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Abstract: Railwayfreight cars operating in heavy-load and complex outdoor environments
are frequently subject to adverse conditions such as haze, temperature fluctuations, and
transmission interference, which significantly degrade the quality of the acquired images
and introduce substantial noise. Furthermore, the structural complexity of freight cars,
coupled with the small size, diversity, and complex structure of defect areas, poses serious
challenges for image denoising. Specifically, it becomes extremely difficult to remove
noise while simultaneously preserving fine-grained textures and edge details. These chal-
lenges distinguish railway freight car image denoising from conventional image restoration
tasks, necessitating the design of specialized algorithms that can achieve both effective
noise suppression and precise structural detail preservation. To address the challenges of
incomplete denoising and poor preservation of details and edge information in railway
freight car images, this paper proposes a novel image denoising algorithm named the
Nonlinear Activation-Free Network based on Multi-Scale Edge Enhancement and Fusion
(NAF-MEEF). The algorithm constructs a Multi-scale Edge Enhancement Initialization
Layer to strengthen edge information at multiple scales. Additionally, it employs a Non-
linear Activation-Free feature extractor that effectively captures local and global image
information. Leveraging the network’s multi-branch parallelism, a Multi-scale Rotation
Fusion Attention Mechanism is developed to perform weight analysis on information
across various scales and dimensions. To ensure consistency in image details and structure,
this paper introduces a fusion loss function. The experimental results show that compared
with recent advanced methods, the proposed algorithm has better noise suppression and
edge preservation performance. The proposed method achieves significant denoising
performance on railway freight car images affected by Gaussian, composite, and simulated
real-world noise, with PSNR gains of 1.20 dB, 1.45 dB, and 0.69 dB, and SSIM improve-
ments of 2.23%, 2.72%, and 1.08%, respectively. On public benchmarks, it attains average
PSNRs of 30.34 dB (Set12) and 28.94 dB (BSD68), outperforming several state-of-the-art
methods. In addition, this method also performs well in railway image dehazing tasks
and demonstrates good generalization ability in denoising tests of remote sensing ship
images, further proving its robustness and practical application value in diverse image
restoration tasks.

Keywords: image denoising; NAFNet; learnable Sobel convolution; attention mechanism;
composite loss function
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1. Introduction
The timely detection of component defects makes a significant contribution to the

safety and stability of railway freight car operation. In recent years, more and more
research has been devoted to using machine vision to solve the problem of component
defect recognition, and image quality is an important prerequisite for defect detection,
which directly affects the accuracy of the entire system. Therefore, improving image quality
is crucial.

Due to the outdoor deployment of railway freight car image acquisition systems,
the captured images are frequently affected by a variety of environmental disturbances
such as fog, haze, dust, temperature fluctuations, and unstable signal transmission. These
factors introduce significant noise and degradation during the stages of image acquisition,
transmission, and reception. Additionally, image capture often occurs in poorly lit areas
beneath the car body and is further challenged by complex structural occlusions, making
the visualization of critical component details even more difficult. These issues severely
constrain the accuracy of image-based defect detection tasks.

Unlike traditional image-denoising scenarios, railway freight car images face unique
challenges. Defects are usually small in size, diverse in form, and complex in structure,
while useful textures and edge structures are densely distributed and highly susceptible
to noise interference. As a result, image denoising in this context must not only achieve
robust noise suppression but also ensure the accurate preservation of fine-grained edge
and texture information, rendering the task significantly more complex and specialized
than general-purpose denoising problems.

Researching efficient methods for denoising railway freight car operation images
is a crucial aspect of interdisciplinary fields, offering both theoretical significance and
substantial practical application value [1,2]. The widespread application of digital image
technology has made image denoising a key research topic in interdisciplinary fields such
as medical imaging, satellite remote sensing, and video surveillance.

With the advancement of digital image technology in recent years, image denoising,
as the most fundamental and important downstream task, plays a crucial role in improving
image quality and the accuracy of subsequent tasks. In practical application scenarios,
image data are subject to various interferences of noise. Image denoising aims to restore
potential noise-free image data from image data contaminated by noise. However, this is
an ill-posed inverse process, and there is no unique solution [3].

Denoising methods can be divided into two categories: model-based and learning-
based approaches. Due to the presence of similar or repetitive edge texture information in
natural images, model-based methods can reduce artifacts caused by complex texture infor-
mation during denoising by combining non-local self-similarity with sparse representation.
So far, a large number of models based on this technology have been developed. The most
representative technique is BM3D [4], which achieves image denoising by extracting self-
similarity features in images and performing domain transformations on self-similar blocks.
WNNM [5] applies the weighted nuclear norm minimization method to image denoising by
leveraging the non-local self-similarity of images. Subsequently, many methods based on
this type have been continuously proposed, such as MNL-tSVD [6], BM4D [7], slice-based
dictionary learning [8], and so on. Although model-based methods have achieved notable
results in the field of image denoising, their shortcomings are also quite apparent. Firstly,
such techniques require the design of specific models for each individual denoising task.
Secondly, there is a lack of universality among various data, and manual or semi-automatic
parameter adjustments are required for the model. In addition, their convergence takes
a long time. These challenges not only need to be addressed by such methods but also
hinder, to some extent, the practical application of these technologies.
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In recent years, deep learning methods have been widely applied in various fields of
computer vision. Unlike model-based methods, learning-based methods aim to learn model
parameters from data and obtain statistical information about images and noise through
training the model and completing the mapping between noisy images and denoised
images to achieve denoising. The learning of deep neural networks can be divided into two
types: self-supervised learning and supervised learning. The self-supervised denoising
methods represented by N2N [9], N2S [10], S2S [11], and VDN [12] lack flexibility in
adjusting network parameters, and the extracted features cannot fully represent noise,
making it difficult to obtain complex mapping relationships between noisy images and
denoised images.

Supervised learning can effectively address the issues present in the aforementioned
self-supervised denoising techniques. DnCNN [13] accelerates the training process and
enhances model denoising performance by employing residual learning and batch nor-
malization techniques. FFDNet [14] effectively solves the problem of blind denoising by
using noisy image blocks and noisy mapping blocks as inputs to the network. ADNet [15]
introduces a denoising convolutional neural network guided by an attention mechanism,
enabling finer extraction of noise information from complex backgrounds, thus achieving
superior denoising results. ADL [3] introduces an adversarial distortion learning-based
denoising method, where both the denoiser and discriminator are implemented using an
autoencoder architecture known as Efficient-UNet. This approach effectively mitigates
overfitting during training and improves the model’s denoising performance. DRAN [16]
removes noise from images by integrating attention mechanisms and dynamic convolution
operations while preserving critical image details. This network design utilizes the correla-
tion between features and optimizes the propagation of residual features through spatial
gating mechanisms, thereby improving denoising performance.

On this basis, recent research has further explored denoising mechanisms in specific
task scenarios. Yang et al. propose DIPKD [17], which enhances lightweight SAR object
detection via Selective Noise Suppression, Knowledge Level Decoupling, and Reverse
Information Transfer, effectively filtering speckle noise and boosting student model perfor-
mance. Saidulu and Muduli [18] designed DP-LDCTNet for low-dose CT denoising, com-
bining Dynamic Convolution, a Structure-aware Network trained with contrastive learning,
and CT-specific perceptual loss to preserve structural integrity. For low-light enhance-
ment, Wang and Yuan [19] propose FIHN, integrating a hierarchical structure (TRGF and
DDCF modules) with an invertible flow network trained using negative log-likelihood loss,
improving contrast, noise suppression, and detail preservation. Hein et al. [20] proposed
PFCM (Poisson Flow Consistency Models), which extends the applicability of supervised
diffusion models to medical imaging.

In the process of railway image acquisition, noise weakens the ability to represent
image details due to various external factors, which significantly limits the accuracy of fault
detection. Although deep neural networks have made significant progress in denoising
natural and medical images and effectively improved image quality, their adaptability in
the specific field of railway images is still insufficient, resulting in limited generalization
ability. In addition, due to the scarcity of data in railway freight car image scenes, there
are relatively few related studies and a lack of specialized optimized denoising algorithms.
In practical applications, existing denoising methods often struggle to effectively preserve
high-frequency textures and structural edges, which are crucial for downstream tasks such
as defect localization and classification in railway freight car images. This deficiency can
lead to problems such as blurred image contours and loss of key visual clues. Especially in
complex railway freight car image backgrounds, accurately preserving the edge information
of complex components and distinguishing noise from useful visual information remains a
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major challenge. These limitations result in poor performance of images in terms of content
texture, detail restoration, and other aspects. Therefore, it is urgent to design denoising
algorithms specifically tailored to the operating environment and visual complexity of
railway freight car images in order to improve the reliability and accuracy of fault detection.

In response to the challenge of simultaneously improving noise suppression and edge
information preservation in railway freight car images, this paper proposes a method called
Nonlinear Activation-Free Network based on Multi-Scale Edge Enhancement and Fusion
(NAF-MEEF), which leverages supervised learning concepts within Nonlinear Activation-
Free Networks. The proposed algorithm adopts a fully convolutional architecture and is
capable of effectively denoising railway freight car images.

To comprehensively validate its effectiveness, NAF-MEEF has been evaluated on
both self-constructed railway freight car datasets and public datasets such as Set12 and
BSD68 [21]. Additionally, denoising experiments on a remote sensing ship dataset and
image dehazing experiments on railway freight car images were conducted, further demon-
strating the robustness and generalization capability of the proposed method. The ex-
perimental results confirm that NAF-MEEF not only excels in railway freight car image
denoising but also achieves competitive performance on diverse benchmark datasets.
In summary, the main contributions of this article are as follows:

(1) This paper proposes a Multi-scale Edge Enhancement Initialization Layer, designed
based on learnable Sobel convolution, which adaptively extracts high-frequency edge
features of images at multiple scales.

(2) Dual-brand Nonlinear Activation-Free Network (D-NAFNet) is constructed as the core
feature extractor of the algorithm. It adopts an efficient, lightweight UNet architecture
and employs the Nonlinear Activation-Free Network Block (NAF-MEEF’s block) as
its backbone, enabling hierarchical coordination during feature extraction.

(3) A Multi-scale Rotation Fusion Attention Mechanism is proposed that effectively
integrates multi-scale information and establishes the relationship between channel
and spatial attention.

(4) A composite loss function is introduced for the training phase that combines L1
loss with pyramidal textural loss, thereby preserving texture information in complex
regions and minimizing noise amplification in non-textured areas.

The rest of this paper is organized as follows: Section 2 provides a detailed description
of the proposed NAF-MEEF algorithm. Section 3 introduces the composite loss function
used in this paper. Section 4 presents the experimental settings. Section 5 shows extensive
experimental results and analysis. Section 6 conducts ablation studies. Section 7 concludes
the paper.

2. Methods
NAF-MEEF (Figure 1a) aims to learn the mapping relationship between noisy images

and clean images in order to effectively remove noise while preserving image details as
much as possible. To achieve this goal, NAF-MEEF has enhanced its feature extraction
and edge information preservation capabilities through multiple architectural innovations.
Firstly, we designed a 2D dual-branch deep convolutional block (2DDCB) in the NAF-
MEEF’s block and constructed a D-NAFNet feature extraction network using this block.
Unlike directly using NAFNet as the backbone, we redesign the feature extraction pathway,
incorporating D-NAFNet (Figure 1b) as an integral part of the overall architecture. In addi-
tion, the proposed Multi-scale Edge Enhancement Initialization Layer (MEEIL) integrates
learnable Sobel operators across multiple scales to enhance edge representation at the early
stage of image input. Furthermore, a Multi-scale Rotation Fusion Attention Mechanism is
employed to adaptively fuse multi-scale features. These designs are not merely a simple
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stacking of modules but rather an organically integrated solution aimed at addressing
common issues in images, such as edge degradation and structural blurring.

Figure 1. Denoising network framework. (a) The NAF-MEEF denoising network framework consists
of a multi-scale initialized edge enhancement layer, a feature extractor D-NAFNet, and a Multi-scale
Rotation Fusion Attention Mechanism; (b) The feature extractor D-NAFNet consists of the UNet
framework and NAF-MEEF’s block.

2.1. Multi-Scale Edge Enhancement Initialization Layer

This section introduces a Multi-scale Edge Enhancement Initialization Layer designed
to address a critical limitation in image-denoising tasks—namely, the loss of fine edge and
high-frequency details caused by strong or composite noise. Traditional convolutional
layers often struggle to preserve such features, especially when processing images at
varying resolutions or under severe noise corruption. To mitigate this, we propose a
dedicated initialization layer that enhances edge-related features from the input image
across multiple scales, thereby improving the model’s sensitivity to structural and high-
frequency components from the very beginning of the network.

Specifically, the proposed layer consists of a multi-scale initialization structure that
splits the input image into three resolution branches and applies a trainable Sobel operator
at each scale [22]. Unlike conventional Sobel filters with fixed weights, our trainable Sobel
operator learns to adaptively capture vertical, horizontal, and diagonal edge information
by optimizing its learnable parameter α during training. This enables the model to generate
edge-enhanced feature maps that are more robust to noise and better aligned with the
underlying structural information of the image.

This design is particularly motivated by the need for strong initialization in low-
level vision tasks such as denoising, where edge preservation plays a vital role in visual
quality. By introducing edge enhancement early in the network, the model is better guided
during training to retain contours and fine textures, which are often degraded in standard
convolutional pipelines. The structure of the trainable Sobel operator and the multi-scale
fusion process is illustrated in Figure 2a.

K1 =

−α −2α −α

0 0 0
α 2α α

, K2 =

 −α 0 α

−2α 0 2α

−α 0 α


K3 =

−2α −α 0
−α 0 α

0 α 2α

, K4 =

 0 α 2α

−α 0 α

2α −α 0

 (1)
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Figure 2. Illustration of (a) Learnable Sobel operator; (b) Multi-scale Edge Enhancement Initialization
Layer (MEEIL).

As shown in Figure 2b, the input image I is first subjected to multi-scale processing to
extract edge features at different scales. Specifically, three different scales of convolution
branches are used, namely no downsampling, downsampling factor S = 2, and downsam-
pling factor S = 4. The feature extraction process for each scale can be represented as:

Is = Conv3×3(Conv3×3(Downsample(I, s))), s ∈ {1, 2, 4} (2)

After two 3 × 3 convolutions at each scale, the corresponding evidence graph Is

obtained separately. After obtaining the evidence graph Is at different scales, we use Sobel
convolution to extract the edge features at each scale, which can be expressed as follows:

Os = SobelConv(Is), s ∈ {1, 2, 4} (3)

This design ensures better preservation of edge features in the image, especially for
denoising tasks, where enhanced high-frequency information is critical for effectively
reducing noise while maintaining image details.

2.2. Feature Extraction Network: D-NAFNet

Convolutional neural networks (CNNs) have been widely adopted in computer vision
tasks such as image denoising, object detection, and image segmentation, demonstrat-
ing significant effectiveness. With the rapid advancement of deep learning technologies,
researchers have continuously optimized CNNs, yielding notable improvements in con-
volutional operation design [23–26] and overall network architecture refinement [27,28],
all aimed at enhancing model performance and efficiency. Recently, the introduction of
NAFNet [29] has offered a new perspective on image denoising by questioning the necessity
of nonlinear activation functions in traditional CNNs. NAFNet proposes a model built from
scratch that excludes these functions, showing they may not be essential for denoising tasks.
This paradigm shift has inspired novel approaches focusing on edge preservation and
multi-scale feature fusion to better capture fine-grained information. Complex denoising
models often suffer from high computational costs due to their deep and parameter-heavy
structures, which pose challenges in resource-constrained environments. In response,
Chen et al. [29] proposed a model construction strategy that emphasizes structural simplic-
ity by avoiding unnecessary components while iteratively refining key modules. Building
on this idea, the method presented in this study aims to develop a streamlined, efficient
feature extractor suitable for real-time denoising applications such as railway freight car
image processing. Subsequent sections elaborate on architectural and block-level design
choices guided by these principles.
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2.2.1. Architecture

With the continuous development of deep learning, researchers continue to develop
and innovate the model constructs; for example, some multi-stage architectures stack UNet
networks in series (Figure 3a), and multi-scale fusion architectures enhance the fusion of
features at different scales through complex inter-block connections (Figure 3b). In this
paper, the classical single-stage UNet network architecture (Figure 3c) is adopted to ensure
the simplicity of the model structure. Several state-of-the-art (SOTA) methods have used
this single-stage UNet network so that the architecture does not become a hindrance to the
model performance, as demonstrated by the subsequent experimental structure.

Figure 3. Comparison of different image restoration model architectures.

2.2.2. PlainNet’s Block

The main framework of deep neural networks is usually built through the stacking
of modules, and the excellent design inside the modules largely determines the overall
performance of the model. Therefore, this article will start with the most important and
common components for combination, such as convolution operations, ReLU activation
functions, and shortcuts. The combination of these basic components is shown in Figure 4a,
which we call PlainNet’s block. In the design of the module, this article did not consider the
introduction of Transformer structure, mainly based on the following two considerations:
Firstly, several studies in recent years have shown that Transformer is not the only method
that can achieve excellent denoising performance [29]. In addition, compared with self-
attention mechanisms, convolutional neural networks have the advantages of simpler
mechanisms and lower computational overhead and can achieve superior performance
in situations where data volume is relatively limited.

The focus of this study is the denoising of railway freight car images; however, signifi-
cant challenges exist in the acquisition and collection of such data samples. The available
dataset is insufficient for training a Transformer model to a satisfactory level. Consequently,
convolutional neural networks (CNNs) have been chosen as a cost-effective alternative,
offering an optimal balance between performance and computational expense.
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Figure 4. (a) The PlainNet’s block contains the most common components; (b) NAF-MEEF’s
block is a novel nonlinear inactive network block proposed by us, which includes a dual-branch
convolution block.

2.2.3. NAF-MEEF’s Block

Normalization techniques are crucial in both upstream tasks (like image detection and
segmentation) and downstream tasks (such as image denoising). Batch normalization [30]
was initially introduced to address gradient vanishing and exploding issues during deep
neural network training. However, it can become unstable with small batch sizes. To ad-
dress this, instance normalization [31] was proposed, but its performance improvement is
not always consistent across tasks. With the rise of Transformer-based methods [27,32–34],
layer normalization [35] has gained widespread adoption, significantly boosting perfor-
mance across various visual tasks. Thus, layer normalization techniques were incorporated
into PlainNet to enhance model stability and generalization.

In our proposed NAF-MEEF architecture, layer normalization is applied at the be-
ginning of each NAF-MEEF block and after the first residual connection (as shown in
Figure 4b). This design helps stabilize feature distributions, reduce internal covariate shifts,
and improve convergence performance under small-batch training conditions. Inspired by
the successful application of LayerNorm in Transformer architectures, we incorporate it
into our model to enhance stability and generalization across various types of noise and
image domains.

Although the self-attention mechanism [36] has been widely applied in many tasks in
recent years and has shown strong feature extraction capabilities, its complex structural
design deviates from the original intention of simplifying the model in this paper. Therefore,
this paper does not delve into its advantages and disadvantages. On the contrary, we
improve model performance by introducing a simple channel attention mechanism [37].
This mechanism enhances overall performance by adaptively weighting data from different
channels, allowing the model to focus more on important features within each channel.

Activation functions such as ReLU [38] and GELU [39] have been widely used in
computer vision tasks and have achieved state-of-the-art results. But in this article, we
borrowed the design of NAFNet [29] and introduced an activation method called Simple
Gate, as shown in Figure 5c, which is a simple variant of GLU. This method divides
the features into two equal parts in the channel dimension and introduces nonlinear
components into the network through simple multiplication. This simplified activation
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function trims down the model structure while still maintaining performance, as expressed
in the following equation:

simpleGate(X, Y) = X ⊙ Y (4)

where X and Y are equally divided feature maps of equal size.

Figure 5. Illustration of (a) Channel Attention (CA), (b) Simplified Channel Attention (SCA),
and (c) Simple Gate (SG). ⊙/∗: element-wise/channel-wise multiplication; C: channel.

A common representation of the channel attention mechanism is shown in Figure 5a,
where the feature maps are channel-weighted by spatial information squeezing as well as
a multilayer perceptron. Where X represents the feature map, σ represents the sigmoid
function, W1 and W2 represent the two fully connected layers, and max() represents the
ReLU function between the fully connected layers.

CA(X) = X ∗ σ(W2 max (0, W1pool(X) (5)

The CA is simplified by retaining the global information aggregation capability of
SimpleGate as well as the channel information interaction capability, as shown in the
following equation and Figure 5b:

SCA(X) = X ∗ W pool(X) (6)

In addition, to improve the feature extraction ability of the model, we introduced a
multi-path convolution structure in the convolution part of the model, as shown in the
red dashed box in Figure 4b, called the 2D dual-branch deep convolution block (2DDCB)
Specifically, the module consists of two parallel paths, with each path including a 1 × 1
pointwise convolution and a 3 × 3 depthwise convolution. These two paths independently
process the input feature map and fuse their outputs via an element-wise addition operation.
By combining pointwise convolution and depthwise convolution, the module captures fine-
grained local features and learns global contextual information, thereby producing richer
and more discriminative feature representations. This design ensures high computational
efficiency while enhancing the ability to represent features effectively. It is highly suitable
for extracting fine-grained and contextual features in tasks such as segmentation, detection,
and denoising.

2.3. Multi-Scale Rotation Fusion Attention Mechanism

The human attention mechanism enables the selective processing of sensory input to
guide behavior and decision-making. As an active and adaptive process, attention dynamically
adjusts based on changes in external stimuli [40,41]. Computational models of attention
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have been widely adopted in computer vision and pattern recognition to predict attention
allocation in visual and multimodal tasks. For instance, SENet [37] adaptively assigns weights
to channels via learning, enhancing focus on informative features but failing to capture spatial
information. CBAM [42] combines channel and spatial attention to more comprehensively
capture image features, yet struggles to extract fine-grained and high-frequency details.
Other approaches, such as A²-Nets [43], GSoP-Net [44], and GC-Net [45], introduce global
dependency modeling via non-local operations, while modules like the Convolutional Triplet
Attention Module [46], CCNet [47], and SPNet [48] improve contextual representation through
cross-dimensional or intersecting attention structures.

Simultaneously, the extraction and integration of multi-scale features have become
essential for enhancing feature representation in deep networks. Similar to the varying
receptive fields in the visual cortex, deep models respond differently to inputs from multiple
scales. HRNet [49] achieves multi-scale fusion through direct summation, but its rigid
structure limits flexibility and discriminative power. Although CBAM [42] improves feature
representation through dual attention, it overlooks the interplay between spatial and
channel domains. These limitations highlight the need for a unified attention mechanism
that can effectively fuse multi-scale features while preserving spatial-channel dependencies.

Motivated by the limitations of conventional attention mechanisms in effectively cap-
turing fine-grained details across varied resolutions and inspired by the success of HRNet
and MAFNet [50], this work proposes a novel attention mechanism that simultaneously
integrates multi-scale features and models spatial–channel interactions. Traditional convo-
lutional architectures often suffer from performance degradation when processing images
at different resolutions, especially under noise corruption, due to insufficient integration of
structural information across scales. To address this, we design an attention framework
that not only preserves high-frequency details but also enhances context modeling by
combining global and local interactions.

The proposed method comprises two key components: a multi-scale feature fusion
module and a simplified triplet attention (STA) module, as illustrated in Figure 6b,c.
The multi-scale fusion module adaptively assigns weights to features from different scales
using a simplified channel attention (SCA) mechanism, enabling effective cross-resolution
interaction. Meanwhile, the STA module further refines the fused features by modeling
dependencies across spatial and channel dimensions in a lightweight manner.

This design is grounded in the multi-scale edge enhancement initialization introduced
earlier, which already improves low-level structural information extraction. Building
upon this, the proposed module enhances mid- and high-level representation by fusing
hierarchical feature maps. The adaptive weighting strategy ensures that essential details
are preserved while reducing redundancy, ultimately improving the network’s denoising
capacity in complex image-processing tasks.

To unify features from different resolution branches, upsampling and downsampling
operations are applied, as shown in Figure 6a, aligning the features to the same scale for
subsequent concatenation and fusion.

Y = Concat(Y1, Y2, Y3) (7)

where Y1, Y2, and Y3 are feature maps obtained by a splicing operation with dimensions
3C × 1 × 1 .
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Figure 6. Illustration of (a) Multi-scale Rotation Fusion Attention Mechanism, where features of
different scales are assigned weights and fused through the proposed attention mechanism; (b) multi-
scale feature fusion module, where SCA assigns weights to features of different scales; (c) Simplified
Convolutional Triple Attention Mechanism (STA).

Y then employs SCA to count the compact features of the channel along its spatial
direction and eventually provides the corresponding feature descriptors for the three input
features, each of which has a dimension of 3C × 1 × 1, to obtain the attention weights αi.

The three generated attentional weights αi will be used to multiply with the input
features Yi to recalibrate the importance of the input information of the different multi-scale
features as expressed in the following equation:

Ŷi = Yi ⊙ αi (8)

The weighted feature maps Ŷ1 , Ŷ2, and Ŷ3 are summed and passed through the
rotating attention machine module. As a subsequent operation of feature fusion, it consists
of three parallel branches, two of which are responsible for capturing the cross-dimensional
interactions between the channel dimension C and the spatial dimensions H and W. The last
remaining branch is used to construct spatial attention similar to CBAM, as shown in
Figure 6c.

This cross-dimensional interaction addresses the issue of missing dependency rela-
tionships between spatial and channel dimensions by capturing their mutual interactions.
Each branch computes the descriptor similarly to the spatial-channel attention (SCA) mech-
anism, but the pooling method has been modified to incorporate z-pooling. Specifically,
the pooling layer adjusts dimension 0 to dimension 2 by concatenating the average-pooled
and maximum-pooled features along that axis. This method enhances the ability of layers
to preserve rich feature representations.

As shown in Figure 6c, in the first branch, the input χ1 is rotated 90° anticlockwise
along the H-axis, and the rotated tensor shape is W × H × C. The tensor shape is changed
to 2 × H × C by z-pool, and finally, a convolution is performed to generate a desired
attention weight γ with the shape of 1 × H × C, and subsequently, the attention weight γ

is applied to the χ1, which is then rotated 90° clockwise along the H-axis, thus preserving
the original input shape. An approximate operation is also taken in the second branch,
the only difference being that the input χ2 is rotated and recovered along the W-axis. In the
third branch, no rotation is required, and attention is constructed directly. The refined
C × H × W tensor generated by the three branches is aggregated by the above operations.

Ri(X) denotes the rotation operation, where i = 1, 2, 3 represents the different rotation
operations of the tensor, respectively, where R1 represents no rotation; Convi(X) represents
the 1 × 1 convolution on path i; Pool(X) denotes the pooling operation described above;
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and R−1
i denotes the inverse rotation operation in which the output features of path i are

restored to their original dimensions.
The output of each path is as follows:

Ỹi = R−1
i

(
Pool

(
Convi

(
Ri
(
Ŷ
))))

, i ∈ (1, 2, 3) (9)

The final output Ỹ is an element-by-element summation of the three path outputs:

Ỹ = Ỹ1 + Ỹ2 + Ỹ3 (10)

3. Loss Function
In the final stage of the denoising network, an attention mechanism was used to fuse

multi-scale features in order to preserve the texture and details of the original image as
much as possible and remove the noise in the image as much as possible. Further optimize
the training of the network through a composite loss function, using L1 loss based on
expressing the average absolute error between image pixels and the pyramid texture loss
focused on preserving image details and texture features.

3.1. L1 Loss

In image denoising, loss functions such as L1, L2, and mean squared error (MSE) are
widely used to improve Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM),
thereby enhancing image quality. However, these traditional losses often fail to align with
human visual perception, producing over-smoothed results lacking texture details [51].
To address this, perceptual metrics like SSIM [52], which considers brightness, contrast,
and structure, and its extension MS-SSIM [53], which optimizes cross-scale structural
similarity, have been proposed to preserve more details and reduce artifacts. Nevertheless,
both methods still struggle to emphasize edges and textures.

Compared with L2 loss, which squares large errors and amplifies their impact, L1
loss computes absolute errors, making it more robust to outliers and better at preserving
local structures. It typically yields more visually consistent reconstructions and retains
fine details, particularly edge and texture features, thus preventing excessive blurring
during denoising.

LL1 = E{|F(y)− u|} (11)

Among them, y is the noisy image, F(y) is the denoised image after passing through
the network (predicted value), u is the target image (actual value), |F(y)− u| represents
the degree of deviation between the predicted value and the actual value, and the absolute
value is used to avoid the cancellation of positive and negative errors, thus reflecting the
actual size of the error. Calculate the average absolute error using the expected E.

3.2. The Pyramid Texture Loss

The pyramid texture loss [54] aims to preserve the edges and textures of the image
to be denoised without amplifying the side effects of noise in non-textured areas. Using a
stationary wavelet transform called ‘algorithm à trous’ (ATW), this transform decomposes
an image into several layers through a cubic spline filter and then subtracts any two
consecutive layers to obtain a fine image with edges and textures. ∆j represents the j-th
layer texture image exported by ATW. J is the number of layers in the pyramid, representing
the number of decomposition layers. Normally, four levels (J = 4) can already extract most
of the edge and texture information. ∆j · F(y) represents the ATW transformation of the
j-th layer on the F(y) of the generated image. ∆j · u represents the ATW transformation
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of the J-th layer on the real image u. |∆j · F(y)− ∆j · u| represents the difference in the
calculated image after the change.

Lpyr = E{
J

∑
j=1

|∆j · F(y)− ∆j · u|} (12)

The pyramid texture loss effectively processes texture features of different sizes in
image-denoising tasks through a multi-level approach. For small noise and large-scale
structural changes, the pyramid texture loss can be effectively denoised through multi-level
analysis, helping models recover small textures in images and avoid texture loss during
denoising, especially in scenes with rich details and complex textures.

3.3. Composite Loss Function

In image denoising, it is important not only to remove noise but also to keep useful de-
tails like edges and textures. However, using only the L1 loss often leads to over-smoothed
results, where fine details are lost.

To solve this problem, we introduce a composite loss that combines L1 loss with the
pyramid texture loss [54]. The L1 loss helps reduce overall noise by minimizing pixel-level
differences. The pyramid texture loss uses multi-scale wavelet decomposition to keep the
texture and structural details at different levels. Together, they complement each other: L1
removes noise, while the texture loss preserves details.

This combination helps improve denoising quality, especially in images with rich
textures. It also makes model training more stable and produces better-looking results.
The final denoising loss function is obtained as shown in the formula:

Ltotal = λL1LL1 + λPLpyr (13)

Among them, λL1 and λP represent the weights of each loss, which can be based on
experimental settings.

4. Experimental Setup
In this section, we present a comprehensive analysis of the influence of various design

choices on the performance of the NAF-MEEF model introduced earlier. We then perform a
series of experiments to evaluate the application of NAF-MEEF in restoring railway freight
car images affected by different noise types, including Gaussian white noise, composite
noise, and simulated real-world noise. Furthermore, the effectiveness of the proposed
algorithm is validated on publicly available datasets to demonstrate its generalizability
and broader applicability.

4.1. Dataset and Implementation Details

In this model, we implemented it using the PyTorch (version 1.12.0) framework.
The computer configuration used for training includes an AMD 5600G CPU, 48 GB of RAM,
and an NVIDIA RTX 3090 24 GB GPU. The initial weights of the network are set through
random number initialization. Use AdamW algorithm for gradient update, with an initial
learning rate of 10−3. The gradient descent strategy uses CosineAnnealingLR to adjust the
learning rate, and the minimum learning rate at the end of training is 10−6. The self-built
dataset and the public dataset use almost the same hyperparameter settings as described
above, with the only difference being that the minimum learning rate at the end of training
on the public dataset is 10−5.

Self-built dataset: To evaluate the denoising performance of NAF-MEEF on railway
freight car images, a dataset comprising 3000 images of the sides and undersides of freight
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cars was constructed. Each image had a resolution of 512× 512 pixels. The dataset was split
into training and testing sets with an 8:2 ratio. Additionally, 80 images were set aside as a
validation set to monitor the smoothness of the training process. The model uses railway
freight car images with added Gaussian white noise, composite noise, simulated real-world
noise, and haze as inputs, with clean images as targets for supervised training.

To verify the universality of the NAF-MEEF algorithm in image denoising and restora-
tion tasks, over 4000 image data from the Waterloo Exploration Database [55] were used as
the training set, including indoor, outdoor, natural scenery, and people, with high diversity.
The scale of this dataset is moderate, which can meet the needs of most image processing
algorithms without being too large, making it easy for experimental verification and perfor-
mance comparison. All images are segmented into patches of 256 × 256 size for training
denoising models.

To verify the robustness and generalization capability of the NAF-MEEF algorithm,
we further conducted training and testing using 1341 remote sensing ship images from
the MASATI-v2 [56] dataset, each with a resolution of 512 × 512 pixels. The dataset
includes maritime scenes captured under various weather and lighting conditions. In the
experiments, representative categories such as multiple ships and coastlines with ships were
selected, offering rich semantic information that facilitates evaluating the model’s ability
to preserve structural and texture details across different object categories. The dataset
was divided into training, testing, and validation sets in a 9:3:1 ratio. The training set was
further segmented into image patches of 256 × 256 pixels for training the denoising model.

Six sets of experiments were designed for preliminary data preparation to comprehen-
sively evaluate the denoising ability of the proposed NAF-MEEF model:

(1) Gaussian White Noise Denoising Experiment on Railway Freight Car Images: Gaus-
sian white noise with a mean of 0 and a standard deviation ranging from 0 to 55 is
added to the training image to train a blind denoising model. Subsequently, Gaussian
noise with standard deviations of 15, 25, and 50 was added separately for training
non-blind denoising models.

(2) Composite noise denoising experiment on railway freight car images: Poisson noise,
Gaussian noise with a mean of 0 and a standard deviation of σ ∈ [0, 30], and salt and
pepper noise with a noise density in the range of [0, 30%] were added to the image to
train a blind denoising model and evaluate its performance on the railway freight car
image dataset.

(3) Simulation of real-world noise reduction experiment for railway freight car images:
To accurately simulate the noise in the real world, a noise generator C2N [57] was
introduced to synthesize real noise and train a denoising model, which was then
evaluated on the railway freight car image dataset.

(4) Evaluation of NAF-MEEF performance on public datasets for blind image denoising:
To validate the effectiveness and generalization ability of the NAF-MEEF algorithm,
the publicly available dataset was used for training and evaluated on standard test
sets Set12 and BSD68.

(5) Dehazing experiment of railway freight car images: To further verify the robustness
of the model in practical railway application scenarios, a dehazing experiment of
railway freight car images was constructed, using hazy images as input, training the
model to restore clear images, and evaluating it on railway freight car datasets.

(6) Remote sensing ship image (MASATI-v2 [56]) denoising experiment: To verify the
adaptability of the model in the remote sensing field, the MASATI-v2 dataset was
selected for training and evaluation.

The proposed algorithm was evaluated against BM3D [3], WNNM [5], IRCNN [58],
DnCNN [13], FFDNet [14], ADNet [15], MAFNet [54], and DRUNet [59] using railway
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freight car testing datasets. Two points merit attention: (1) BM3D and WNNM, as traditional
algorithms, were excluded from comparisons involving composite and real-world noise
due to their inherent limitations; (2) during the blind noise reduction comparison, noise
level information was withheld from DURNet to ensure fairness in algorithm comparison.
Additionally, comparative evaluations were conducted against algorithms such as CSF [60],
TNRD [61], and ECNDNet [62] on the Set12 dataset to validate the effectiveness of the
proposed algorithm using subjective perception and quantitative metrics.

4.2. Evaluation Criteria

The denoising effect is mainly compared from two aspects: visual subjective percep-
tion and quantitative indicators. Visual subjective perception can perceive the degree of
subjective information retained in denoised images, and the denoising effect can be mea-
sured by qualitative analysis of the denoised images. Quantitative indicators measure the
degree of deviation between the denoised image and the target image, with smaller devia-
tions indicating superior denoising performance. Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) are widely employed metrics for quantitative analysis
and evaluation in image-denoising tasks.

PSNR is a widely used metric for assessing pixel-level differences between denoised
images and target images, providing an indication of the model’s overall denoising perfor-
mance [3,13–15,22]. A higher PSNR value signifies lower distortion and better quality of
the denoised image. The PSNR metric is defined as follows:

PSNR = 10 lg [
(2n − 1)2

MSE
] (14)

MSE represents the root mean square error between the denoised image and the
target image. PSNR ignores factors such as brightness and contrast when evaluating image
quality, resulting in evaluation results that are inconsistent with subjective visual perception.
Therefore, SSIM is introduced as another quantitative indicator.

SSIM can be calculated based on indicators such as luminance (L), contrast (C),
and structure (S) by directly estimating the signal structure differences between the target
image and the denoised image. SSIM can be represented as follows:

SSIM(x, z) =
(2µxµz + C1)(2σxz + C2)

(µ2
x + µ2

z + C1)(σ2
x + σ2

z + C2)
(15)

Among them, µx and µz represent the mean values of image x and image z, respec-
tively, while σ2

x , σ2
z , and σxz represent the variance and covariance of image x and image z,

respectively. C1 and C2 are constants, usually taken as C1 = (k1l)2, C2 = (k2l)2, k1 = 0.01,
k2 = 0.03. The selection of these parameters follows the original definition of SSIM pro-
posed by Wang et al. [52]. These values have been established as standard settings through
extensive experimental validation on images with pixel values in the range of [0, 255], effec-
tively preventing instability caused by near-zero means or variances in the denominator.

PSNR mainly focuses on the pixel values of the image and is sensitive to pixel distor-
tion, while SSIM pays more attention to the structural information of the image. As can
be seen from the formula, the smaller the root mean square error between the denoised
image and the target image, the higher the PSNR, indicating that the image denoising effect
is better. SSIM evaluates image structural similarity based on three aspects: brightness,
contrast, and structure. The value ranges from 0 to 1, with higher values indicating greater
similarity between images.
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5. Experimental Results and Analysis
Before presenting the detailed results, we first summarize the scope of our exper-

imental study. Specifically, our experiments were conducted on both real-world and
publicly available datasets. For railway freight car images, we explored both denoising
and defogging tasks to address the challenges posed by complex environments. To further
evaluate the generalizability of the proposed method, additional denoising experiments
were performed on the commonly used public datasets Set12 and BSD68, as well as on
the remote sensing dataset MASATI-v2, which features maritime scenes captured under
various weather conditions.

5.1. Gaussian White Noise Denoising Experiment on Railway Freight Car Images

In order to verify the Gaussian noise suppression effect of NAF-MEEF in railway
freight car images, this paper first conducts Gaussian white noise denoising simulation
experiments on railway freight car images. Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM) are employed as image quality evaluation metrics to assess
the denoising performance of the algorithm. Figure 7 presents randomly selected, finely
processed images from a railway freight car image dataset, illustrating the denoising effects
of various methods under conditions of zero mean and a variance of 50. Figure 7 shows
that other methods suffer from insufficient denoising or texture loss. The proposed method
not only ensures denoising performance but also preserves more detailed information,
achieving better reconstruction of edge details such as the ‘bolt and cotter pin’ in the image.
Traditional methods such as BM3D and WNNM, although achieving certain denoising
performance, exhibit texture blurring at the ‘cotter pin’ area, resulting in unclear visual
imaging. Compared with traditional methods, ADNet and MAFNet can restore more image
details. Partial texture details can be seen in the local detail map, but the reconstructed
detail information is relatively messy and cannot effectively represent the image texture.
The denoising performance of IRCNN, DNCNN, and FFDNet has been improved to some
extent, but there is still blurring in some areas with rich structural information; DRUNet,
as a suboptimal result, has a good denoising effect, but there is still some texture differences
after zooming in on details. Compared with other methods, NAF-MEEF achieves fine
filtering while preserving more edge detail information, resulting in optimal denoising and
image restoration performance.

Figure 7. Comparison of local details in denoising railway freight car images using different algorithms.

Tables 1 and 2 present the average PSNR and SSIM parameter indicators achieved
by various methods on the railway freight car dataset across five distinct noise levels:
Level = 15, 25, 35, 45, and 50. The optimal results are highlighted in bold text in the tables.
As shown in the tables, compared with the baseline methods, the proposed NAF-MEEF
achieves an average PSNR gain of 2.45 dB, 1.84 dB, 1.40 dB, 1.22 dB, 1.24 dB, 1.71 dB, 2.4 dB,
1.44 dB, and 0.86 dB in removing Gaussian noise at Level = 50. NAF-MEEF not only yields
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the highest PSNR values but also the best SSIM scores. Overall, the method proposed in
this paper outperforms other algorithms in terms of quantitative evaluation metrics across
all five noise levels on the railway freight car image test set.

Table 1. Denoising PSNR (dB) values of different algorithms at different noise levels. The best and
second-best results are highlighted in bold and underlined, respectively.

Level BM3D WNNM IRCNN DnCNN FFDNet ADNet EDCNN MAFNet DRUNet Ours

15 37.25 37.20 37.53 37.61 37.58 37.47 36.96 37.17 37.87 38.12
25 35.58 35.71 36.10 36.21 36.18 36.01 35.43 35.85 36.42 36.88
35 34.32 34.51 35.08 35.22 35.20 34.91 34.28 34.93 35.44 36.12
45 33.27 33.83 34.24 34.40 34.38 33.96 33.29 34.16 34.72 35.52
50 32.80 33.41 33.85 34.03 34.01 33.54 32.85 33.81 34.39 35.25

Mean 34.64 34.93 35.36 35.49 35.47 35.18 34.56 35.18 35.77 36.38

Table 2. Denoising SSIM values of different algorithms at different noise levels. The best and
second-best results are highlighted in bold and underlined, respectively.

Level BM3D WNNM IRCNN DnCNN FFDNet ADNet EDCNN MAFNet DRUNet Ours

15 0.8879 0.8930 0.8955 0.8973 0.8969 0.8946 0.8857 0.8942 0.9031 0.9055
25 0.8582 0.8688 0.8701 0.8721 0.8711 0.8659 0.8549 0.8690 0.8784 0.8830
35 0.8339 0.8479 0.8532 0.8555 0.8537 0.8428 0.8316 0.8534 0.8634 0.8706
45 0.8111 0.8393 0.8396 0.8419 0.8383 0.8198 0.8109 0.8414 0.8532 0.8621
50 0.8000 0.8315 0.8338 0.8357 0.8305 0.8091 0.8009 0.8360 0.8488 0.8585

Mean 0.8382 0.8561 0.8584 0.8605 0.8581 0.8464 0.8368 0.8588 0.8694 0.8759

To effectively evaluate the algorithm’s denoising performance on various components
of railway freight cars, we divided the collected large-sized images (1400 × 1024) into five
categories based on actual operational scenarios (as shown in Figure 8): (a) wheel, brake
beam, and axle; (b) bogie; (c) coupler; (d) wheel and bearings; and (e) auxiliary reservoir.
Gaussian white noise with a mean of 0 and variances of 15, 25, 35, 45, and 50 were added to
railway freight images representing different locations, and the denoised PSNR and SSIM
values were computed as metrics.

Figure 8. Railway freight cars are divided into five categories of large-sized images (1400 × 1024)
based on actual operating scenarios.

Figure 9 shows the denoising effect of NAF-MEEF and comparative algorithms on
key component images of 1400 × 1024 large-sized railway freight cars (Level = 45). Al-
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though EDCNN can effectively remove noise from the images, it produces problems such
as smooth details and information loss during the denoising process, which leads to blurry
images after denoising. Due to the use of fixed filtering windows to extract features in
DnCNN, FFDNet, and ADNet convolutions, it is impossible to supplement the information
structure, resulting in the loss of some high-frequency information. Although MAFNet can
preserve image details to a large extent, its use of cross-layer connection fusion features can
lead to blurring of enlarged areas in the image. DRUNet can maintain relatively complete
subjective information but is prone to producing some high-frequency artifacts. Compared
with the above model, the proposed algorithm comprehensively utilizes the fusion of
multi-scale features and efficient attention and constructs a composite loss function that can
improve the denoising effect, content integrity, and subjective visual effect. It can effectively
remove image noise while preserving image detail information as much as possible.

Figure 9. Comparison of local details of denoising effect in the auxiliary reservoir.

Figure 10 presents the comparative results of PSNR and SSIM metrics for different
algorithms on the refined dataset comprising images of five key parts of railway freight
cars. The tables indicate that the algorithm proposed in this study achieves higher PSNR
and SSIM values than other methods across all five image types. Specifically, the proposed
algorithm achieved average improvements in PSNR metrics of 0.48 dB, 0.35 dB, 0.57 dB,
0.47 dB, and 0.43 dB compared with the second-best results. Similarly, improvements in
SSIM metrics were 0.0033, 0.0006, 0.0078, 0.0008, and 0.0045, respectively. The proposed
method demonstrates the best denoising performance for different regions and parts of
railway freight car images while also effectively preserving edge details. In summary, the al-
gorithm achieves superior denoising results in terms of both subjective visual perception
and objective image restoration fidelity.

5.2. Composite Noise Denoising Experiment on Railway Freight Car Images

Figures 11 and 12 present examples of denoising results under the simultaneous
influence of Poisson noise, Gaussian noise (σ = 30), and salt-and-pepper noise (level = 30)
using various methods. As shown in the figure, the denoising performance of FFDNet
and MAFNet is relatively poor. These methods not only fail to effectively remove noise
from the image but also introduce significant blurriness, resulting in a substantial loss of
image information. Although DnCNN, IRCNN, and EDCNN perform better in denoising,
they are still unable to effectively mitigate detail artifacts generated during the process
and fail to preserve the original image information adequately. Image distortion remains a
significant issue. In contrast, ADNet and DRUNet show notable improvements in denoising
performance and detail preservation; however, issues such as unclear edges persist. NAF-
MEEF, on the other hand, provides excellent denoising and detail retention, resulting in
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a cleaner denoised image with clearer texture and richer high-frequency details in the
enlarged areas, better aligning with visual expectations.

Figure 10. Illustration of denoising performance at different noise levels: (a–e) correspond to Gaussian
noise levels of 15, 25, 35, 45, and 50, respectively. (a) shows the mean PSNR (dB) of denoising
algorithms at each level; (b) presents the mean SSIM at each noise level. The best and second-best
results are highlighted in bold and underlined, respectively. The color deepens as the value increases.

Figure 11. Comparison of denoising effects of different algorithms on Region 1 under the influence
of composite noise, including Poisson noise, Gaussian noise (σ = 30), and salt-and-pepper noise
(level = 30).

The quantitative indicators for removing composite noise from railway freight car
images using different methods are shown in Figures 13 and 14, where the level represents
the sigma value of Gaussian white noise and the density level of salt and pepper noise.
From the figures, it can be seen that the average PSNR of MAFNet is 2.77 lower than
the proposed algorithm, which can be attributed to the fact that although its network
adopts a multi-scale training method, it does not effectively fuse feature information of
different scales. The average PSNR of IRCNN, DNCNN, FFDNet, and ADNet achieved
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better results compared with MAFNet but were 1.41 dB, 1.50 dB, 1.64 dB, and 1.13 dB
lower than the NAF-MEEF algorithm, respectively. The average SSIM was 0.0246, 0.0292,
0.0272, and 0.0208 lower, which may be due to their relatively simple structure and shallow
network layers, making it difficult to achieve high performance. There is still a lot of room
for improvement in denoising quality in this complex, high-noise environment. DRUNet
benefits from its combination of UNet and ResNet advantages, which can handle more
complex noise. However, the PSNR and SSIM values of the method proposed in this paper
are improved by 0.08 dB and 0.0014 in high-noise environments (level = 30). In summary,
the proposed algorithm has good denoising effects in both visual subjective perception and
image denoising and restoration approximation degree.

Figure 12. Comparison of denoising effects of different algorithms on Region 2 under the influence
of composite noise, including Poisson noise, Gaussian noise (σ = 30), and salt-and-pepper noise
(level = 30).

Figure 13. PSNR (dB) values for different methods applied to the railway freight car image datasets
with composite noise levels of 10, 20, and 30. The color deepens as the value increases.

5.3. Simulation of Real-World Noise Reduction Experiment for Railway Freight Car Images

To address the challenge of lacking paired noisy–clean images in railway freight car
scenarios, we utilize the Clean-to-Noisy (C2N) framework [57] to simulate real-world noise.
Instead of retraining the C2N model, we directly adopt the pre-trained weights released
by the original authors, which are trained on real-world noisy datasets (e.g., SIDD and
DND). C2N is a generative noise modeling approach that learns to synthesize realistic noise
maps from clean images without requiring any paired supervision or handcrafted noise
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assumptions. It includes both signal-dependent and signal-independent noise components
and models spatial correlations to more accurately reflect real-world noise characteristics.

Figure 14. SSIM values for different methods applied to the railway freight car image datasets with
composite noise levels of 10, 20, and 30. The color deepens as the value increases.

By using the C2N-generated noisy images, we are able to construct pseudo-paired
data and train our denoising model in a supervised manner. This strategy is particularly
suitable for our domain, where acquiring well-aligned training pairs is impractical due to
environmental constraints. Although we do not modify or retrain the C2N model in this
work, its integration allows us to better simulate realistic noise conditions and validate the
effectiveness of our proposed denoising framework.

Figure 15 shows the images selected from the test set that contain a large number of
components. This type of image has complex textures and rich high-frequency informa-
tion, which helps to reflect the denoising effect of different algorithms and their ability
to preserve structural information. From the figure, it can be seen that MAFNet and
FFDNet exhibit severe smearing of component positions in the denoised image and poor
detail preservation in low-light conditions. In contrast, methods such as DnCNN, ADNet,
DRUNet, and EDCNN perform better in detail restoration, but in locally enlarged images,
the presentation of details still appears cluttered and fails to fully capture texture features.
Compared with the above methods, the method proposed in this paper achieves a good
denoising effect while more effectively preserving edge information.

Figure 15. Under the influence of the generated real-world noise, different algorithms were applied
to produce denoising results. For ease of comparison, the region of interest (ROI) marked within the
red box was selected and magnified in the image.

Table 3 shows the average PSNR and SSIM parameter indicators taken by different
methods on the test dataset under real-world noise, and the optimal values are highlighted
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in bold font. From the table, it can be seen that the proposed NAF-MEEF denoising
algorithm has PSNR gains of 0.68 dB, 0.36 dB, 1.52 dB, 0.18 dB, 0.93 dB, 0.89 dB, and
0.27 dB compared with other comparative methods. At the same time, SSIM also achieved
the best among all denoising methods.

Table 3. The PSNR (dB) and SSIM values of railway freight car datasets after denoising with different
algorithms under the influence of generated real-world noise. The best and second-best results are
highlighted in bold and underlined, respectively.

Method DnCNN IRCNN FFDNet ADNet EDCNN MAFNet DRUNet Ours

PSNR/dB 37.62 37.94 36.78 38.12 37.37 37.41 38.03 38.30
SSIM 0.9089 0.9152 0.8933 0.9204 0.9053 0.9113 0.9209 0.9216

5.4. Evaluation of NAF-MEEF Performance on Public Datasets for Blind Image Denoising

In this section, we train and test the performance of the NAF-MEEF method using
publicly available datasets. It is important to emphasize that the core focus of this study
is to design a denoising method specifically for railway freight car images. Since railway
freight car images are grayscale images, experiments on the public datasets were also
conducted exclusively on grayscale images. The experiments in this section aim to validate
the performance and robustness of the proposed method in the context of publicly available
datasets rather than pursuing state-of-the-art (SOTA) performance.

The main focus of this paper is the blind denoising task; therefore, non-blind de-
noising experiments were not conducted. The primary reason is that blind denoising is
more aligned with real-world application scenarios: in practice, noise types are complex
and difficult to predict accurately, whereas non-blind denoising methods rely on prior
noise information, limiting their applicability in real-world scenarios. Hence, this study
chooses the more challenging and practical blind denoising task to thoroughly evaluate the
robustness and generality of the proposed method.

Although this study focuses on the blind denoising task, the results of the proposed
method for blind denoising are compared with other methods on both blind and non-
blind denoising tasks to comprehensively assess its performance and applicability. This
comparison not only verifies the advantages of the proposed method in blind denoising
but also demonstrates its potential and practical value in non-blind denoising tasks.

Tables 4 and 5 present the PSNR metrics of NAF-MEEF on the Set12 and BSD68
datasets, respectively. (For the Set12 dataset, we ensured that the Lena image was not
used during training and verified that its removal from the test set does not significantly
affect the conclusions of this study.) As shown in Table 4, NAF-MEEF achieved the best
performance on Set12 at noise levels of 15, 25, and 50. Compared with eight popular
denoising methods listed in the table, the NAF-MEEF algorithm for blind denoising stands
out, with PSNR improvements over DnCNN-B and ADNet-B of 0.41 dB, 0.40 dB, 0.52 dB,
0.32 dB, 0.31 dB, and 0.40 dB across various noise levels. Even compared with ADNet-S,
which produces the second-best results for non-blind denoising, the blind denoising results
of the proposed method achieved increases of 0.09 dB, 0.19 dB, and 0.36 dB at the three
noise levels. At a noise level of 50, the proposed method demonstrated the most significant
improvement, indicating its suitability for restoring highly noisy images. Table 5 further
corroborates this finding. Although NAF-MEEF did not achieve the best performance
at noise levels of 15 and 25, the differences in performance with mainstream algorithms
were minor. When images were subjected to higher noise levels, the proposed method
demonstrated superior image restoration capabilities, with PSNR improvements at a noise
level of 50 of 0.78 dB, 0.53 dB, 0.43 dB, 0.17 dB, 0.17 dB, 0.21 dB, 0.17 dB, 0.11 dB, and 0.16 dB
over other algorithms.
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Table 4. Average PSNR (dB) results of different methods on Set12 with noise levels of 15, 25, and 50.
The best and second-best results are highlighted in bold and underlined, respectively.

Images C.man House Pepper Starfish Monarch Airplane Parrot Barbara Boat Man Couple Mean

Noise level 15

BM3D 31.91 34.93 32.69 31.14 31.85 31.07 31.37 33.10 32.13 31.92 32.10 32.20
WNNM 32.17 35.13 32.99 31.82 32.71 31.39 31.62 33.60 32.27 32.11 32.17 32.54
TNRD 32.19 34.53 33.04 31.75 32.56 31.46 31.63 32.13 32.14 32.23 32.11 32.34

DnCNN 32.61 34.97 33.30 32.20 33.09 31.70 31.83 32.64 32.42 32.46 32.47 32.70
DnCNN-B 32.10 34.93 33.15 32.02 32.94 31.56 31.63 32.09 32.35 32.41 32.41 32.51

IRCNN 32.55 34.89 33.31 32.02 32.82 31.70 31.84 32.43 32.34 32.40 32.40 32.61
FFDNet 32.43 35.07 33.25 31.99 32.66 31.57 31.81 32.54 32.38 32.41 32.46 32.60

ECNDNet 32.56 34.97 33.25 32.17 33.11 31.70 31.82 32.41 32.37 32.39 32.39 32.65
ADNet 32.81 35.22 33.49 32.17 33.17 31.86 31.96 32.80 32.57 32.47 32.58 32.83

ADNet-B 31.98 35.12 33.34 32.01 33.01 31.63 31.74 32.55 32.48 32.34 32.43 32.60
Our-B 32.74 35.61 33.51 32.45 33.29 31.90 32.03 32.86 32.56 32.53 32.67 32.92

Noise level 25

BM3D 29.45 32.85 30.16 28.56 29.25 28.42 28.93 30.71 29.90 29.61 29.71 29.78
WNNM 29.64 33.22 30.42 29.03 29.84 28.69 29.15 31.24 30.03 29.76 29.82 30.08
TNRD 29.72 32.53 30.57 29.02 29.85 28.88 29.18 29.41 29.91 29.87 29.71 29.88

DnCNN 30.18 33.06 30.87 29.41 30.28 29.13 29.43 30.00 30.21 30.10 30.12 30.25
DnCNN-B 29.94 33.05 30.84 29.34 30.25 29.09 29.35 29.69 30.20 30.09 30.10 30.18

IRCNN 30.08 33.06 30.88 29.27 30.09 29.12 29.47 29.92 30.17 30.04 30.08 30.20
FFDNet 30.10 33.28 30.93 29.32 30.08 29.04 29.44 30.01 30.25 30.11 30.20 30.25

ECNDNet 30.11 33.08 30.85 29.43 30.30 29.07 29.38 29.84 30.14 30.03 30.03 30.21
ADNet 30.34 33.41 31.14 29.41 30.39 29.17 29.49 30.25 30.37 30.08 30.24 30.39

ADNet-B 29.94 33.38 30.99 29.22 30.38 29.16 29.41 30.05 30.28 30.01 30.15 30.27
Ours-B 30.34 33.81 31.18 29.92 30.56 29.28 29.64 30.61 30.48 30.19 30.43 30.58

Noise level 50

BM3D 26.13 29.69 26.68 25.04 25.82 25.10 25.90 27.22 26.78 26.81 26.46 26.51
WNNM 26.45 30.33 26.95 25.44 26.32 25.42 26.14 27.79 26.97 26.94 26.64 26.85
TNRD 26.62 29.48 27.10 25.42 26.31 25.59 26.16 25.70 26.94 26.98 26.50 26.62

DnCNN 27.03 30.00 27.32 25.70 26.78 25.87 26.48 26.22 27.20 27.24 26.90 26.98
DnCNN-B 27.03 30.02 27.39 25.72 26.83 25.89 26.48 26.38 27.23 27.23 26.91 27.01

IRCNN 26.88 29.96 27.33 25.57 26.61 25.89 26.55 26.24 27.17 27.17 26.88 26.93
FFDNet 27.05 30.37 27.54 25.75 26.81 25.89 26.57 26.45 27.33 27.29 27.08 27.10

ECNDNet 27.07 30.12 27.30 25.72 26.82 25.79 26.32 26.26 27.16 27.11 26.84 26.96
ADNet 27.31 30.59 27.69 25.70 26.90 25.88 26.56 26.64 27.35 27.17 27.07 27.17

ADNet-B 27.22 30.43 27.70 25.63 26.92 26.03 26.56 26.51 27.22 27.19 27.05 27.13
Ours-B 27.45 31.26 27.88 26.47 27.17 26.08 26.67 27.45 27.60 27.37 27.42 27.53

Table 5. Average PSNR (dB) of different methods on BSD68 with different noise levels of 15, 25, and
50. The best and second-best results are highlighted in bold and underlined, respectively.

Methods BM3D WNNM TNRD DnCNN DnCNN-B IRCNN ECNDNet ADNet ADNet-B Our-B
σ = 15 31.07 31.37 31.42 31.72 31.61 31.63 31.71 31.74 31.56 31.27
σ = 25 28.57 28.83 28.92 29.23 29.23 29.15 29.22 29.25 29.14 29.15
σ = 50 25.62 25.87 25.97 26.23 26.23 26.19 26.23 26.29 26.24 26.40

Overall, the NAF-MEEF method exhibits significant denoising advantages in high-
noise environments. Its multi-scale edge enhancement initialization and Multi-scale Ro-
tation Fusion Attention Mechanism effectively capture both local and global information
of the image, enabling more accurate recovery of image details. This capability allows it
to significantly outperform mainstream algorithms under high-noise conditions, further
proving the potential applicability of the proposed method in real-world scenarios with
complex noise.

5.5. Dehazing Experiment of Railway Freight Car Images

To further verify the robustness and generalization capability of the proposed method
in practical railway application scenarios, a dehazing experiment based on railway freight
car images was conducted, and performance was evaluated on a specifically constructed
railway freight car image dataset. Haze synthesis was implemented using depth maps and
the atmospheric scattering model. This approach utilizes the depth map to provide per-pixel
distance information, where distant objects are more heavily obscured by haze while nearby
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objects remain relatively clear. By adjusting haze density, color, and transparency based
on depth variation, the generated haze effects appear more realistic. Depth maps were
produced using the Monodepth [63] method. To simulate different levels of degradation,
three haze concentration levels—0.3, 0.6, and 0.9—were applied in the experiments.

As shown in Figures 16 and 17, under various haze concentrations (0.3, 0.6, and 0.9),
the proposed method demonstrates significant advantages in both PSNR and SSIM metrics.

In terms of PSNR, our method achieves an average value of 38.11 dB, which sur-
passes the second-best method, DRUNet (35.43 dB), by 2.68 dB. It also shows substantial
improvements over traditional methods such as DnCNN (32.67 dB), IRCNN (32.02 dB),
and FFDNet (32.04 dB). Notably, under the most severe haze condition (concentration 0.9),
the proposed method still maintains a high PSNR of 36.01 dB, outperforming DRUNet
(33.15 dB) by 2.86 dB, which highlights its robustness against heavy degradation. Regarding
SSIM, our method achieves an average value of 0.9845, outperforming DRUNet (0.9780),
ADNet (0.9520), and all other compared methods. Even under the most challenging haze
conditions, the SSIM remains as high as 0.9751, indicating the model’s strong capability to
preserve structural and textural information.

Figure 16. PSNR (dB) values of different methods applied to railway freight car image datasets with
haze concentrations of 0.3, 0.6, and 0.9. The color deepens with increasing values.

Figure 17. SSIM (dB) values of different methods applied to railway freight car image datasets with
haze concentrations of 0.3, 0.6, and 0.9. The color deepens with increasing values.

As illustrated in Figure 18, different methods exhibit noticeable differences in the
dehazing and denoising performance for railway freight car images. DnCNN, IRCNN,
and FFDNet are limited in restoring structural and detailed information, often leading to
over-smoothing or residual noise. Although DRUNet shows certain improvements in struc-
ture recovery, it still suffers from detail loss or minor artifacts. In contrast, the proposed
method achieves the best performance in terms of structural preservation, edge sharp-
ness, and highlight texture fidelity, fully demonstrating its adaptability and robustness in
complex industrial imaging scenarios.
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In summary, the proposed method exhibits superior performance in maintaining image
fidelity and effectively handles various haze levels, verifying its potential for application in
railway freight car image dehazing tasks.

Figure 18. Denoising results of different algorithms under haze concentration level of 0.9.

5.6. Remote Sensing Ship Image Denoising Experiment

To further verify the generalization and robustness of the proposed method, additional
denoising experiments were conducted on the publicly available remote sensing image
dataset MASATI-v2. The experiments are divided into two parts: the first involves adding
Gaussian noise with a standard deviation in the range of [0, 55] to the images; the second
introduces composite noise, which combines Poisson noise, Gaussian noise, and salt-and-
pepper noise.

As shown in Figure 19, after adding Gaussian noise with varying intensities
(σ = 15, 25, 50) to the MASATI-v2 remote sensing ship image dataset, the proposed method
consistently outperforms existing denoising algorithms across all noise levels.

At the low noise level (σ = 15), the proposed method achieves the highest PSNR of
36.12 dB, outperforming the second-best method, FFDNet (35.58 dB), and IRCNN (35.22 dB).
As the noise level increases to σ = 25 and σ = 50, the proposed method maintains superior
performance with PSNRs of 33.94 dB and 31.26 dB, respectively. Notably, under the
highest noise level (σ = 50), it still surpasses DRUNet (30.65 dB) and MAFNet (30.72 dB),
demonstrating strong robustness.

As also presented in Figure 20, after introducing composite noise—comprising Poisson,
Gaussian, and salt-and-pepper noise—into the MASATI-v2 dataset, the proposed method
achieves the best PSNR results across all tested noise intensities (10, 20, 30), confirming
its effectiveness in complex degradation scenarios. At a low noise level (10), our method
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reaches a PSNR of 35.46 dB, slightly outperforming DRUNet (35.37 dB) and significantly
exceeding traditional methods such as DnCNN (26.81 dB) and FFDNet (31.14 dB). When
the noise intensity increases to 20 and 30, the proposed method still maintains leading
PSNR values of 32.99 dB and 31.28 dB, respectively. Overall, it achieves a mean PSNR of
33.24 dB across the three noise levels, surpassing DRUNet (33.00 dB), MAFNet (31.75 dB),
and EDCNN (31.83 dB), highlighting its superior robustness and adaptability in multi-
source noisy environments.

Figure 19. PSNR (dB) values of different methods applied to MASATI-v2 images under Gaussian
noise with σ = 15, 25, 50. The color deepens with increasing values.

Figure 20. PSNR (dB) values of different methods applied to MASATI-v2 images under composite
noise levels of 10, 20, and 30. The color deepens with increasing values.

As shown in Figure 21, when Gaussian noise with a standard deviation of 50 is
added, most compared methods exhibit over-smoothing or texture degradation, particu-
larly around coastline edges and building structures. In contrast, the proposed method
effectively removes the noise while preserving key semantic regions and structural details.
The recovered coastlines appear sharp, building boundaries are well preserved, and the
water surface is free from noticeable distortion, resulting in superior visual quality.

As shown in Figure 22, composite noise leads to severe degradation in visual quality,
especially around the sea surface and small vessels, where heavy granular artifacts and
structural blurring are observed. The denoising results of DnCNN and FFDNet remain
suboptimal, with noticeable residual noise and blurred object boundaries. Although deep
models such as DRUNet demonstrate improved edge preservation, they still suffer from
texture degradation and slight artifacts. In contrast, the proposed method not only effec-
tively suppresses various noise types but also preserves the original structural information
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of the image. The restored sea surface appears natural, and the contours of the ships are
sharp and clear, demonstrating excellent visual fidelity.

Figure 21. Visual comparison of MASATI-v2 images denoised by different algorithms under Gaussian
noise (σ = 50).

Figure 22. Visual comparison of denoising results on MASATI-v2 images under composite noise
(level = 30) using different algorithms.

In addition to achieving excellent performance in denoising railway freight car im-
ages, the proposed NAF-MEEF model also demonstrates strong denoising capability on
the publicly available remote sensing image dataset MASATI-v2. This effectiveness is
primarily attributed to the synergistic integration of the multi-scale initialization structure,
the activation-free feature extraction architecture, and the Multi-scale Rotation Fusion
Attention Mechanism. These components enable the NAF-MEEF network to learn noise-
invariant feature representations. As a result, the proposed method consistently achieves
leading denoising performance not only in specific industrial application scenarios but
also in broader remote sensing benchmark evaluations, fully validating its robustness and
generalizability.

6. Ablation Experiment
The ablation experiment is mainly aimed at denoising Gaussian white noise in railway

freight car images. In order to verify the effectiveness of different modules in the proposed
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algorithm, the control variable method was used to measure the contribution of different
modules to the model proposed in this paper. The experiment aims to remove multi-scale
initialization edge enhancement layers and attention mechanisms and use a denoising
network based on PlainNet’s block as the baseline network. Six ablation experiments were
conducted under different module combinations with sigma values of 15, 25, 35, 45, and 50
added to the test images. The average PSNR and SSIM values under five different noise
levels were used as quantitative indicators.

The setup of the ablation experiment is detailed in Table 6. Using PSNR as an exam-
ple, the baseline PSNR value is 36.64 dB. Introducing layer normalization (LN) not only
stabilizes the training process but also enhances the denoising effect, achieving a PSNR of
36.70 dB. SimpleGate (SG) and Simplified Channel Attention (SCA) integrate nonlinear
capabilities and attention mechanisms into the network by replacing traditional activation
functions and simplifying channel attention, leading to a 0.1 dB improvement in PSNR
performance. 2DDCB, a minimalistic network structure, demonstrates that lightweight
design can also yield gains for denoising tasks. Building on this foundation, the Multi-
scale Edge Enhancement Initialization Layer (MEEIL) and Multi-scale Rotation Fusion
Attention Mechanism (MRFAM) significantly enhance the network’s ability to preserve
high-frequency information and facilitate smoother multi-scale information fusion. These
cumulative enhancements improve the network’s performance, resulting in PSNR and
SSIM increases of 0.23 dB and 0.0034, respectively, compared with the baseline.

The effect of the number of blocks on NAF-MEEF was verified in Table 7. The number
of blocks was selected primarily based on the requirements of the feature extraction frame-
work. When the number of blocks increased from 9 to 18, the PSNR value increased by
0.25 dB, the SSIM increased by 0.0012, and the model’s parameter count increased by 5.43 M.
Despite the increase in parameters, the performance improvement supports this increase,
with the model size remaining within a manageable range. When the number of blocks
increased from 18 to 36, the performance improvement was marginal, while the parameter
count increased substantially by 10.87M. Therefore, 18 blocks offer a balanced trade-off
between performance and computational cost and were selected as the default option.

Table 6. Experimental results for different module settings.

Baseline LN SG + SCA 2DDCB MEEIL MRFAM PSNR SSIM

✓ 36.64 0.8810
✓ ✓ 36.70 0.8815
✓ ✓ ✓ 36.80 0.8833
✓ ✓ ✓ ✓ 36.82 0.8838
✓ ✓ ✓ ✓ ✓ 36.85 0.8843
✓ ✓ ✓ ✓ ✓ ✓ 36.87 0.8844

Table 7. The effect of the number of blocks.

# of Block PSNR SSIM Params(M)
9 35.00 0.8573 6.48

NAF-MEEF 18 35.25 0.8585 11.91
36 35.33 0.8597 22.78

In addition, we conducted a comparative evaluation of the average inference time
on 512 × 512 railway freight car images under the same GPU computing environment.
As shown in Table 8, although the runtime of our method is slightly higher than that
of lightweight models such as IRCNN (0.0029 s) or DnCNN (0.0067 s), it still meets the
real-time requirements of practical industrial applications. In particular, the model vari-
ant using 18 basic blocks achieves a good balance between denoising performance and
computational cost, with an average inference time of 0.0530 s. Considering its superior
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denoising capability and structural detail preservation, this model demonstrates strong
practical applicability in real-world inspection systems, fulfilling the dual demands of
image quality and processing efficiency.

Table 8. The average running time of different methods.

Methods IRCNN DnCNN FFDNet ADNet EDCNN MAFNet DRUNet Ours (#9) Ours (#18) Ours (#36)

Time (s) 0.0029 0.0067 0.0225 0.0065 0.0147 0.0279 0.0123 0.0363 0.0530 0.0877

7. Conclusions
To overcome the limitations of existing denoising algorithms in enhancing the denois-

ing performance of railway freight car images while preserving edge details, this paper
proposes a Nonlinear Activation-Free Network based on Multi-scale Edge Enhancement
and Fusion (NAF-MEEF).The proposed algorithm enhances the ability to preserve high-
frequency information at image edges through the MEEIL enhancement model, extracts
features using D-NAFNet, and establishes an efficient multi-scale feature fusion mecha-
nism using MRFAM. Finally, a composite loss function is constructed based on L1 loss and
pyramid texture loss to iteratively adjust the network, thereby maximizing the removal of
image noise. Compared with mainstream denoising algorithms, the experimental results
validate the effectiveness of the proposed method. Objective evaluations show that the pro-
posed algorithm achieves higher average PSNR and SSIM scores across multiple datasets,
including the railway freight car image dataset, Set12, BSD68, and MASATI-v2. Subjective
evaluations further indicate that the proposed method delivers better visual quality and
detail preservation in most scenarios, demonstrating strong robustness and cross-domain
adaptability. Future research will focus on evaluating the feasibility and performance of
NAF-MEEF in single-image denoising tasks and further extending it to other image restora-
tion applications such as image deblurring, compression artifact removal, and low-light
image enhancement to verify its broader applicability and practical potential.
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