucosal barrier function in the gut. Expression of the barrier protein 

claudin 2 is transcriptionally regulated by VDR [65]. Secretion of anti-microbial peptides 

such as cathelicidin and β-defensins is critical in preventing contact of gut microbes with the 

epithelial surface, and expression of both these AMPs is regulated by VDR [66].

VDR expression and activity in immune cells promotes tolerogenic and anti-inflammatory 

phenotypes. Exposing pro-inflammatory T cells from ulcerative patients to a VDR agonist is 

sufficient to convert them to tolerogenic regulator T cells (Tregs) [67]. Dendritic cell treated 

with vitamin D exhibit a tolerogenic phenotype and promote induction of Tregs [68, 69]. 

VDR also influences intestinal inflammation through its interaction with NF-κΒ. VDR 

promotes NF-κB expression but reduces intestinal inflammation by blocking NF-κΒ 
signaling and nuclear translocation. Loss of VDR results in loss of physical binding of NF-

κBp65, reducing the level of IkappaBalpha protein, and increased transcriptional activity of 

NF-κB [70–73]. Interaction of VDR with NF-κΒ in macrophages suppresses the pro-

inflammatory response to the bacterial endotoxin LPS [74]. Genome-wide association 

studies have implicated the Vdr gene as a mediator of inflammatory disease. A recent study 

found that numerous SNPs correlated with immune disorders represent binding sites for 

VDR and NF-κΒ, and suggests that VDR may regulate transcription indirectly through its 

interaction with NF-κB [75]. These data suggest the critical role of VDR in barrier functions, 

innate immunity and adaptive immunity.

Bakke et al. Page 4

Nucl Receptor Res. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A recent study found the direct correlation between low vitamin D levels and glucose 

metabolism [76]. Dietary changes (e.g., vitamin D supplementation) may reduce 

inflammation and ameliorate impaired insulin signaling and secretion process [76]. Vitamin 

D/VDR helps in maintaining healthy intestinal microbiome, thus improving glucose 

homeostasis in diabetes [62]. Patients with T2DM exhibit dysbiosis, and studies suggest that 

the microbiota plays a causative role in development of glucose intolerance and modulating 

the microbiota can improve glucose sensitivity [77]. VDR is a regulator of the microbiome 

and is also known to regulate the expression of AMPs and autophagy regulator Atgl611 [22, 

31]. which are essential for microbial and intestinal homeostasis. Vdr−/− mice exhibit a 

significant shift in the phylogenetic content of gut microbiota from their control group, 

including a 42% variation in β-diversity. In a human study, the shift in the microbiota was 

correlated with serum levels of specific bile and fatty acids, including known ligands and 

downstream metabolites of VDR [78]. Fecal content of Vdr−/− mice shows increased 

Clostridium and Bacteroides populations, whereas Lactobacillus is depleted. In the ceacal 

content, Alistipes and Odoribacter were depleted, and Eggerthella was enriched [62]. 

Analysis of both human and mice gut microbiota indicated that VDR influences individual 

bacterial taxa such as Parabacteroides, which is associated with diabetes [78]. However, 

studies of dysbiosis and VDR in disease models are still limited. Apart from obesity and 

metabolic syndrome, decreased vitamin D and downregulation of VDR are also linked with 

the pathogenesis of several diseases associated with microbial dysbiosis, namely IBD [79–

81]. cancer asthma [82, 83].

5. Role of Vitamin D/VDR in Obesity

Low serum vitamin D is correlated with obesity and insulin resistance [21], and many 

studies have identified roles for VDR in regulating metabolism. Vdr−/− mice exhibit a lean 

phenotype and resist high fat diet-induced weight gain, including increased uncoupling 

protein 1 (UCP1) expression in white adipose depots resulting in energy wasting rather than 

storage [84]. These adipocytes, with induced UPC1 activity, increased mitochondria, and 

smaller lipid droplets are commonly referred to as ‘beige’ adipocytes, as they occur in white 

adipose depots and differentiate from white adipocyte precursors but develop brown 

adipocyte properties. Induction of white adipocyte trans-differentiation into metabolically 

active beige adipocytes is an attractive target in anti-obesity therapeutics, and loss of VDR 

signaling appears to be a contributing factor. On the other hand, mice with transgenic 

overexpression of human Vdr in adipocytes have increased weight gain and adiposity and 

decreased UCP1 expression compared to controls. Interestingly, adipocyte-specific Vdr 
knockout mice do not develop the lean phenotype observed in whole body knockout mice, 

suggesting that the lean phenotype is mediated by VDR signaling in other tissues, such as 

the intestine or liver, or caused by poor nutritional state due to impaired intestinal nutrient 

absorption [85]. This also indicates that vitamin D/VDR studies should include 

tissuespecific models.

Although total loss of VDR promotes leanness, activation of VDR signaling in the immune 

system may improve insulin resistance and cardiovascular aspects of MetS, including 

atherosclerosis. During obesity, macrophages infiltrate adipose tissue, which creates a 

chronically inflamed environment contributing to insulin resistance. VDR signaling in 
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macrophages regulates their phenotype and loss of myeloid VDR promotes insulin 

resistance and cardiovascular disease [20]. Vitamin D deficiency exacerbates macrophage 

infiltration of adipose tissue and promotes inflammatory cytokine release in high fat diet fed 

rats. This phenotype is mediated by decreased expression of AMPK and SIRT1, key nutrient 

sensors that regulate adipogenesis, lipid storage, and inflammation [86]. Thus, the overall 

effect of low vitamin D/VDR activation is increased susceptibility to obesity and associated 

diseases.

In macrophages, VDR is post-translationally regulated by blood glucose levels. VDR is 

OGlcNAcylated in response to hyperglycemia [87]. Whether this post-translational 

modification occurs in other obesity related organs such as adipose tissue, pancreas, or 

skeletal muscle and what downstream effect it may have on insulin sensitivity has yet to be 

determined. However, phosphorylation and SUMOylation of VDR influences its 

transcriptional activity [88]. Thus, further study regarding how VDR responds to blood 

glucose levels in the immune system and metabolic tissues is warranted [88]. These studies 

should be done in a tissue specific experimental model to avoid the confounding changes in 

the whole body knockout mice.

6. Potential Gut-Liver Axis through VDR and Microbiota in Obesity

VDR, as a transcription factor, heterodimerizes with the retinoid X receptor (RXR) and 

regulates a range of physiological functions [89]. It may mediate the effects of the host 

microbiota by serving as a bile acid sensor [53]. VDR is activated by binding to either the 

potent vitamin D metabolite 1,25(OH)2D3 or secondary bile acids transformed by gut 

microbial metabolism, such as lithocholic acid (LCA), glycine-conjugated LCA, and 3-keto-

LCA from 7α-dehydroxylated primary CDCAA [90]. When activated, VDR directly 

enhances the transcription of cytochrome P450 enzyme CYP3A4 in hepatic cells. CYP3A4 

initiates the metabolic degradation of LCA and ultimately reduces the bile acid 

concentration, thus preventing bile acid toxicity (Figure 1). In the liver, after VDR is 

activated by l,25(OH)2D or LCA, it then heterodimerizes with FXR/RXR and binds to VDR 

responsive element (VDRE) region of DNA. VDR activation decreases bile acid synthesis. 

Thus, VDR acts as a bile acid sensor. Recently, Ishizawa et al. found that, like l,25(OH)2D3, 

LCA can also effectively increased the expression of target gene Cyp24a1 in the ileum, thus 

indicating that LCA is a selective VDR ligand acting mainly in the lower intestine. 

Correspondingly, LCA may be involved in signaling that interlinks intestinal bacteria and 

host VDR function [91]. VDR activation also creates a negative feedback loop by decreasing 

bile acid synthesis, mediated by reduced CYP7A1 expression (Figure 1). In male Sprague-

Dawley rats, VDR has been shown to induce apical sodium-dependent bile acid transporter 

(Asbt) expression, which increases ileal bile acid transport [92].

As shown in Figure 1, in the intestine, VDR regulates the intestinal barrier functions by 

regulating epithelial tight junction proteins and blocking inflammation and bacterial 

infection. Thus, VDR plays a major role in linking the signaling pathways that moderate the 

liver-gut axis. Activation of VDR has multiple effects on bile acid metabolism, transport and 

absorption. VDR activation also directly interferes with the production of pro-inflammatory 
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cytokines [93]. Dysregulation of vitamin D/VDR might lead to increased gut permeability, 

bacterial translocation, and obesity.

The Vitamin D/VDR axis plays a crucial role in obesity, which is at least partially mediated 

by gene polymorphisms and inflammation [94]. Results of a genome-wide association 

analysis of a Northern Germany cohort involving 1,812 human subjects suggest that the Vdr 
gene is significantly associated with overall microbial variation and individual taxa [78]. 

VDR regulates not only gut microbes but also several important host pathways, such as 

nucleotide-binding oligomerization domain-like receptors (NLRs), amino acid and 

carbohydrate metabolism, detoxification, infection, and signal transduction and influences 

cancer and other diseases [62]. A recent study of 103 pediatric patients in the UK showed 

that polymorphisms in the vitamin D metabolic pathway are associated with increased 

steatosis and severity of non-alcoholic fatty liver disease (NAFLD). Additionally, this 

NAFLD patient cohort exhibited decreased vitamin D status year-round with extremely low 

levels in the winter season [95].

A growing body of evidence suggests that microbiota-bile acid interactions play a role in the 

development of obesity and several other metabolic disorders [11, 96, 97]. Thus, the 

crosstalk between intestinal VDR signaling and gut microbiota may hold the key for how 

VDR signaling in non-adipose tissues can contribute to obesity and metabolic syndrome. 

Thus, a gut-liver axis mediated by VDR may play a novel role in obesity and metabolic 

diseases (Figure 1).

7. Potential Clinical Application of Probiotics and FMT in Prevention and 

Treatment of Metabolic Syndrome

Lately, targeting the microbiome to combat obesity and metabolic syndrome has gathered 

much attention. To modify the microbiome and modulate pathogenic bacterial species, 

prebiotics [98], probiotics [99], phage therapy [100] and CRISPR/cas [101] systems are 

evolving as advanced tools.

Several studies have indicated that administration of probiotics has clinical benefits in 

improving the symptoms of metabolic syndrome. Probiotics can promote restoration of gut 

microbiome composition by introducing live bacteria or bioactive metabolites [102, 103]. 

They also known to alter various metabolic pathway outcomes, most importantly, amino-

acid metabolism, methylamines and SCFAs, suggesting differences in fermentation patterns 

[83]. Table 1 and Table 2 summarize the effect of probiotic bacteria in obesity in both mice 

and humans. Lactobacillus gasseri, L. salivarius UCC118, and a mix of the probiotic strains 

of Bifidobacterium were able to reduce adiposity and body weight in experimental animals/

human groups as well as limit disease progression by countering the adverse effects of the 

high-fat diet that is often seen in patients suffering from the disease [6]. The VSL #3 

probiotic combination has been shown to improve glucose tolerance by stimulating the 

production of GLP-1 and SCFAs, especially butyrate, which in turn help in reducing food 

intake and adiposity [53]. Furthermore, many probiotic strains such as Lactobacillus 
rhamnosus GG, L. rhamnosus Lc705, and Saccharomyces boulardii have been successful in 

clinical trials and are used for altering the composition of the host microbiome [104–106].
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Alteration of microbiota to confer health benefits can be achieved by fecal microbiota 

transplantation (FMT). FMT is defined as the administration of a solution of fecal matter 

from a healthy donor into the intestinal tract of a recipient to directly change the recipient’s 

microbial configuration. FMT has proven to be effective in treating Clostridium difficile 
infection. There are also encouraging data in intestinal disorders like IBD, IBS, and MetS 

[107]. Fecal transplant from captive non-human primates on a low-fiber diet to GF mice 

induced obesity in the recipient mice, indicating that the composition of gut microbiota, 

along with fiber and diet composition, can potentiate the disease state [108]. In another 

report, IR in high-fructose diet fed adult rats was reversed by FMT from their control group 

[109]. Additionally, after high fat or high fat/high sucrose diet-fed obese mice underwent 

FMT from resveratrol-fed donor mice, they exhibited improved glucose homeostasis with 

increased anti-inflammatory markers, indicating diminished symptoms of obesity [110]. 

Although FMT results are encouraging in animal models, there are only 11 clinical trials 

supporting FMT as a potential therapy for MetS and obesity. Also, Vrieze et al. [77] reported 

that when obese patients diagnosed with T2DM received FMT from healthy/lean donors 

there were no significant changes in BMI or insulin sensitivity, and no alteration in microbial 

diversity was noted.

Prebiotics, probiotics, and FMT techniques are becoming more attractive potential therapies 

to treat microbial dysbiosis and metabolic diseases due to their few side effects - no major 

consequences have been reported so far. However, more detailed research needs to be done 

with proper standards and assessment to further establish the direct role of the microbiota in 

diseases. Different bile acid receptors - at least four members of the NR superfamily (FXR, 

PXR, CAR and VDR) - are therapeutic targets for the treatment of cholestatic liver disease, 

fatty liver disease, diabetes mellitus, and metabolic syndrome [53,111]. The application of 

targeting nuclear receptors, such as VDR, and the microbiome in therapy warrants further 

exploration.

8. Conclusion

Dietary vitamin D is critical for a healthy state. VDR is involved in many important 

functions, including immunomodulation, proliferation, and autophagy via distinct effector 

molecules (Figure 2). The status and function of VDR directly influences microbiome and is 

involved in innate immunity and epigenetic modulation of the host. Vitamin D/VDR 

deficiency is a health concern in metabolic diseases. Recent progress of microbiome and 

vitamin D/VDR in inflammation and disease are very encouraging. A link between VDR 

and microbial metabolites has been established, but studies linking nuclear receptors, 

microbiome, and FMT are still lacking.

The research progress of microbiota regulated by Vitamin D receptor is an example of the 

critical role of nuclear receptors. Similar to the VDR, other nuclear receptors, such as the 

aryl hydrocarbon receptor, also regulate intestinal microbiome, enhance barrier integrity, 

reduce inflammation and autoimmunity, and increases disease tolerance. Tryptophan 

metabolites may suppress inflammatory responses by acting on the aryl hydrocarbon 

receptor in T-cells or astrocytes [112–115]. Further elucidating the mechanisms for 
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microbiota and nuclear receptors will provide new opportunities to develop novel 

approaches that prevent and treat metabolic diseases.
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Figure 1: VDR regulates the liver-gut axis:
In the liver, after VDR is activated by l,25(OH)2D or LCA, it then heterodimerizes with 

FXR/RXR and binds to VDR responsive element (VDRE) region of DNA. Active VDR 

directly increases CYP3A4 transcription, which in turn degrades LCA. VDR activation also 

induces negative regulation of CYP7A1, which decreases bile acid synthesis. Thus, VDR 

acts as a bile acid sensor. In the intestine, VDR regulates the intestinal barrier functions by 

regulating epithelial tight junction proteins and blocking inflammation and bacterial 

infection. Thus, VDR plays a major role in linking the signaling pathways that moderate the 

liver-gut axis. Dysregulation of this axis might lead to increased gut permeability, bacterial 

translocation, and obesity.

Bakke et al. Page 17

Nucl Receptor Res. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Vitamin D receptor in regulating various cellular and molecular functions:
VDR regulates many vital physiological functions including immuno-modulation, 

proliferation, and autophagy via distinct effector molecules (as mentioned in the respective 

box). It directly influences the gut-microbiome and is involved in epigenetic modulation of 

the host. VDR is also known to block pathogen infection by regulating Paneth cells and anti-

microbial peptides, such as defensins.
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Table 1:

Effects of probiotic bacteria in obesity in animal models.

Probiotic Bacteria Used Study Model (Animal) Major Findings and Effect on Gut 
microbiota (if any reported)

Reference

Lactobacillus mali APS 1 HFD-fed mice ↓ BW (body weight), caloric intake and fat 
accumulation. Gut microbiota restored.

Chen et al., 2018 
[116]

B. lactis Bil, B. breve Bbr8 and B. 
breve BL10 mixture

HFD-fed mice Prevents the progression of obesity, 
reduces adiposity and inflammation and 
improves lipid profile.

Roselli et al., 2018 
[117]

L. plantarum HAC01 C57BL/6J HFD-fed mice Improved insulin sensitivity and gut 
permeability ↓ LPS production.

Park et al., 2017 
[118]

L. rhamnosus NCDC17 HFD and streptozotocin 
treated Wistar rats

↑ Insulin Sensitivity, glycosylated 
hemoglobin, FFA, TGs Improved lipid 
profile and oxidative stress. ↑ GLP1 and 
adiponectin, ↓ Inflammation by decreasing 
pro-inflammatory cytokines and propionate 
(in caecum)

Singh et al., 2017 
[119]

Probiotic mixture (L. salivarius 33, L. 
rhamnosus LMG S-28148, B. animalis 
subsp. lactis LMG P-28149)

C57BL/6J HFD-fed mice ↓ BW and adiposity with improvement in 
insulin resistance, ↓ adipose tissue 
inflammation, ↑ dyslipidemia through 
adipose tissue immune cell-remodeling

Alai’d et al., 2016 
[120]

Lactobacillus sakei OK67 HFD-fed mice ↓ BW and epididymal fat, NF- κB 
activation, LPS production, and pro-
inflammatory cytokines

Lim et al, 2016 
[121]

Lactobacillus paracasei CNCM 1–4270 
(LC), L. rhamnosus 1–3690 (LR) and 
Bifidobacterium animalis subsp (BA)

HFD-fed mice Each strain changed a distinct set of 
microbial population. LC and LR increased 
cecal acetate levels. BA significantly 
decreased adipose and hepatic tumor 
necrosis factor-α gene expression. 
Attenuates obesity.

Wang et al, 2014 
[122]

L. coryniformis CECT5711 C57BL/6J HFD-fed mice Improve insulin sensitivity and gut 
permeability ↓ LPS production.

Toral et al., 2014 
[123]

L. casei NCDC 19 C57BL/6J HFD-fed mice ↓ BW, epididymal fat, blood glucose, 
plasma lipids and leptin f adiponectin

Rather et al., 2014 
[124]

VSL#3 C57J/B67 HFD-fed and 
ob/ob mice

↓ adiposity Yadav et al., 2013 
[125]

L. salivarius UCC118 C57BL/J6 HFD-fed mice ↓ BW Clarke et al., 2013 
[126]
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Table 2:

Effects of probiotic bacteria in obesity in human studies.

Probiotic Bacteria Used Study Model (Human) Major Findings Reference

Dietary supplementation with probiotics Dietary supplementation with 
probiotics/ placebo controlled

Significantly alters the levels of DNA 
methylation in 38 obesity related genes 
in mothers and 68 genes in children.

Vahamiko et al, 
2018 [127]

L. salivarius UBL S22 and Prebiotic 
Fructoligosaccharide in healthy human 
volunteers

Double-blind, placebo controlled Improvement in serum TGs and lipid 
profile ↓. inflammatory cytokines

Rajkumar et al., 
2015 [128]

Probiotic (S. thermophiles, L. plantarum, 
L. acidophilus. L. rhamnosus. B. lactis. 
B. longum and B. breve) and 
Bofutsushosan herb

Double-blind, placebo controlled ↓ BW, waist circumference and Fipid 
profile (in HDF-cholesterol). Change 
in body composition is positively 
related to levels of EPS and L. 
plantarum

Lee et al., 2014 
[129]
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