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Many combinations of protein features are used to improve protein structural class prediction, but the information redundancy is
often ignored. In order to select the important features with strong classification ability, we proposed a recursive feature selection
with random forest to improve protein structural class prediction. We evaluated the proposed method with four experiments and
compared it with the available competing prediction methods. The results indicate that the proposed feature selection method
effectively improves the efficiency of protein structural class prediction. Only less than 5% features are used, but the prediction
accuracy is improved by 4.6-13.3%. We further compared different protein features and found that the predicted secondary
structural features achieve the best performance. This understanding can be used to design more powerful prediction methods
for the protein structural class.

1. Introduction

Protein structural class is the basic research field in protein
research and makes a significant contribution to the research
on protein function, protein folding rate, DNA binding site,
and protein folding recognition, as well as reducing the
search of conformational space and realizing the prediction
of the tertiary structure [1–7]. In recent years, the gap
between protein sequences and protein structures is becom-
ing larger and larger with the development of sequencing
technology, and it is relatively slow to identify three-
dimensional structures by experimental methods. Therefore,
it is necessary to develop computational methods for fast and
accurate determination of protein structural classes.

The protein structures are determined by their sequences.
Therefore, protein structure classes can be directly deter-
mined based on the sequence information, which can further
guide biological experiments and reduce experimental costs.
Many protein structural class prediction methods have been
proposed since the concept of the protein structure class
was put forward [3–5, 7–11]. At first, protein structural class

prediction is designed based on the protein composition [1,
12, 13], such as short peptide composition [14–16], pseudo
amino acid composition [17–20], and functional domain
composition collocation [21]. Amino acid composition
(AAC) is calculated according to the ratio of 20 amino acid
residues in the sequence and denoted as a numerical vector
as the sequence characteristic information [14–16]. However,
it did not take the interaction and physicochemical proper-
ties of amino acids into account. Pseudo amino acid compo-
sition (PseACC) was further proposed as the characteristic
information of protein [17–22], which does not merely con-
sider the amino acid residues’ composition but also considers
the physical and chemical properties such as hydrophobicity
of amino acid residues. In addition, the characteristic infor-
mation is extracted by calculating the peptide components
[23], which takes into account the sequence factors among
amino acid residues.

The prediction method based on sequence-based features
performs well on the high similarity data set, while their pre-
cision on the low-similarity data set is only about 50%. Some
improved feature extraction methods need to be put forward
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urgently. Kurgan et al. introduced a SCPRED method with
the help of the predicted secondary structures [24]. Zhang
et al. calculated a TPM matrix to represent the prediction
of secondary structural features [25]. Dai et al. also proposed
a statistical feature of the secondary structural features for
protein structural class prediction [26]. Ding et al. con-
structed a multidimensional representing vector as the
predicted secondary structure features, and some methods
of fuse multiple features are also designed [27]. Chen et al.
proposed a multifeature fusion method that combines struc-
tural information with physical chemistry [28, 29]. Nanni
et al. introduced a prediction method that combines the char-
acteristics of the first-level sequence and the characteristics of
the second-level structure [30]. Wang et al. have combined
improved simplified PSSMwith secondary structural features
for protein structural class prediction [31].

With help of the above features, prediction accuracy was
improved over 80% for several low-similarity benchmark
data sets, but some problems still exist in their development.
In order to improve the efficiency of the prediction models,
some research integrated different protein features to estab-
lish a prediction model. However, it is worth noting that
the simple combination of the different features does not
necessarily improve the prediction performance. If the com-
bination is not appropriate, it may even offset the informa-
tion contained in each other, which not only causes the
redundancy of information but also increases the complexity
and computation of the model.

With the above problems in mind, we proposed a scheme
to predict the protein structural classes using the recursive
feature selection with random forest. We first explored
protein content features, protein position features, reduced
combined features, and predicted secondary structural fea-
tures and discussed their contribution for protein structural
class prediction. We then proposed a recursive feature selec-
tion method to select important features from the above
feature set, where the relative importance index of each fea-
ture is calculated based on the random forest algorithm. At
last, the features are selected according to their relative
importance value. Through a comprehensive comparison
and discussion, some novel valuable guidelines for use of the
recursive feature selection and protein features are obtained.

2. Materials and Methods

2.1. Data Sets. Four widely used low-similarity benchmark
data sets are selected for comparison with existing methods
[24, 25, 32–37]. The first data set is 25PDB, with sequence
homology of 25%, which was originally published in [32,
33]. It contains 1673 proteins and domains, which are down-
loaded from PDB and scanned with high resolution. The
second data set is D640, which has 25% sequence identity. It
is composed of 640 proteins, and the classification tags are
from the SCOP database [32, 33]. The third data set is
FC699, in which 858 sequences have 40% low identity. The last
data set, denoted as 1189, has 40% sequence identity. It is
composed of three-dimensional structure data of 1092
proteins, which are downloaded from the RCSB protein data-
base, and PDB ID is listed in [38]. Table 1 provides more

detailed information about these low-similarity benchmark
data sets.

2.2. Sequence Content Feature. There are a large number of
statistical literatures, in which a sequence is interpreted as a
series of symbols. A k-word is a sequence of k-consecutive
letters in a sequence. For the sequence s with length m, the
count of k-word w, represented by cðwÞ, is the number of
times w appears in the sequence s. Here, the k-word is
allowed to overlap in the sequence. The sequence content
can be described by the frequencies of the k-word, and it
can be represented by an n-dimensional vectorCs

k:

Cs
k = c wk,1ð Þ, c wk,2ð Þ,⋯,c wk,nð Þð Þ, ð1Þ

where n is the total number of all possible k -words. Then, the
sequence content features can be calculated as

SCFsk =
c wk,1ð Þ
m − k + 1

,
c wk,2ð Þ
m − k + 1

,⋯,
c wk,nð Þ
m − k + 1

� �
: ð2Þ

This work calculates SCFs1 and SCFs2 to construct the
sequence content features.

2.3. Sequence Position Feature. In addition to the sequence
content features, we also pay attention to position distribu-
tion of these k-word elements. Given a k-word, we first trans-
formed a protein structural sequence into several position
signal sequences. If the interval distance Disðwk,iÞ of the
given k-word wk,i is equal to 1, the consecutive k-word wk,i
will form a structure and motif domain. Otherwise, they
belong to two different domains. Given the Disðwk,iÞ and
the integer t, we calculate the probability that Disðwk,iÞ takes
the value t, and the probability distribution of the Disðwk,iÞ
will be obtained. The numerical characteristics semimean
Semi‐EkðwÞ and semivariance Semi‐DkðwÞ are defined by

Semi‐Ek wð Þ = 〠
t

Dis wkð Þ=1
Dis wkð Þ × P Dis wkð Þð Þ,

Semi‐Dk wð Þ = 〠
t

Dis wkð Þ=1
Dis wkð Þð Þ2 × P Dis wkð Þð� �

− 〠
t

Dis wkð Þ=1
Dis wkð Þ × P Dis wkð Þð Þ

" #2

:

ð3Þ

Table 1: Protein distribution of different structural classes among
four protein data sets.

Data set All-α All-β α/β α + β Total

25PDB 443 443 346 441 1673

D640 138 154 177 171 640

FC699 130 269 377 82 858

1189 223 294 334 241 1092
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The sequence position feature of the standard Semi‐Dk to
Semi‐Ek is defined as

SPFk wð Þ = Semi‐Ek wð Þ
Semi‐Dk wð Þ : ð4Þ

SPFkðwÞ is the variability of the k-wordw in relation to its
population mean [26], and we calculate SPF1ðwÞ and SPF2
ðwÞ to construct the sequence position features.

2.4. Reduced Sequence Feature. Hydrophilicity is an impor-
tant physical and chemical property of amino acids. Accord-
ing to the hydrophilicity of amino acids, 20 kinds of amino
acids can be divided into three categories: internal group,
external group, and ambivalent group. The reduction of pro-
tein sequences is defined according to the following rule:

F S ið Þð Þ =
I, if S ið Þ = F, I, L,M, V ,

E, if S ið Þ =D, E,H, K ,N ,Q, R,

A, if S ið Þ =D, E,H, K ,N ,Q, R,

8>><
>>:

ð5Þ

where SðiÞ represents the i-th letter in protein sequence s and
FðSðiÞÞ represents the substitution for SðiÞ.

With help of the FðSðiÞÞ, a protein sequence can be trans-
formed into a reduced sequence, which contains only three
letters I, E, and A. For example, given a protein sequence S
= ESHFTCISLNEYAMQ, we can get its reduced protein
sequence FðSÞ = EAEIAAIAIEEAAIE. Here, we calculate
the sequence composition and position features of the
reduced sequence to combine reduced sequence features.

2.5. Predicted Secondary Structural Features. The protein
sequence feature achieves promising results in the protein
structural class prediction, but its accuracy is limited. Some
studies have shown that the content and spatial arrangement
of secondary structural elements are also important factors
affecting the complex function or structure of proteins.
Therefore, one of the methods to improve the prediction
accuracy is to add secondary structural features to the feature
set [24–31]. In this work, PSI-PRED is used to predict the
secondary structure sequence [39], and the 11 widely used
predicted secondary structural features are calculated to
improve protein structural class prediction [40].

(1) Predicted secondary structure element content
(contentSE): given a predicted secondary structure, the
content of its predicted secondary structure elements
contentSE can be calculated by the following formula

contentSE =
CountSE

∑xϵ C,H,Ef gCountx
: ð6Þ

H, E, and C denote α-helix, β-strand, and coil, respectively.

(2) First- and second-order composition moment vector
(CMV), another important structure feature, can be
calculated as follows:

CMVk
SE =

∑CountSE
j=1 POk

SE jQk
d=1 N − dð Þ

, ð7Þ

where POk
SE j

denotes the secondary structure element at the

j-th position in the secondary structure sequence with
length N , and k is the vector order.

(3) Length of the longest segment (MaxSegSE):

MaxSegSE =MaxLen SEG : SEGSEð Þ, ð8Þ

whereMaxLen denotes the maximal segment length function
and SEGSE is the segments that consist of the structure
element SE.

(4) Normalized length of the longest segment
(NMaxSegSE):

NMaxSegSE =
MaxLen SEG : SEGSEð Þ

N
, ð9Þ

where N is the sequence length.

(5) Average length of the segment (AvgSegSE):

AvgSegSE =
∑Len SEG : SEGSEð Þ

ContentSEGSE

, ð10Þ

where Len is the segment length function andContentSEGSE

denotes the content of the SEGSE.

(6) Normalized average length of the segment
(NAvgSegSE):

NAvgSegSE =
∑Len SEG : SEGSEð Þ
N × ContentSEGSE

, ð11Þ

where N is the sequence length.

(7) Alternating frequency of α-helices and β-strands and
proportion of parallel β-sheets and antiparallel β
-sheets (APPA).

Liu and Jia compared the alternating frequencies of
different structure elements and found that the α-helices
and β-strands alternate more frequently in α/β proteins than
in α + β proteins, so they introduced the alternating fre-
quency of the α-helices and β-strands to predict protein
structural class [35]. The normalized alternating frequency
is defined as follows:

NAltSE =
Contentα−β
SeqLen

, ð12Þ
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where Contentα−β denotes the total alternation of the α

-helices and β-strands, and SeqLen is the sequence length.

2.6. Recursive Feature Selection with Random Forest. Each
decision tree in the random forest is divided into training sets
from the root node according to the top-down principle. The
root node of the tree is divided into left and right nodes
according to the principle of maximum information gain,
that is, the training data of the node is divided into two sub-
sets. Under the same rule, the remaining nodes continue to
split until the branch stop rule is satisfied. Among them, node
information gain can be calculated by information entropy,
information gain rate, and Gini index. In this study, informa-
tion entropy is selected to obtain information gain, which is
defined as follows:

IG S, Að Þ = Entropy Sð Þ − Entropy S, Að Þ, ð13Þ

where

Entropy Sð Þ = −〠
c

i=1
p ið Þ log2 p ið Þð Þ,

Entropy S, Að Þ = 〠
v∈values Að Þ

Svj j
Sj j Entropy Svð Þ,

ð14Þ

where S is the training set with the number of categories c, A
is the characteristic attribute, pðiÞ is the probability of the
class i in S, i = 1,⋯, c. Sv is the S subset of attribute A, jSvj
is the number of statistical samples, and jSj is the number
of samples of training set S. In this study, there are four types
of problems; thus, c = 4.

For the decision tree classifier, the classification rate is an
important index to measure the constructed classifier, but the
importance of feature information in the construction of the
decision tree node cannot be ignored. In order to select the
important features with a strong classification ability, this
work introduces the idea of random forest feature selection
based on relative importance.

In the experiment, a certain number of features are ran-
domly selected from the candidate features to construct a
large number of decision trees, so as to select representative
and effective feature information. Firstly, the d candidate fea-
tures obtained from different feature extraction methods are
randomly divided into s subsets. In each subset, 50% of the
samples corresponding to m features are randomly selected
as the training sample subset, and the remaining 50% as the
test sample subset, which are, respectively, used to construct
the classification tree and evaluate the performance of the
classification tree, t times in total. After the above two steps,
a total of st decision trees are generated, in which s and tmust
be large enough, especially s. Each feature information has a
chance to appear in different subsets, and it also makes the
selected feature information more accurate.

In order to measure the relative importance of the
extracted features, the weighted classification rate is used
to evaluate the classification ability of the decision tree on
the test set. For a class c classification problem, let nij be

the number of class i samples divided into class j samples,
i, j = 1,⋯, c. In this way, the weighted classification rate
introduces the size of each class sample set. The specific
definition is as follows:

w =
1
c
〠
c

i=1

nii
ni1 + ni2+⋯+nic

: ð15Þ

In the decision tree, if a feature contains more informa-
tion, it will play a greater role in the classification rate of the
decision tree and gain more information. Therefore, the
relative importance (RI) index of a feature is defined as

RIgk = 〠
st

τ=1
w〠

ngk

IG ngk τð Þ
� � no:inngk τð Þ

no:inτ

� �
, ð16Þ

where w is the weighted classification rate of a decision tree.
In the st decision trees of random forest, gk is the relatively
important feature generated in the τ tree. All nodes are
denoted as ngkðτÞ, IGðngkðτÞÞ and no:inngkðτÞ are labeled
as the information gain and sample number of the nodes,
and no:inτ is the number of roots of the τ tree. The RI value
of each feature is calculated using the above method, and
then, the features are sorted according to the RI value.
Finally, the representative feature information with great
contribution can be selected.

2.7. Classification Algorithm. Support vector machine (SVM)
is a large edge classifier based on statistical learning theory. It
uses an optimal separation hyperplane to separate two kinds
of data. For the binary support vector machine, the decision
function is

f xð Þ = 〠
N

i=1
αiyiK xi, xð Þ + b, ð17Þ

where b is a constant, C is a cost parameter controlling the
trade-off between allowing training errors and forcing rigid
margins, yiϵf−1,+1g, xi is the support vector, 0 ≤ αi ≤ C,
and Kðxi, xÞ is the kernel function. This paper uses Vapnik’s
support vector machine to predict protein structural classes
[41]. Since protein has more than two structural classes, we
choose the “one-to-one” strategy of multiclass SVM. Given
an unknown class of test protein, we calculate the combined
features and select the efficient features based on the recur-
sive feature selection with random forest. The support vector
machine will then find an optimized linear partition to solve
this multiclass problem.

This work chooses the Gauss kernel function of the
support vector machine because of its superiority in solving
nonlinear problems [42, 43]. Furthermore, a simple grid
search strategy is used to select the parameters C and gamma
with the highest overall prediction. It is designed based on 10
times cross-validation of each data set, and the values of C
and gamma are taken from the 2−10 to 210.
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2.8. Performance Evaluation. There are three widely used
cross-validation methods (subsampling test, independent
data set test, and jackknife test) to evaluate the classifier’s
ability. The jackknife test always produces a unique result,
which helps to check the quality of various prediction
methods. Therefore, we chose the jackknife test to evaluate
the proposed method and introduced the sensitivity (Sens),
specificity (Spec), and F1 as standard performance indicators,
as well as the accuracy and overall accuracy of each category.
These standard performance indicators are defined as follows:

Accuracyi =
TPi

∣Ci ∣
,

Overall accuracy =
∑TPi

∑∣Ci ∣
,

Sens =
TP

TP + FN
,

Spec =
TN

FP + TN
,

F1 =
2TP

2TP + FN + FP
,

ð18Þ

where TP is the number of true positives, FP is the number of
false positives, TN is the number of true negatives, FN is the
number of false negatives, and ∣Ci ∣ is the number of proteins
in each structural class Ci (all-α, all-β, α/β and α + β classes).

3. Results and Discussion

3.1. Performance of Proposed Prediction Method. The low
sequence homology of 25PDB, D640, FC699, and 1189 was
25%, 25%, 40%, and 40%, respectively. A simple grid search
strategy is adopted for C and gamma values based on the
10 times cross-validation of each data set. The sensitivity
(Sens), specificity (Spec), and F1 of the proposed method
are summarized in Table 2.

Table 2 shows that the prediction performance of the all-
α class is the best among the four structural classes, and its
sensitivity, specificity, and F1 are higher than 90%. But the
lower predictions are related the α + β class. From Table 3,
we find that the overall accuracy of the method is more than
86% for the four data sets. The overall accuracy of the all-α
class was significantly higher than that of other categories,
and the accuracy was more than 94%, followed by all catego-
ries and categories. It is not difficult to find that the average
total accuracy of the α + β class of the four data sets is
86.1%, which is 10% lower than that of all classes. These
results indicate that it is more difficult to predict the α + β
class because of the nonnegligible overlap in this category.

3.2. Performance Comparison with the Competing
Predictions. This paper further compared the proposed
method with the available competing methods. Here, the
accuracy of each class and the overall accuracy are chosen
as evaluation indexes to evaluate all the prediction methods,
and their results are summarized in Table 3. The proposed
method is first compared with AADP-PSSM [44], AAC-

PSSM-AC [45], and Ding et al.’s method [46] based on the
position-specific scoring matrix. Among all the experiments,
the proposed method achieves the best performance, with
accuracy above 5.4-12.5% better than the next competing
Ding et al.’s method [46].

As for the 25PDB data set, we further compare the pro-
posed method with the competitive methods: SCPRED [32,
33], MODAS [34], S. Zhang et al. [25], RKS-PPSC [47], Ding
et al. [48], Xia et al. [49], L.C. Zhang et al. [36], and S.L.
Zhang et al. [16]. It is easy to note that the proposed method
achieves the best performance, and the overall accuracy is
91.5%, which is 7.2 percentage points higher than Ding
et al.’s method [48]. In D640 data sets, we compare the pro-
posed method with SCEC [38], SCPRED [32, 33], RKS-PPSC
[47], Zhang et al. [16], and Kong et al. [20]. The overall accu-
racy of our method is 91.7%, which is 7-8.1% higher than
other competitive methods [16, 20]. As for FC699, the com-
parison is performed between the proposed method and
SCPRED [32, 33], 11 features [35], and Kong et al. [20].
We find that the overall accuracy of this method is 96.7%,
which is significantly better than other methods. In the
1189 experiment, SCPRED [32, 33], MODAS [34], RKS-
PPSC [47], L.C. Zhang et al. [36], S.L. Zhang et al. [16], and
Kong et al. [20] are compared with the proposed method,
and we find that the proposed method achieves the best per-
formance among all the competing methods. It is the only
prediction method with an overall accuracy of more than
86%, which is 3.1% higher than other competitive methods.

It can be seen from Table 3 that the prediction accuracy
of α/β class has been improved. Specifically, the accuracies
of the α + β class for 25PDB, 1189, 640, and FC699 data sets
are 85.7%, 80.7%, 96.3%, and 81.7%, respectively, which are
10.2%, 3.5%, 12.1%, and 8.3% higher than those of the next
competitive method, respectively [16, 20]. These results

Table 2: Sensitivity (Sens), specificity (Spec), and F1 of the
proposed method on four data sets.

Data set Class Sens (%) Spec (%) F1 (%)

25PDB

All-α 94.81 98.29 95.02

All-β 95.26 98.13 95.05

α/β 89.88 95.25 86.39

α + β 85.71 97.16 88.52

D640

All-α 97.10 97.81 94.70

All-β 92.86 99.18 95.02

α/β 97.18 92.87 90.05

α + β 80.70 98.93 87.90

FC699

All-α 97.69 99.45 97.32

All-β 98.51 99.49 98.70

α/β 95.23 99.38 97.16

α + β 96.34 97.68 88.27

1189

All-α 94.62 96.55 90.95

All-β 89.80 98.50 92.63

α/β 82.04 94.20 84.05

α + β 81.74 92.95 79.12
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show that the proposed method outperforms the available
PSSM-based and PSSM-free prediction methods, indicating
that the recursive feature selection with the random forest
can select important features from the combined feature
set and advances predict precision. This understanding
can be used to develop more powerful protein structure
prediction methods.

3.3. Influence of Recursive Feature Selection. A feature of the
proposed method is the recursive feature selection with ran-
dom forest, which calculates the RI value of each feature and
selects the representative features with great contribution.
For a better understanding of the recursive feature selection,
we select the feature set with size from 10 to 857. All experi-
ments are performed with each selected feature set using the

jackknife cross-validation test, and the overall accuracy is
chosen to represent the score in this prediction. Figure 1
shows the overall accuracies of all experiments with the
selected feature sets for four data sets.

As would be expected, the overall accuracy first increases
and then decreases as the selected feature size continues to
increase. When the selected feature set size is less than 50,
all data sets have reached the best prediction. As the number
of selected features increases, the overall accuracy will
decrease. The number of selected features corresponding to
the best performance is far less than the total number of
original features. Therefore, there is a large amount of
redundant information in the original combination feature
set. After the recursive feature selection with the random
forest is used to select and reduce the dimension, the

Table 3: Prediction accuracies (variances in the brackets) of the proposed method for four data sets and comparison with other reported
results.

Data set Method
Prediction accuracy (%)

All-α All-β α/β α + β Overall

25PDB

AADP-PSSM [44] 69.1 83.7 85.6 35.7 70.7

AAC-PSSM-AC [45] 85.3 81.7 73.7 55.3 74.1

SCPRED [32, 33] 92.6 80.1 74.0 71.0 79.7

MODAS [34] 92.3 83.7 81.2 68.3 81.4

RKS-PPSC [47] 92.8 83.3 85.8 70.1 82.9

Ding et al. [46] 95.0 81.3 83.2 77.6 84.3

Xia et al. [49] 92.6 72.5 71.7 71.0 77.2

Zhang et al. [36] 95.7 80.8 82.4 75.5 83.7

Ding et al. [48] 91.7 80.8 79.8 64.0 79.0

Zhang et al. [16] 94.4 83.3 83.5 73.2 83.6

This paper 94.8 95.3 89.9 85.7 91.5

D640

SCEC [38] 73.9 61.0 81.9 33.9 62.3

SCPRED [32, 33] 90.6 81.8 85.9 66.7 80.8

RKS-PPSC [47] 89.1 85.1 88.1 71.4 83.1

Ding et al. [46] 92.8 88.3 85.9 66.1 82.7

Zhang et al. [16] 92.0 81.8 87.6 74.3 83.6

Kong et al. [20] 94.2 80.5 87.6 77.2 84.5

This paper 97.1 92.8 97.1 80.7 91.7

FC699

SCPRED [32, 33] — — — — 87.5

11 features [35] 97.7 88.0 89.1 84.2 89.6

Kong et al. [20] 96.2 90.7 96.3 69.5 92.0

This paper 97.7 98.5 95.2 96.3 96.7

1189

AADP-PSSM [44] 69.1 83.7 85.6 35.7 70.7

AAC-PSSM-AC [45] 80.7 86.4 81.4 45.2 74.6

SCPRED [32, 33] 89.1 86.7 89.6 53.8 80.6

MODAS [34] 92.3 87.1 87.9 65.4 83.5

RKS-PPSC [47] 89.2 86.7 82.6 65.6 81.3

Zhang et al. [36] 92.4 84.4 84.4 73.4 83.6

Ding et al. [46] 89.2 88.8 85.6 58.5 81.2

Zhang et al. [16] 91.5 86.7 82.0 66.4 81.8

Kong et al. [20] 91.9 84.4 85.3 72.2 83.5

This paper 94.6 89.7 82.1 81.7 86.6
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classification rates of four data sets 25PDB, 1189, 640, and
FC699 are 91.5%, 86.6%, 91.7%, and 96.7%, respectively,
which increased by 4.6-13.3%.

3.4. Influence of the Different Features. To improve the
prediction of protein structural classes, we use four kinds of
protein features: protein sequence features, protein position
features, reduced combined features, and predicted second-
ary structure features. For brevity, let PSF, PPF, RCF, and
PSSF denote these four kinds of protein features, respectively.
Through the experiments, we want to address which features
contribute to the prediction better.

To evaluate the contribution of each kind of the protein
features, we present the comparison of the overall prediction
accuracies of four kinds of the protein features in Figure 2. It
indicates that each feature makes its own positive contribu-
tions to the predictions. PSSF achieves the best performance
among the four kinds of the protein features, which is
8%~31% higher than the other three features. In addition,
PSSF are selected as the efficient features, which indicates
that PSSF is relatively important and has a great contribution
to the improvement of prediction. It is easy to note that PSSF

is directly extracted from the predicted secondary structure
sequences, including the information of α-helix and β-fold
alternation frequency and spatial arrangement. Compared
with the amino acid frequency and position, the secondary
structure sequence information is more closely related to
the secondary structure types; this is why it achieves the best
performance in protein structure prediction.

4. Conclusion

Protein structural classes provide some useful information
for the study of the whole folding type, especially for proteins
with low sequence similarity. Various types of protein fea-
tures are combined to improve the protein structural class
prediction. However, it should be noted that the feature
fusion will also bring information redundancy and affect
the efficiency and accuracy of prediction. This paper pro-
posed a feature selection method for protein structural class
prediction, which calculates the RI value of each feature with
the random forest and selects the representative features
based on each contribution. To do so, we first extracted pro-
tein sequence features and protein position features, reduced

30 100 150 200 500
50
55
60
65
70
75
80
85
90
95

100

Selected feature set size

O
ve

ra
ll 

ac
cu

ra
cy

D640
FC699

1189
25PDB

Figure 1: The comparison of the overall accuracies of all experiments with the selected feature sets for four data sets.

25PDB D640 FC699 1189
0

10
20
30
40
50
60
70
80
90

100

O
ve

ra
ll 

ac
cu

ra
cy

PCF
PPF

RCF
PSSF

Figure 2: Comparison of the overall prediction accuracies of four kinds of the protein features.
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combined features, predicted secondary structure features,
and used the recursive feature selection with random forest
to select the core features for prediction. The experiment
results show that the recursive feature selection with the ran-
dom forest effectively improves the efficiency of protein
structural class prediction. Only less than 5% features are
used, but the prediction accuracy is improved by 4.6-13.3%.
For a better understanding of different protein features, we
compared the contribution of each kind of the protein fea-
tures and found that the predicted secondary structural fea-
tures achieve the best performance among the four kinds of
the protein features, which is 8%~31% higher than the other
features. This understanding can be then used to develop
more powerful methods for protein structural class prediction.

Data Availability

All the data used to support the findings of this study are
available on https://github.com/qidaizstu/recursive-feature-
selection.
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