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Objectives. Patients with head and neck squamous cell carcinoma (HNSCC) have poor prognosis and show poor responses to
immune checkpoint (IC) inhibitor (ICI) therapy. Competing endogenous RNA (ceRNA) networks, tumor-infiltrating immune
cells (TIICs), and ICIs may influence tumor prognosis and response rates to ICI therapy. This study is aimed at identifying
prognostic and IC-related biomarkers and key TIIC signatures to improve prognosis and ICI therapy response in HNSCC
patients. Methods and Results. Ninety-five long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and 1746 mRNAs were
identified using three independent methods. We constructed a ceRNA network and estimated the proportions of 22 immune
cell subtypes. Ten ceRNAs were related to prognosis according to Kaplan–Meier analysis. Two risk signatures based,
respectively, on nine ceRNAs (ANLN, CFL2, ITGA5, KDELC1, KIF23, NFIA, PTX3, RELT, and TMC7) and three immune cell
types (naïve B cells, neutrophils, and regulatory T cells) via univariate Cox regression, least absolute shrinkage and selection
operator, and multivariate Cox regression analyses could accurately and independently predict the prognosis of HNSCC
patients. Key mRNAs in the ceRNA network were significantly correlated with naïve B cells and regulatory T cells and with
stage, grade, and immune and molecular subtype. Eight IC genes exhibited higher expression in tumor tissues and were
correlated with eight key mRNAs in the ceRNA network in HNSCC patients with different HPV statuses according to
coexpression and TIMER 2.0 analyses. Most drugs were effective in association with expression of these key signatures (ANLN,
CFL2, ITGA5, KIF23, NFIA, PTX3, RELT, and TMC7) based on GSCALite analysis. The prognostic value of key biomarkers
and associations between key ceRNAs and IC genes were validated using online databases. Eight key ceRNAs were confirmed
to predict response to ICI in other cancers based on TIDE analysis. Conclusions. We constructed two risk signatures to
accurately predict prognosis in HNSCC. Key IC-related signatures may be associated with response to ICI therapy.
Combinations of ICIs with inhibitors of eight key mRNAs may improve survival outcomes of HNSCC patients.

1. Introduction

Head and neck cancer (HNC) is among the most common
malignancies worldwide, accounting for about 600,000 new
cases annually and 330,000 deaths [1]. Head and neck squa-
mous cell carcinoma (HNSCC) is the predominant patho-
logical subtype, comprising more than 90% of HNC cases
[2]. Despite advances in surgery and radiotherapy, the 5-

year overall survival (OS) rate for HNSCC is still unsatisfac-
tory [3, 4]. Thus, there is an indisputably urgent need to
identify effective biomarkers to predict prognosis and OS
of patients with HNSCC.

Regulatory competing endogenous RNA (ceRNA) net-
works, consisting of long noncoding RNAs (lncRNAs),
microRNAs (miRNAs), and mRNAs, have a crucial role in
the processes of tumor occurrence and progression and in
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prediction of prognosis [5, 6]. Furthermore, accumulating
evidence suggests that immune cell infiltration may have a
significant impact on the prognosis of HNSCC patients [7,
8]. Although the prognostic value of ceRNA networks and
immune cell infiltration in HNSCC have been reported,
few studies have combined ceRNA networks and immune
cell infiltration to predict prognosis in HNSCC patients;
moreover, these studies have limitations, and their conclu-
sions have been inconsistent. Further, few studies have had
their results successfully confirmed in another independent
database, and in many, a single analytical method was used
to explore key molecules or immune cells [5, 9–11]. More-
over, in HNSCC, multiple clinical characteristics, including
human papillomavirus (HPV) status, immune subtype,
molecular subtype, grade, and stage, are associated with
prognosis [12, 13]. There has not been sufficient systematic
evaluation of the association among ceRNA-network RNAs,
immune cell infiltration, and these clinical characteristics to
fully elucidate the roles of these factors in prognosis. There-
fore, a systematic scientific approach is needed to identify
effective biomarkers for risk assessment of patient prognosis.

HNSCCs comprise a group of highly heterogeneous and
immunosuppressive cancers.

Immunotherapy is aimed at increasing the activity of the
immune system to eliminate cancer cells [14]. Immune
checkpoint (IC) inhibitors (ICIs) represent a broadly effec-
tive immunotherapy that can block inhibitory IC pathways
to restore antitumor immunity.

Anti-PD1/PDL1 ICIs can improve antitumor immune
activity [4]. Although ICIs exert beneficial therapeutic effects
on HNSCC, the response rate to them is still low [15].
Therefore, identifying biomarkers able to predict ICI treat-
ment response can contribute to patient screening and indi-
vidualized treatment approaches and is of great significance
for standardizing immunosuppressive therapy and improv-
ing the prognosis of HNSCC patients. Previous studies have
revealed that the expression of immunosuppressive mole-
cules and tumor-infiltrating immune cells (TIICs) may reg-
ulate the response rate to immunotherapy and prognosis in
HNSCC patients. A previous study proposed the epithe-
lial–mesenchymal transition CYT Index as a superior pre-
dictor of prognosis and immunotherapy response across
HNSCC [16], and immune cell infiltration scores were iden-
tified as sensitive prognostic biomarkers and predictive indi-
cators for immunotherapy response [8]. However, no
reliable biomarker for predicting response to ICIs and prog-
nosis in HNSCC has yet been identified [17, 18].

In this study, mRNA, lncRNA, and miRNA expression
profiles of HNSCC were downloaded from The Cancer
Genome Atlas (TCGA) database to construct a ceRNA net-
work. CIBERSORT (cell type identification by estimating
relative subset of known RNA transcripts) was used to esti-
mate the abundance of 22 immune cells based on TCGA
dataset. Furthermore, two prognostic signatures were devel-
oped using a comprehensive bioinformatics method. Next,
the association between key genes and immune cells was
evaluated via coexpression analysis. We systematically inves-
tigated the associations between key ceRNA signatures and
clinical characteristic (including stage, grade, and immune

and molecular subtype). Moreover, IC correlation analysis
and key ceRNA-related drug targets were performed to
assess the predictive ability of these biomarkers with respect
to ICI treatment response in HNSCC and to explore poten-
tial targets for improving the effectiveness of immunother-
apy. Finally, the prognostic value of key biomarkers and
the associations between key ceRNAs and IC genes were val-
idated using online databases.

2. Materials and Methods

2.1. Data Analysis and ceRNA Network Construction. RNA
sequencing (RNA-seq) and miRNA-seq data and clinical
information for HNSCC patients were extracted from TCGA
database (https://gdc-portal.nci.nih.gov/) [19]. HTseq-count
profiles were obtained. In addition, practical extraction and
reports Language (Perl) scripts were used to merge all clinical
data. The R software (version 3.6.3, https://www.r-project
.org/) was used to process downloaded files, to convert and
eliminate unqualified data, to apply a relatively conservative
approach to the data analysis, and to identify a suitable
number of differentially expressed mRNAs (DEmRNAs),
miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs). The
limma, edgeR, and DESeq2 R packages were used for differ-
ential expression analysis. Log fold change > 1 or <−1 and
false discovery rate- (FDR-) adjusted P value < 0.05 were
used as the thresholds to identify significantly expressed
biomarkers. Only biomarkers that were identified using
three independent analysis methods were selected as the
final DEmRNAs, DEmiRNAs, and DElncRNAs [20]. A
ceRNA network was established using the “GDCRNATools”
R package. The ceRNA network was evaluated by hypergeo-
metric testing and correlation analysis. P < 0:05 was consid-
ered to indicate a statistically significant result [21]. Finally,
Cytoscape v.3.7.2 was used to visualize the ceRNA net-
work [22].

2.2. Construction and Confirmation of ceRNA-Related
Prognostic Model. We performed univariate Cox regression,
least absolute shrinkage and selection operator (LASSO),
and multivariate Cox regression analyses to identify
prognosis-related signatures. Moreover, we plotted receiver
operating characteristic (ROC) curves for 1-year, 3-year,
and 5-year survival and calculated the corresponding area
under the curve (AUC) values using the survival and time
ROC packages to assess the predictive ability of the ceRNA-
related signatures [23]. An AUC of <0.5 was considered
insignificant. Patients were then divided into high- and
low-risk groups according to the average risk score. We fur-
ther calculated survival differences between the high- and
low-risk groups [24]. Next, we performed univariate and
multivariate Cox regression analyses to determine whether
the risk score based on key ceRNAs was independent of other
clinical characteristics (age, sex, grade, and stage) in the pre-
diction of HNSCC prognosis. A hazard ratio ðHRÞ > 1 and
P < 0:05 were considered to indicate unfavorable prognostic
factors, whereas HR < 1 and P < 0:05 indicated favorable
prognostic factors [25].

2 BioMed Research International

https://gdc-portal.nci.nih.gov/
https://www.r-project.org/
https://www.r-project.org/


0

500

1000

1500

2000
Pr

ot
ei

n 
co

di
ng

Lo
ng

 n
on

-c
od

in
g IG

Ps
eu

do
ge

ne

TE
C

O
th

er
 n

cR
N

A

N
o.

 o
f d

iff
er

en
tia

lly
 ex

pr
es

se
d 

ge
ne

s

Up-regulated

Down-regulated

(a)

0

500

1000

1500

2000

Pr
ot

ei
n 

co
di

ng

Lo
ng

 n
on

-c
od

in
g IG

Ps
eu

do
ge

ne

TE
C

O
th

er
 n

cR
N

A

N
o.

 o
f d

iff
er

en
tia

lly
 ex

pr
es

se
d 

ge
ne

s

Up-regulated

Down-regulated

(b)

Figure 1: Continued.

3BioMed Research International



0

500

1000

1500

2000

Pr
ot

ei
n 

co
di

ng

Lo
ng

 n
on

-c
od

in
g

Ps
eu

do
ge

ne IG

TE
C

O
th

er
 n

cR
N

A

N
o.

 o
f d

iff
er

en
tia

lly
 ex

pr
es

se
d 

ge
ne

s

Up-regulated

Down-regulated

(c)

Size of each list

0

57.5

115
115

Deseq2-LnRNA

115

edgeR-LnRNA

109

limma-LnRNA

Number of elements: specific (1) or shared by 2, 3, ... lists

95

3

20

2

14

1

0 0

14

20

0 0

95

Deseq2-LnRNA edgeR-LnRNA

limma-LnRNA

(d)

Figure 1: Continued.

4 BioMed Research International



Size of each list

0

182

91
166

Deseq2-miRNA

182

edgeR-miRNA

169

limma-miRNA

Number of elements: specific (1) or shared by 2, 3, ... lists

146

3

28

2

23

1

2 13

8

13

5 10

146

Deseq2-miRNA edgeR-miRNA

limma-miRNA

(e)

Size of each list

0

1110.5

2221 2221

Deseq2-mRNA

2213

edgeR-mRNA

2069

limma-mRNA

Number of elements: specific (1) or shared by 2, 3, ... lists

1746

3

460

2

345

1

21 23

301

438

16 6

1746

Deseq2-mRNA edgeR-mRNA

limma-mRNA

(f)

Figure 1: Continued.

5BioMed Research International



2.3. Construction of Immune Cell-Related Prognostic Model.
The CIBERSORT algorithm was used to estimate the abun-
dance of 22 immune cell subtypes according to the RNA-
seq count data [26]. The associations between immune cell
types and prognosis were investigated by univariate Cox
regression, LASSO regression, and multivariate Cox regres-
sion. We further assessed the sensitivity and specificity of
immune cell-related prognostic models using ROC curves.
In addition, we performed an independent prognostic anal-
ysis to assess whether the risk score based on key immune
cells could predict HNSCC prognosis independently of
other clinical characteristics.

2.4. Associations between Key ceRNAs and Significant
Immune Cell Subtypes. The associations between significant
mRNAs in the ceRNA network and key immune cells were
investigated using Pearson correlation coefficients. More-
over, we analyzed the associations between the gene risk
score and key immune cells.

2.5. Clinical Correlation Analysis. The Tumor Immune Sys-
tem Interactions Database (TISIDB; http://cis.hku.hk/
TISIDB) was used to explore Spearman correlations
between the identified key ceRNAs and clinical character-
istics. Moreover, the expression distribution patterns of
nine key ceRNAs across immune and molecular subtypes
were determined using TISIDB [27]. The immune sub-
types comprised five groups: C1 (wound healing), C2
(IFN-gamma dominant), C3 (inflammatory), C4 (lympho-
cyte depleted), and C6 (TGF-β dominant) [12]. HNSCC
can be classified into four molecular subtypes, namely,
atypical (AT), basal (BA), classical (CL), and mesenchymal
(MS) [13].

2.6. Correlations between Immunotherapy Response and Key
ceRNAs. The expression of ICs is correlated with the
immune response to immunotherapy. We extracted the
expression levels of eight immune-checkpoint genes
(CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2,
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Figure 1: Identification of DElncRNAs, DEmiRNAs, DEmRNAs, and construction of the ceRNA network. Differentially expressed genes
were identified by three independent methods. (a) Deseq2, (b) edgeR, and (c) limma. (d–f) Venn diagram displaying the intersection of
(d) DElncRNAs, (e) DEmiRNAs, and (f) DEmRNAs. (g) Construction of the ceRNA network. Red circles represent miRNAs, green
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PRUNE2, and (j) PTX3.

11BioMed Research International



TIGIT, and SIGLEC15) and compared their differences in
expression between tumor and normal tissues in HNSCC
using the R packages limma, ggplot2, and pheatmap. Coex-
pression analysis was used to define the correlations between
the expression levels of nine key ceRNAs and those of the
eight immune-checkpoint genes. A two-gene correlation
map was obtained using the R package ggstatsplot. A P value
of less than 0.05 was considered to indicate statistical signif-
icance. The Tumor Immune Dysfunction and Exclusion
(TIDE, http://tide.dfci.harvard.edu) algorithm was then used
to estimate the predictive power of the custom biomarker
with respect to response outcome and OS [28]. We con-
firmed the correlations between the eight key mRNAs and
response to ICIs in other cancers using TIDE.

2.7. Correlations between Expression of Key ceRNAs and
Drug Sensitivity. Gene Set Cancer Analysis (GSCALite,
http://bioinfo.life.hust.edu.cn/web/GSCALite/) is a web
server for dynamic analysis and visualization of gene sets
in cancer and drug sensitivity correlations. The expression
of each gene in the gene set was determined, and small mol-
ecule/drug sensitivity (half-maximal inhibitory concentra-
tion; IC50) was obtained using Spearman’s correlation
analysis. Correlations with FDR < 0:05 were considered to
represent results [29–31]. We used GSCALite to analyze
the correlations between drug sensitivity and the signature
of nine key ceRNAs.

2.8. Validation of Results. LOGpc (Long-term Outcome and
Gene Expression Profiling Database of pan-cancers, http://
bioinfo.henu.edu.cn/DatabaseList.jsp) includes 209 gene
expression datasets and provides 13 types of survival terms
for 31,310 patients with 27 distinct malignancies [32]. We
first confirmed the prognostic value of major target genes
using LOGpc datasets. Next, we confirmed the prognostic
value of key immune cell types and ceRNAs using the
TIMER 2.0 database [33]. Finally, we confirmed the expres-
sion of eight immune-checkpoint genes and determined the
correlations between the expression levels of these genes and

nine key genes in HNSCC with different HPV statuses using
the gene correlation TIMER 2.0 module (http://timer.
cistrome.org/) [34].

2.9. Statistical Analysis. All statistical analyses were carried
out using R (version 3.6.3, https://www.r-project.org/) and
the limma, GDCRNATools, ggplot2, rms, glmnet, survmi-
ner, and timeROC packages. A two-sided P value of less than
0.05 was considered to indicate statistical significance.

3. Results

3.1. Identification of Differentially Expressed Genes,
DEmiRNAs, and DElncRNAs. We identified 115 DElncR-
NAs, 166 DEmiRNAs, and 2221 DEmRNAs using the
DESeq2 package in the R programming language. Of these,
115 lncRNAs, 182 miRNAs, and 2213 mRNAs were found
to be differentially expressed in HNSCC using the edgeR
method. Next, we acquired 109 DElncRNAs, 169 DEmiR-
NAs, and 2069 DEmRNAs using the R package limma. A
total of 95 DElncRNAs, 146 DEmiRNAs, and 1746 DEmR-
NAs were identified using three independent methods
(Figures 1(a)–1(f)).

3.2. Construction of ceRNA Network and Survival Analysis.
We constructed a lncRNA–miRNA–mRNA ceRNA net-
work, which included three lncRNAs, eight miRNAs, and
69 mRNAs (Figure 1(g)). Then, Kaplan–Meier (K-M) sur-
vival analysis was performed to identify prognostic members
in the constructed ceRNA network. Our results showed that
10 key markers, including ACSL1, CDCA4, GNA12, hsa-
miR-29c-3p, hsa-miR-130b-3p, ITGA5, KDELC1, PRKAA2,
PRUNE2, and PTX3, were significantly correlated with sur-
vival (Figures 2(a)–2(j)).

3.3. Construction of ceRNA-Related Prognostic Model. Thir-
teen ceRNAs were identified as prognosis-related signatures
using univariate Cox regression (Table 1). LASSO regression
analysis revealed that nine key markers were essential for
modeling (Figures 3(a) and 3(b)); these were subjected to

Table 1: Identification of prognosis-related ceRNAs by univariate Cox regression analysis.

Id HR HR.95L HR.95H P value

ANLN 1.2194 1.0487 1.4179 0.0099

C1QTNF6 1.1279 1.0083 1.2617 0.0354

CFL2 1.2049 1.0554 1.3756 0.0058

DCBLD2 1.1560 1.0149 1.3166 0.0290

GNA12 1.3001 1.0687 1.5816 0.0087

ITGA5 1.2156 1.0892 1.3567 0.0005

KDELC1 1.3339 1.1295 1.5753 0.0007

KIF23 1.2437 1.0289 1.5034 0.0242

NFIA 0.7776 0.6488 0.9319 0.0065

PRUNE2 1.0667 1.0078 1.1292 0.0260

PTX3 1.1174 1.0509 1.1882 0.0004

RELT 1.2274 1.0165 1.4822 0.0332

TMC7 1.1395 1.0046 1.2926 0.0422
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multivariable model analysis. Only two key biomarkers
(NFIA and PTX3) had a significant impact on HNSCC prog-
nosis (Figure 3(c)). In addition, analysis of the ROC curves
indicated that the AUCs for 1-, 3-, and 5-year OS were
0.633, 0.681, and 0.591, respectively (Figure 3(d)). We fur-
ther plotted survival curves for the high- and low-risk
groups. As shown in Figure 3(e), patients in the low-risk
group had significantly longer OS probability than those in
the high-risk group. Finally, univariate and multivariate
Cox regression analyses demonstrated that the risk score
based on key ceRNAs was an independent predictor of poor
prognosis in HNSCC patients (Figures 3(f) and 3(g)).

3.4. Immune Cell Infiltration Analysis. CIBERSORTwas used
to assess immune cell infiltration in each HNSCC sample.
The results revealed significant differences in the proportions
of immune cell infiltration (Figure 4(a)). In addition, the gen-
erated heatmap showed that 11 immune cell subtypes, M1
macrophages, CD8 T cells, M0 macrophages, M2 macro-
phages, resting CD4 memory T cells, memory B cell, naïve
B cells, and regulatory T cells (Treg), monocytes, resting
myeloid dendritic cells, and activated mast cells presented
significant different proportions between the tumor group
and the normal group (Figure 4(b)).

3.5. Construction and Validation of Immune Cell-Related
Prognostic Model. Univariate Cox regression, LASSO regres-
sion, multivariate Cox regression, and independent prognos-
tic analysis were used to analyze the associations between
different immune cell subtypes and prognosis. The results
showed that three variables were related to prognosis in
HNSCC: high infiltration of Tregs and naïve B cells was
associated with a favorable prognosis, whereas increased
levels of neutrophils were correlated with worse prognosis
(Figures 4(c)–4(e)). According to ROC curve analysis, the

AUCs of the 1-, 3-, and 5-year prognosis models were
0.625, 0.626, and 0.568, respectively (Figure 4(f)). The K-M
curve analysis indicated that the high-risk group had an
unfavorable prognosis (Figure 4(g)). Finally, we found that
the immune cell-related risk score was an independent
factor for predicting prognosis in HNSCC (Figures 4(h)
and 4(i)).

3.6. Relationships between Key ceRNAs and Significant
Immune Cell Signatures. There were significant correlations
between key molecules in the ceRNA network and immune
cell signatures (Figure 5(a)). The coexpression analysis
results indicated that CFL2, ITGA5, KDELC1, and TMC7
were negatively associated with levels of naïve B cell infiltra-
tion (Figures 5(b)–5(e)), whereas ANLN, ITGA5, KIF23,
and TMC7 expression was negatively associated with Treg
levels (Figures 5(f)–5(i)). As shown in Figures 5(j)–5(l), sig-
nificant immune cell signatures in different risk score exhib-
ited statistical significance, and higher levels of naïve B cells
were associated with lower risk scores (P = 0:0085). A simi-
lar result was observed for Tregs (P = 4e − 9).

3.7. Clinical Correlation Analysis. We evaluated the correla-
tions of the nine key signatures with tumor grade and stage.
Our results showed that increased expression of ANLN and
KIF23 was associated with higher tumor grade (Figures 6(a)
and 6(b)). Moreover, the expression levels of ITGA5,
KDELC1, and PTX3 were positively correlated with the stage
of HNSCC, whereas NFIA expression decreased at higher
HNSCC stages (Figures 6(c)–6(f)). Furthermore, our results
showed that ANLN, KDELC1, KIF23, and NFIA expression
was associated with different immune subtypes. ANLN and
KIF23 showed increased expression in subtypes C1 and
C2. KDELC1 showed higher expression in the C1, C2, and
C6 subtypes, indicating that it may be mainly associated
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Figure 3: Development and validation of the ceRNA-related prognostic model. (a–c) LASSO and multivariate Cox regression analyses were
applied to investigate the correlation between OS and ceRNAs. (d) ROC analysis showing the accuracy of the prediction model. (e) K-M
survival curves comparing the high-risk and low-risk groups and the demonstrating predictive ability of our model. (f, g) Assessment of
the independence of ceRNA-related prognostic model through (f) univariate and (g) multivariate Cox regression analyses. HR > 1 and P
value < 0.05 indicate poor prognostic factors. HR < 1 and P values < 0.05 indicate favorable prognostic factors.

16 BioMed Research International



100%

50%

Pe
rc

en
t

0%
Type

B cell memory

B cell naive

B cell plasma

Eosinophil

Macrophage M0

Macrophage M1

Macrophage M2

Mast cell activated

Mast cell resting

Monocyte

Myeloid dendritic cell activated

Myeloid dendritic cell resting

Neutrophil

NK cell activated

NK cell resting

T cell CD4+ memory activated

T cell CD4+ memory resting

T cell CD4+ naive

T cell CD8+

T cell follicular helper

T cell gamma delta

T cell regulatory (tregs)

(a)

Figure 4: Continued.

17BioMed Research International



Groups
Macrophage M1⁎⁎⁎ 9.00e–07 2

–2

5.83e–03
9.04e–02
5.49e–01
7.07e–01
8.02e–21
2.64e–01
5.31e–01
9.09e–02
1.25e–01
2.48e–02
9.29e–07
2.37e–03
4.53e–03
1.52e–03
3.90e–01
1.48e–01
1.31e–01
2.79e–14
7.94e–01
9.64e–07
3.66e–07

T cell CD8+⁎⁎
T cell CD4+ memory activated
T cell follicular helper
NK cell activated
Macrophage M0⁎⁎⁎
B cell plasma
Myeloid dendritic cell activated
NK cell resting
Mast cell resting
Macrophage M2⁎
T cell CD4+ memory resting⁎⁎⁎
B cell memory⁎⁎
T cell regulatory (tregs)⁎⁎
B cell naive⁎⁎
T cell gamma delta
T cell CD4+ naive
Eosinophil
Monocyte⁎⁎⁎
Neutrophil
Myeloid dendritic cell resting⁎⁎⁎
Mast cell activated⁎⁎⁎

1

0

–1

Groups
Tumor
Normal

(b)

−6 −5 −4 −3

−15

−10

−5

0

5

10

15

20

Log lambda

Co
effi

ci
en

ts

5 5 5 5

1

2

3

4

5

(c)

Figure 4: Continued.

18 BioMed Research International



−6 −5 −4 −3

11.7

11.8

11.9

12.0

Log (𝜆)

Pa
rt

ia
l l

ik
el

ih
oo

d 
de

vi
an

ce

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 2 0

(d)

Neutrophils

T cells regulatory (tregs)

B cells naive

(N= 338)

(N= 338)

(N= 338)

6.2e+03
(2.5e+00 − 1.5e+07)

7.9e−08
(4.1e−15 − 1.5e+00)

4.6e−02
(2.4e−03 − 8.9e−01)

0.029
⁎

0.056

0.042
⁎

# Events: 144; global p-value (log-rank): 0.00099182
AIC: 1438.2; concordance index: 0.61

1e−16 1e−12 1e−08 0.0001 1 10000 1e+08

Hazard ratio

(e)

Figure 4: Continued.

19BioMed Research International



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.625
AUC at 3 years: 0.626
AUC at 5 years: 0.568

(f)

+++
+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++

+
+ +

+++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++ +++
+

+
+ +

p = 0.015

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

169126 64 42 28 15 7 5 5 4 3 3 3 2 2 1 0 0 0 0 0
169134 87 56 37 21 14 11 7 6 5 4 3 3 1 1 1 1 0 0 0Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (years)

Ri
sk

Risk
High risk

Low risk

+

+

(g)

Figure 4: Continued.

20 BioMed Research International



with worse survival. NFIA showed higher expression in sub-
type C3 and decreased expression in C4, which predicted
better survival (Figures 6(g)–6(i)). CFL2, ITGA5, KDELC1,
and PTX3 were highly expressed in the MS subtype.
Increased expression of RLET and TMC7 was mainly found
in the basal subtype, and higher expression of NFIA was
associated with the AT subtype (Figures 6(k)–6(q)).

3.8. Key ceRNA Expression Was Correlated with
Immunotherapy Response and Drug Sensitivity. Multiple IC
genes including CD274, CTLA4, HAVCR2, LAG3, PDCD1,
SIGLEC15, TIGIT, and TIM3 exhibited higher expression in
tumor tissues compared with normal tissues (Figure 7(a)).
The expression of ANLN, ITGA5, and KIF23 was positively
associated with the expression of CD274 (PDL1), HAVCR2,
and SIGLEC15. CFL2 and RELT expression was positively
correlated with the expression of CD274 (PDL1), CTLA4,
HAVCR2, LAG3, PDCD1 (PD1), SIGLEC15, and TIGIT.

NFIA was positively related to the abovementioned seven
immunosuppressive genes, except for CD274. Overexpression
of PTX3 was associated with increased CTLA4, HAVCR2,
SIGLEC15, and TIGIT expression. TMC7 expression was
negatively correlated with the expression of CTLA4,
HAVCR2, LAG3, PDCD1 (PD1), and TIGIT (Figure 7(b)).

In addition, our biomarker could effectively predict anti-
PD1 response compared with published biomarkers (MSI,
CD274, CD8, IFNG, etc.) (Figure 7(c)). Moreover, Spear-
man’s correlation analysis was performed to explore the cor-
relations of the expression of the nine key genes with drug
sensitivity in terms of IC50 values. Our results showed that
most drugs were effective in association with increased
expression of CFL2, TMC7, PTX3, ANLN, NFIA, and
KIF23, whereas RELT and ITGA5 were negatively regulated
by most drugs. Specifically, these molecules could be
exploited as potential therapeutic drug targets for HNSCC
(Figure 7(d)).
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Figure 4: Construction and validation of the immune cells related prognostic model. (a) Distribution of 22 immune cell subtypes estimated
by CIBERSORT in HNSCC. (b) Heatmap showing the levels of 22 immune cell subtypes in tumor and normal samples. (c–e) LASSO and
multivariate Cox regression were used to investigate the correlation between OS and immune cell infiltration. (f, g) ROC and Kaplan–Meier
survival curves showing the accuracy of immune cell subtypes and related prognostic models for predicting OS. (h) Univariate analysis and
(i) multivariate Cox regression analysis confirmed the independence of the immune cell-related prognostic model.
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3.9. Validation of the Prognostic Value of Biomarkers and
Associations between Key ceRNAs and IC Genes. LOGpc
was used to perform survival analysis for key ceRNAs. The
results indicated that higher expression levels of CFL2,
ITGA5, KDELC1, PTX3, and RELT were correlated with
poor prognosis in HNSCC patients, whereas increased
expression of NFIA was associated with longer OS. There
was no correlation between ANLN, KIF23, or TMC7 expres-
sion and prognosis in HNSCC patients (Table 2). The asso-
ciations between pivotal ceRNAs and prognosis were then
determined using TIMER 2.0. We found that high expres-
sion levels of ANLN, CFL2, ITGA5, KDELC1, PTX3, RELT,
and TMC7 were significantly associated with shorter OS in
HNSCC patients, whereas higher expression of NFIA was
correlated with longer OS. In HPV-positive HNSCC
patients, high expression of ITGA5, KDELC1, and TMC7
was associated with poor prognosis, whereas high NFIA
expression was correlated with good prognosis. ANLN,
CFL2, KDELC1, PTX3, and RELT were associated with unfa-
vorable prognosis in HPV-negative HNSCC (Figure 8(a)). In
addition, the prognostic roles of immune cells in HNSCC
patients with different HPV statuses were confirmed using
the TIMER 2.0 database. In both HPV-positive and HPV-
negative HNSCC patients, high infiltration levels of naïve
B cells and Tregs were associated with a favorable progno-
sis according to several algorithms, whereas high neutro-
phil infiltration indicated an unfavorable prognosis
(Figures 8(b)–8(d)). Eight tumor-related immunosuppres-

sive molecules, CD274, CTLA4, HAVCR2, LAG3, PDCD1
(PD1), PDCD1LG2, SIGLEC15, and TIGIT, had higher
expression in HNSCC tumor tissues compared with HNSCC
normal tissues.

Notably, most IC molecules showed significantly
increased expression in HPV-positive HNSCC patients
(Figure 8(e)). We also found that the expression of these
ICI factors was significantly positively correlated with the
expression of seven key mRNAs (ANLN, CFL2, ITGA5,
KIF23, NFIA, PTX3, and RELT), whereas the expression of
immunosuppressive molecules was negatively associated
with TMC7 expression, especially in HPV-positive HNSCC
patients (Figure 8(f)). We further discovered that eight key
ceRNAs were correlated with response to ICI in other
cancers (melanoma, bladder, kidney, and glioblastoma)
(Table 3).

These results are consistent with the results of our study.

4. Discussion

HNSCC is among the deadliest malignancies in humans and
a significant cause of cancer-related deaths worldwide [35].
Despite advances in the screening, diagnosis, and treatment
of HNSCC in recent decades, especially in terms of immuno-
therapy, the prognosis of HNSCC patients remains very
poor [36]. Recent studies have explored the roles of immune
cell infiltration and ceRNA networks in HNSCC. However,
these studies have failed to accurately identify key molecules
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for predicting the prognosis of HNSCC [9, 10, 37]. Accumu-
lating evidence suggests that machine learning is a reliable
and robust technique that can be used to quickly and accu-
rately identify critical biomarkers [38, 39]. ICIs may exert
beneficial therapeutic effects in HNSCC, although the
response rate to ICIs remains poor [15]. A lncRNA signature
of tumor-infiltrating B lymphocytes was found to have
potential applications in prognostic prediction and immu-
notherapy for bladder cancer based on computational recog-
nition [40], and lncRNAs associated with tumor immune
infiltration were identified as improving clinical outcomes
and immunotherapy response in non-small-cell lung cancer
based on comprehensive analysis [41]. Combinations of
ceRNA with ICIs and TIICs for improving prognosis and
immunotherapy response in HNSCC are limited. Therefore,
it is crucial to establish predictive biomarkers for selecting
patients who will be responsive to ICI therapy.

In the present study, we defined nine key ceRNAs
(ANLN, CFL2, ITGA5, KDELC1, KIF23, NFIA, PTX3,
RELT, and TMC7) and three immune cell subtypes (naïve
B cells, Tregs, and neutrophils) using univariate Cox
analysis, LASSO, multivariate Cox analysis, and independent
prognostic analysis. Specifically, KDELC1, PTX3, and
ITGA5 were found to be associated with poor prognosis in
both the K-M survival analysis and the multivariate Cox
analysis. ROC curve analysis was used to further evaluate
both signatures and confirm their favorable predictive and
prognostic abilities.

We identified a potential regulatory mechanism involv-
ing KCNQ1OT1 (lncRNA), miR-338-3p (miRNA)/miR-
29c-3p, ITGA5 (mRNA)/KDELC1, and naïve B cells/Tregs.

A previous report indicated that KCNQ1OT1 was asso-
ciated with cell proliferation, apoptosis, prognosis, invasion,
and metastasis in various cancers [10, 42–44]. Further,
KCNQ1OT1 facilitated invasion and inhibited apoptosis in
oral squamous cell carcinoma by regulating the miR-185-
5p/Rab14 axis [45]. miR-338-3p was downregulated in
esophageal squamous cell carcinoma and could act as a
tumor suppressor [46]. In addition, miR-338-3p was shown
to inhibit colorectal carcinoma cell invasion and migration
by targeting smoothened [47] and was associated with favor-
able prognosis in urothelial carcinoma of the bladder [48].
Inhibition of miR-29c-3p was found to be associated with
poor prognosis in patients with laryngeal squamous cell car-
cinoma [49]. ITGA5 has essential roles in tumorigenesis,
migration, and invasion in various cancer types [10]. Studies
have shown that ITGA5 is highly expressed in HNSCC,
where its high expression is significantly associated with
poor survival [50]. Overexpression of PTX3 has been related
to poor prognosis in pancreatic cancer and is linked to more
advanced stages of the disease [51]. Evidence also suggests
that PTX3 promotes metastasis of cervical cancer and
EGF-induced metastasis of HNSCC through upregulation
of MMP-2 and MMP-9 [52]. Our results are in accordance
with these findings and suggest that the KCNQ1OT1/miR-
338-3p/ITGA5 and KCNQ1OT1/miR-29c-3p/KDELC1 axes

4

6

8
Ex

pr
es

sio
n 

(lo
g2

CP
M

)

2

At
yp

ic
al

HNSC :: RELT_exp
Pv = 1.39e–04
n = atypical 67,

basal 87,
classical 48,

mesenchymal 74

Subtype

Ba
sa

l

Cl
as

sic
al

M
es

en
ch

ym
al

(p)

0.0

2.5

5.0

Ex
pr

es
sio

n 
(lo

g2
CP

M
)

–2.5

At
yp

ic
al

HNSC :: TMC7_exp
Pv = 6.62e–09
n = atypical 67,

basal 87,
classical 48,

mesenchymal 74

Subtype

Ba
sa

l

Cl
as

sic
al

M
es

en
ch

ym
al

(q)

Figure 6: Clinical correlation analysis. (a, b) ANLN and KIF23 expression was associated with tumor grade according to TISIDB datasets.
(a) ANLN and (b) KIF23. (c–f) Key mRNAs among ceRNAs related to tumor stage according to TISIDB. (c) ITGA5, (d) KDELC1, (e) NFIA,
and (f) PTX3. (g–i) Distribution of the expression of key ceRNAs across immune subtypes according to TISIDB: (g) ANLN, (h) KDELC1, (i)
KIF23, and (j) NFIA. (k–q) Distribution of key ceRNA expression across molecular subtypes (TISIDB): (k) CFL2, (l) ITGA5, (m) KDELC1,
(n) NFIA, (o) PTX3, (p) RELT, and (q) TMC7. Statistical significance of differential expression evaluated using Kruskal–Wallis test. C1
(wound healing), C2 (IFN-gamma dominant), C3 (inflammatory), C4 (lymphocyte depleted), and C6 (TGF-β dominant). Molecular
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Figure 7: Key ceRNA expression correlates with immunotherapy response and drug sensitivity. (a) Differences in expression of tumor-
related immunosuppressive molecules in HNSCC; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001. (b) Correlations between key ceRNAs and IC
molecules. The horizontal and vertical coordinates represent genes. Different colors represent correlation coefficients (blue, positive
correlation and red, negative correlation); the darker the color, the stronger the correlation; ∗P < 0:05 and ∗∗P < 0:01. (c) Comparison of
AUC values between the custom biomarker and other published biomarkers in predicting anti-PD1 response. (d) Correlation analysis of
drug sensitivity and expression of key ceRNAs.

Table 2: Survival analysis for major target ceRNAs using LOGpc.

Symbol Dataset HR 95% CI P value Prognostic

CFL2 TCGA 1.3608 1.0137-1.8268 0.0403 Poor

ITGA5 GSE31056 2.6804 1.3752-5.2245 0.0038 Poor

ITGA5 TCGA 1.4878 1.1162-1.9832 0.0067 Poor

KDELC1 TCGA 1.4946 1.1212-1.9922 0.0061 Poor

KDELC1 GSE31056 2.1694 1.0960-4.2940 0.0262 Poor

NFIA GSE65858 0.4627 0.2648-0.8086 0.0068 Good

PTX3 GSE31056 3.9765 2.0435-7.7379 <0.0001 Poor

PTX3 TCGA 1.3605 1.0103-1.8320 0.0426 Poor

RELT TCGA 1.3554 1.0113-1.8165 0.0418 Poor
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have important roles in determining the prognosis of
HNSCC patients.

The associations among the nine key ceRNA signatures,
three immune cell signatures, and different clinicopathologi-
cal features was assessed. The results showed that ANLN,
KIF23, and ITGA5 expression was significantly correlated
with grade. Increased KDELC1 and PTX3 expression was
related to advanced stage, whereas overexpression of NFIA
was correlated with low tumor stage (Figures 6(a)–6(f)). A
recent study showed that the C1 and C2 subtypes were

enriched in HNSCC and were associated with less favorable
outcomes. The C3 subtype had the most favorable prognosis,
whereas the C4 and C6 subtypes had the worst prognoses
[53]. In our study, we observed increased expression of
ANLN and KIF23 in subtypes C1 and C2, whereas KDELC1
showed higher expression in the C1, C2, and C6 subtypes,
indicating that it may be associated with worse survival.
NFIA showed increased expression in subtype C3 and
decreased expression in C4, which indicated that it could
predict better survival (Figures 6(g)–6(j)).

(f)

Figure 8: Validation of the prognostic value of identified biomarkers and associations between key ceRNAs and IC genes. (a) Confirmation
of prognostic value of key ceRNAs in HNSCC with different HPV statuses via the TIMER 2.0 database. (b–d) Analysis of associations
between key immune cells and OS in HNSCC patients with different HPV statuses based on Cox regression analysis using the TIMER
2.0 database (http://timer.cistrome.org/). (e) Differences in expression of IC genes with different HPV statuses in HNSCC using TIMER
2.0. (f) Exploration of the associations between key ceRNAs and IC molecules with different HPV statuses in HNSCC using TIMER 2.0.
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Recently, Walter et al. [13] reported that the MS subtype
was associated with distant metastases, and that treatment
with EGFR inhibitors was less likely to be effective in the
AT subtype. Our results indicated that CFL2, ITGA5,
KDELC1, and PTX3 were highly expressed in the MS sub-
type. Higher NFIA expression was associated with the AT
subtype (Figures 6(k)–6(q)). These studies further support
our finding that NFIA expression was correlated with favor-
able outcomes whereas higher expression of the other ceR-
NAs was associated with unfavorable outcomes.

Previous studies have revealed that naïve B cells and
Tregs are indicators of better survival, whereas neutrophils
have been associated with HPV positivity and poorer
outcomes [7, 10, 54]. Higher Treg infiltration was found to
be correlated with better prognosis and longer survival in
HPV-positive patients compared with HPV-negative
HNSCC patients [55]. By contrast, naïve B cells could be
correlated with tumorigenesis and progression of HNSCC
[10]. Neutrophils induce tumor progression and promote
tumor cell migration in HNSCC; therefore, neutrophil infil-
tration represents a risk factor. [56, 57]. Our integrated anal-
yses showed that three immune cell subtypes (naive B cells,
Tregs, and neutrophils) could be used as prognosis-related
biomarkers in HNSCC. Naïve B cells and Tregs were associ-
ated with favorable prognosis, whereas neutrophils repre-
sented an unfavorable prognostic marker in HNSCC,
especially in HPV-positive HNSCC patients (Figures 4(e)
and 8(b)–8(d)). ROC analysis showed that the key immune
cell-related model constructed in this study could predict
the prognosis of patients with HNSCC. As shown in
Figures 5(j)–5(l), higher levels of naïve B cells and Tregs
were related to lower risk scores (P = 0:0085 and P = 4e − 9
). These results further suggested that these immune cell
types (naïve B cells, Tregs, and neutrophils) were related to
prognosis. Our results are consistent with those of previous
studies, and our immune cell-related model could be used
as an independent factor to assess prognosis in HNSCC.

Finally, we found that eight IC genes exhibited higher
expression in tumor tissues and were correlated with key ceR-

NAs in HNSCC with different HPV statuses (Figures 7(a)
and 7(b) and 8(e) and 8(f)). Our identified biomarker could
more effectively predict anti-PD1 response compared with
published biomarkers (Figure 7(c)). Previous studies have
reported that HPV-positive HNCs expressed high levels of
multiple T cell exhaustion markers, including LAG3, PD1,
TIGIT, and TIM3; the high expression of these markers was
correlated with improved survival in HPV-positive HNC
patients [58, 59]. Based on these studies and our findings,
HNSCC may exhibit strong beneficial responses to immuno-
therapy and high expression levels of these key genes may
contribute to predicting improved survival of HNSCC
patients, especially in cases of HPV-positive HNSCC. We also
observed that eight key genes were associated with treatment
response to most drugs, suggesting the potential of these mol-
ecules as therapeutic drug targets in HNSCC (Figure 7(d)).
These results provide a scientific rationale for potentially
combining ICI therapy with inhibitors of the eight key genes
identified in this study to improve treatment efficacy for
HNSCC patients.

5. Conclusions

We identified nine key ceRNAs and three immune cell-
related signatures as potential biomarkers for predicting
the prognosis of HNSCC. In addition, the KCNQ1OT1
(lncRNA), miR-338-3p (miRNA)/miR-29c-3p, ITGA5
(mRNA)/KDELC1, and naïve B cell/Treg axes may be linked
to prognosis of HNSCC. As key IC-related members of
ceRNAs may be associated with response to ICI therapy,
combining ICI with inhibitors of these eight key genes
may contribute to improving treatment efficacy in HNSC
patients. However, additional clinical data and experiments
are required to confirm the prognostic value of these
signatures and their potential associations with ICI immu-
notherapy outcomes in patients with HNSCC. We will
perform further experiments to confirm the current
research results.

Table 3: Associations between gene expression and therapy outcome in clinical studies of IC blockade.

Gene Cohort Cancer Subtype Survival Risk.adj

ANLN
Riaz2017_PD1 Melanoma Ipi_Prog OS 2.025

Riaz2017_PD1 Melanoma Ipi_naive PFS -3.136

CFL2 Liu2019_PD1 Melanoma Ipi_naive OS 2.489

ITGA5
Mariathasan2018_PDL1 Bladder mUC OS 3.52

Miao2018_ICB Kidney Clear PFS -3.173

KIF23 Riaz2017_PD1 Melanoma Ipi_Prog OS 2.802

NFIA
Mariathasan2018_PDL1 Bladder mUC OS 2.987

Zhao2019_PD1 Glioblastoma Pre PFS -2.336

PTX3 Riaz2017_PD1 Melanoma Ipi_naive OS 2.467

RELT
Mariathasan2018_PDL1 Bladder mUC OS 2.505

Liu2019_PD1 Melanoma Ipi_naive PFS -2.32

TMC7
Hugo2016_PD1 Melanoma OS 2.27

Lauss2017_ACT Melanoma OS -2.528
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