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Abstract
Evidence has emerged that stem cells represent a promising therapeutic tool for tissue engineering and regenerative medicine.
Thus, identifying functional markers for selecting stem cells capable of superior self-renewal and pluripotency (or multi-
potency) and maintaining stem cell identity under appropriate culture conditions are critical for guiding the use of stem cells
toward clinical applications. Many investigations have implicated the insulin-like growth factor 1 receptor (IGF1R) signaling in
maintenance of stem cell characteristics and enhancement of stem cell therapy efficacy. IGF1R-expressing stem cells display
robust pluripotent or multipotent properties. In this review, we summarize the essential roles of IGF1R signaling in self-
renewal, pluripotency (or multipotency), and therapeutic efficacy of stem cells, including human embryonic stem cells, neural
stem cells, cardiac stem cells, bone marrow mesenchymal stem cells, placental mesenchymal stem cells, and dental pulp
mesenchymal stem cells. Modifying IGF1R signaling may thus provide potential strategies for maintaining stem cell properties
and improving stem-cell-based therapeutic applications.
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Introduction

Stem cells are biological cells that have the capacity to

undergo unlimited numbers of either symmetrical or asym-

metrical cell divisions to maintain the stem cell population

(self-renewal) as well as produce a broad array of differen-

tiated cell types found in the organism1. There are two major

types of stem cells: pluripotent embryonic stem cells (ESCs),

which are derived from blastocyst-stage embryos and can

generate all types of differentiated cells found in the embryo-

nic tissues2; and multipotent adult stem cells, which are

obtained inside different types of tissues and are capable

of producing some types of differentiated cells in the organ-

ism3, such as the mesenchymal stem cells (MSCs) that are

isolated from the connective tissue surrounding other tissues

and organs4. Their unique self-renewal ability and multi-

lineage potential make stem cells a promising tool for a wide

variety of medical therapies (regenerative medicine) such as

bone marrow transplantation, myocardial repair, bone regen-

eration, and nerve regeneration5–7. To guide the use of stem

cells toward clinical applications, a key issue to be addressed

is the identification and maintenance of stem cells capable of

both robust self-renewal and pluripotency (or multipotency)

in vitro before in vivo transplantation.

Insulin-like growth factor 1 receptor (IGF1R) is a cell-

surface receptor tyrosine kinase that can bind its cognate

ligands IGF1 and IGF2 to activate two principle downstream

signaling pathways – the phosphoinositide 3-kinase (PI3 K)/

AKT and the RAS/mitogen activated protein kinase

(MAPK) pathways – to promote cell proliferation, differen-

tiation, migration, and survival, and inhibit apoptosis8–10.
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Several studies suggest that IGF1R is highly expressed when

stem cells are exposed to conditions favorable for self-

renewal and pluripotency (or multipotency); the expression

of IGF1R recognizes stem cells with superior self-renewal,

pluripotency (or multipotency), and therapeutic potential.

Activation of IGF1R signaling by autocrine, paracrine, or

inter-receptor cross-talk regulations contributes to maintain-

ing the self-renewal and pluripotent (or multipotent) capa-

cities of stem cells. In this review, we provide a quick insight

into the essential roles of IGF1R signaling in maintaining

stem cell characteristics, and highlight modification of

IGF1R signaling as an applicable strategy for improving

stem cell-based therapy for human diseases, including heart

failure, neurodegenerative diseases, and bone disorders.

Igf1R Signaling Establishes the Stem Cell
Niche for Self-Renewal and Pluripotency of
Human Embryonic Stem Cells (hESCs)

Human embryonic stem cells are the cells isolated from the

inner cell mass of human embryos that are in the blastocyst

stage of development11. Although several factors have been

identified to play a role in supporting the culture and main-

tenance of hESCs, including basic fibroblast growth factor

(bFGF)12, transforming growth factor b113, activin A14, neu-

rotrophins15, Wnt/b-catenin signaling16, platelet-derived

growth factor, and sphingosine-1-phosphate17, little is

known about the cell-surface receptors that are activated

under conditions supportive of hESC self-renewal.

A report by Wang et al. revealed that when cultured in

mouse embryonic fibroblast-conditioned media that support

the propagation of undifferentiated hESCs, hESCs displayed

prominent tyrosine phosphorylation of IGF1R18. Selective

disruption of IGF1R signaling by IGF1R-blocking monoclo-

nal antibody or IGF1R-targeted shRNA severely inhibited

hESC proliferation and promoted apoptosis, indicating that

IGF1R signaling is required for the self-renewal of pluripo-

tent hESCs18. Furthermore, Bendall et al. clarified that the

activation of IGF1R signaling in hESCs depends on a

dynamic interplay between hESCs and hESCs-derived

fibroblast-like cells19. The hESC-derived fibroblast-like

cells were produced by hESCs themselves and acted as a

supportive niche via production of IGF2 through a bFGF-

dependent autocrine regulation loop19. As a ligand binding

to IGF1R, IGF2 has a direct role in sustaining self-renewal

and pluripotent properties of hESCs via activation of IGF1R

signaling19. Taken together, these reports demonstrate that

IGF1R signaling is essential for the acquisition and mainte-

nance of stemness properties of hESCs.

In addition, IGF1R signaling has been implicated in reg-

ulating pluripotent ability of hESCs. Magner et al. reported

that the expression of both IGF1 and IGF2 and the phosphor-

ylation of IGF1R increased during hepatocyte differentiation

from hESCs20. Selective inhibition of IGF1R signaling by

small-molecule IGF1R kinase inhibitor or IGF1R-targeted

shRNA substantially impaired hepatocyte differentiation,

supporting that IGF1R signaling plays an important role in

hepatocyte differentiation from hESCs20. Activation of the

PI3K/AKT pathway, but not the RAS/MAPK pathway, by

IGF1R signaling enhanced the expression of hepatocyte

nuclear factor 1 (HNF1) and HNF4 to regulate hepatocyte

differentiation from hESCs20. Furthermore, McDevitt et al.

reported that IGF1R signaling induced proliferation of car-

diomyocytes derived from hESCs21. Blocking of IGF1R by

monoclonal antibody attenuated cardiomyocyte prolifera-

tion, while addition of IGF1 or IGF2 recombinant protein

promoted cardiomyocyte proliferation in a dose-dependent

manner21. The proliferation of cardiomyocytes was

mediated primarily through the PI3K/AKT pathway down-

stream of IGF1R signaling21.

Igf1R Signaling Contributes to Human
Neural Stem Cell (hNSC)-Mediated
Neuroprotection for Amyotrophic Lateral
Sclerosis (ALS)

ALS is a lethal neurodegenerative disease that results in loss

of motor neurons, leading to rapidly progressive muscular

paralysis22. To date, there are no effective treatments for

ALS. hNSCs are adult stem cells that are isolated from the

human brain and are capable of neural differentiation23. Sev-

eral clinical trials have supported the use of hNSCs as a

promising approach for treating ALS24–27. Enhancing hNSC

function may thus increase the benefit of hNSCs-mediated

ALS therapy.

Mechanistic investigations of hNSC-mediated neuropro-

tection revealed that hNSCs produced several neuroprotec-

tive growth factors, including vascular endothelial growth

factor, brain-derived neurotrophic factor, and IGF1, follow-

ing intraspinal transplantation in rat and mouse models of

ALS, contributing to motor neuron generation, delayed clin-

ical onset, and prolonged life spans28,29. Of these growth

factors, IGF1 is the most abundantly expressed.

Reports by Lunn et al. demonstrated that exogenous treat-

ment of IGF1 in hNSC cultures enhanced hNSC neural dif-

ferentiation and promoted neurite outgrowth in both neurite

number and length; the IGF1-stimulated hNSC neurite out-

growth could be abolished by IGF1R inhibitor treatment30.

Higher levels of autocrine IGF1 expression in hNSCs con-

sistently increased potential of hNSC migration, stimulated

production of glial-derived neurotrophic factors, and

induced neural differentiation from hNSCs31. Furthermore,

either exogenous treatment or autocrine production of IGF1

augmented the neuroprotective potential of hNSCs and

increased motor neuron survival after glutamate exposure

in a model of excitotoxic cell death; the IGF1-conferred

neuroprotective effect of hNSCs could be abrogated by

IGF1R inhibitor treatment30,31. Collectively, these reports

support that IGF1R signaling plays an important role in
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hNSC-mediated neuroprotection and may contribute to the

therapeutic benefit of hNSCs for ALS.

Igf1R Signaling Recognized Human Cardiac
Stem Cells (hCSCs) with Superior
Therapeutic Efficacy for Myocardial
Regeneration

Human cardiac stem cells are adult stem cells that are

obtained from the human heart and have a tendency to dif-

ferentiate into cardiac myocytes and vessels32. Considering

that age and coronary artery disease may have adverse

effects on the function of hCSCs33,34, it is important for

tissue regeneration therapy to identify hCSCs with high

self-renewal capacity and ability to form myocytes and ves-

sels within the failing heart.

A report by D’Amario et al. showed that the expression of

IGF1R in hCSCs identified a pool of hCSCs that exhibited

longer telomere length, stronger telomerase activity,

enhanced cell proliferation, and decreased apoptosis,

whereas absence of IGF1R led to increased apoptosis35.

IGF1R-expressing hCSCs produced both IGF1 and IGF2,

which supported stem cell proliferation and promoted myo-

cyte differentiation35. Furthermore, IGF1R-positive hCSCs

improved cardiomyogenesis and vasculogenesis in a rat

model of myocardial infarction; stimulation of IGF1R-

positive hCSCs with IGF2 resulted in the development of

more mature cardiomyocytes and superior regeneration of

ventricular structure35. These results indicate that an

IGF1R-positive hCSC subset is an ideal candidate cell for

the treatment of human heart failure.

In addition, IGF1 has been known to be a key cardiopro-

tective cytokine that through binding to IGF1R activates

IGF1R downstream prosurvival pathways and improves

postischemic cardiac function36. Jackson et al. reported that

genetically enhancing the paracrine production of IGF1 by

transplanted hCSCs promoted hCSCs and cardiomyocyte

survival and improved hCSC-mediated myocardial repair

in an immunodeficient mouse model of myocardial ische-

mia, supporting an important role of IGF1R signaling in

hCSCs function37.

Igf1R Signaling Promotes Human Bone
Marrow Mesenchymal Stem Cell
(hBMMSC)-Mediated Myocardial Repair
and Bone Formation

Human bone marrow mesenchymal stem cells are MSCs

isolated from human bone marrow and are capable of differ-

entiating into several cell types, including cardiomyocytes

and vascular endothelial cells38,39. In addition to the appli-

cation of hCSCs in myocardial regeneration, mentioned

above, transplantation of hBMMSCs is also shown to be

an attractive approach for myocardial repair. The trans-

planted hBMMSCs can improve angiogenesis and cardiac

function in rat models of heart failure through their ability

not only to differentiate into cardiomyocytes and vascular

endothelial cells, but also to supply large amounts of angio-

genic, anti-apoptotic, and mitogenic factors40–42.

IGF1 has been shown to enhance the migratory response

of MSCs to the stromal cell-derived factor-1a (SDF-1a), a

potent chemoattractant of stem cells, through activation of

the IGF1R downstream PI3K/AKT signaling to increase the

expression levels of the SDF-1a receptor, C-X-C motif che-

mokine receptor 4 (CXCR4)43. Additionally, SDF-1a plays a

significant role in modulating stem cell functions via activat-

ing molecular pathways of cell growth, proliferation, and

survival44. A report by Haider et al. revealed that

hBMMSCs, which were transgenically overexpressed with

IGF1, showed increased CXCR4 expression with a conco-

mitant increase in SDF-1a production45. After transplanta-

tion in a rat model of permanent coronary artery occlusion,

the IGF1-overexpressing hBMMSCs accelerated hBMMSC

mobilization and retention into the infarcted heart via para-

crine activation of SDF-1a/CXCR4 signaling to promote

myocardial repair45.

In addition, hBMMSCs can differentiate into chondro-

cytes and osteoblasts. Longobardi et al. reported that IGF1

is a key factor to promote differentiation of hBMMSCs into

chondrocytes by stimulating proliferation, regulating apop-

tosis, and inducing expression of chondrocyte markers46.

The effect of IGF1 on hBMMSC chondrogenesis was

mediated by IGF1R downstream MAPK signaling46.

Furthermore, IGF1 is the most abundant growth factor in the

bone matrix47. A report by Xian et al. showed that IGF1

plays a crucial role in maintaining bone mass through stimu-

lating osteoblastic differentiation of hBMMSCs during bone

remodeling, which is mediated by activation of the PI3K/

AKT signaling downstream of IGF1R48.

Igf1R Signaling Maintains Self-Renewal and
Multipotent Properties of Human Placental
Mesenchymal Stem Cells (hPMSCs)

Different parts of the human placenta (including chorionic

villi, membranes, umbilical cord, chorioallantois, and

amniotic fluid) have been shown as a readily available

source of MSCs, termed hPMSCs49. hPMSCs are multipo-

tent and can differentiate into a variety of cell types, includ-

ing cartilage, bone, endothelial, adipose, muscle, or neuronal

lineages50–52. Because studies have shown that hPMSCs

have significantly less or no allo- or xenogeneic immune

responses53,54, hPMSCs offer great promise for regenerative

therapy and tissue engineering. For this purpose, hPMSCs

need to be maintained in culture conditions that support their

self-renewal and multipotent properties.

Studies have suggested both IGF1 concentration and low-

oxygen tension as important regulators for hPMSC physiol-

ogy in vivo55,56. Reports by Youssef et al. revealed that

exogenous treatment of IGF1 in hPMSC cultures promoted
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hPMSC proliferation in a dose-dependent manner; the IGF1-

mediated hPMSC proliferation was further increased by low-

oxygen tension57,58. Furthermore, hPMSC multipotency was

also maintained by IGF1 and low-oxygen tension, as shown

by increased expression of the ESC marker OCT4 in

hPMSCs57,58. Both the proliferation and multipotency of

hPMSCs mediated by IGF1 and low-oxygen tension were

dependent on IGF1R signaling because inhibition of IGF1R

signaling by IGF1R neutralizing antibody or IGF1R-targeted

siRNA diminished the proliferation and multipotency of

hPMSC in the presence of IGF1 and low-oxygen ten-

sion57,58. Overall, these reports indicate that culturing

hPMSCs in conditions with IGF1 under low-oxygen tension

is critical to maintaining hPMSC multipotency prior to pre-

paration for regenerative therapies.

Igf1R Signaling Enhances Human Dental
Pulp Mesenchymal Stem Cell (hDPSC)-
Mediated Neuroprotection for Cerebral
Hypoxia-Ischemia

Compared with isolation from other sources of MSCs,

human dental pulp is regarded as a readily accessible source

for MSCs, termed hDPSCs59. hDPSCs could be noninva-

sively isolated from teeth routinely extracted in the clinic

and discarded as medical waste. Moreover, hPDSCs show

multipotent capability to differentiate into osteoblasts, odon-

toblasts, adipocytes, and neural cells60, supporting hPDSCs

as a useful source for stem-cell-based therapies.

For the therapeutic applications of MSCs, it is important

to identify multipotent markers for selecting MSCs that

retain potent self-renewal and multipotent abilities and to

maintain the selected MSCs under appropriate culture con-

ditions before in vivo transplantation. Reports by Lee et al.

and Chiu et al. revealed that an IGF1R-expressing subpopu-

lation in hDPSCs exhibited both self-renewal and multipo-

tent properties61,62. Importantly, IGF1R expression could be

optimally maintained in hPDSCs when they were cultured in

2% human umbilical cord blood serum (hUCBS) in contrast

to that in 10% fetal calf serum (FCS)61. Human umbilical

cord blood serum contained higher amount of IGF1 com-

pared to FCS, hence triggering a sustained activation of

IGF1R signaling61. Also, hDPSC-secreted IGF1 interacted

with IGF1R through an autocrine signaling pathway to main-

tain hDPSC self-renewal62. Furthermore, IGF1 increased

expression of CXCR4, a receptor for SDF-1a. Bidirectional

cross-talk between IGF1R/IGF1 and CXCR4/SDF-1a sig-

naling synergistically strengthened the activation of IGF1R

signaling, contributing to the maintenance of hDPSC

stemness61.

In rats with neonatal hypoxia-ischemia, IGF1R-positive

hDPSC transplantation to the brain promoted neurite regen-

eration and improved neurological function through enhan-

cing glucose metabolic activity, inducing angiogenesis and

anti-inflammatory effects, increasing anti-apoptotic protein

expression, and facilitating cerebral blood flow61,62. In

summary, these reports suggest that transplantation of

IGF1R-positive hDPSCs is a feasible therapeutic strategy for

neurodegenerative diseases.

Conclusion

Although clinical application of stem cells raises some ethi-

cal and safety concerns63, results of completed and ongoing

clinical trials suggest that stem cells hold great promise in

the treatment of a number of human diseases, including

degenerative, autoimmune, and genetic disorders64,65. For

the purpose of achieving better applications of stem cells

in tissue regeneration therapy, it is necessary to isolate

highly enriched pluripotent stem cells and maintain their

stemness properties in vitro before in vivo transplantation.

This review emphasizes that IGF1R signaling is an ideal

functional marker for identifying stem cells with superior

self-renewal and pluripotent capacities. Moreover, modulat-

ing IGF1R signaling activity is a promising strategy to main-

tain stem cell identity and improve stem cell therapy

efficacy. Considering the concern that IGF1R signaling is

also implicated in cancer stemness and chemoresistance66,67,

the stem cells whose IGF1R signaling activity was modified

should be appropriately and adequately differentiated into

the tissue-specific cell types in vitro before in vivo transplan-

tation, minimizing the potential side effects of tissue regen-

eration therapy.
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