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An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a
multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas
selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements
between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which
is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver
in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a
probabilistic atlas using an affine registration based on geometrymoments frommanually labelled data. Next, a coarse segmentation
of the liver is obtained from the probabilistic atlaswith low computational effort.Then, amultiatlas segmentation approach improves
the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary
mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and
nonrigid registrations in the entire ROI.The segmentation results are comparable to those obtained by human experts and to other
recently published results.

1. Introduction

Segmentation of 3D CT images of the liver is generally the
first step in computer-assisted diagnosis and surgery systems
for liver diseases. Segmentation of the liver in such scans is a
challenging task due to the large anatomical variability among
patients. Some overviews on the segmentation of CT liver
scans are given in [1, 2]. These methods have been classified
into two categories: data-driven approaches andmodel-based
approaches. The first group is based on grey-level intensities,
such as thresholding, clustering, or region growing. Their
major drawback is the adjacent organ separations (e.g.,
stomach, kidney, and heart), which may have intensities
similar to that of the liver. For these images, automatic
segmentation of the liver based on the grey value alone is
almost infeasible. The relation between pixel intensities and
their assigned labels is generally weak. For example, region-
growing approaches leak into surrounding tissue and require
subsequent manual corrections [3, 4]. For such images,

the intensity alone is insufficient for obtaining a robust
segmentation.These cases demand the incorporation of prior
knowledge of the structures to be segmented. The second
group, model-based segmentation, is a global approach that
matches a prior model with given data. This approach is
usually based on a geometrical or statistical model. Normally,
constructing a good prior shape model is difficult due to the
large interpatient variability. The statistical shape model is
frequently used for liver segmentation because of its ability
to constrain the segmentation to match shapes observed in
a training database [5, 6]. In many cases, these approaches
do not make full use of the appearance. To overcome this
drawback, the level set-based variational approaches allow
the incorporation of prior shapes into edge-based and region-
based models [7, 8].

A popular method for incorporating prior information in
the segmentation process is atlas-based segmentation. In this
paper, following Aljabar et al. [9], we consider that an atlas is
an image in one modality with its respective labelling (which
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are often generated by manual segmentation). Atlas-based
methods start by registering an atlas image into the target
image (usually with an intensity-based similarity measure).
The resulting transformation is then used to deform the atlas-
labelled image into the domain of the target image. This
process is often called label propagation. These approaches
have a simple process compared to other generic segmen-
tation techniques: only a registration method and an atlas
are required. However, segmentations with a single atlas are
intrinsically biased towards the shape and the appearance of a
subject [10]. Several studies have shown that approaches that
incorporate the properties of a group of atlases outperform
the use of a single atlas [11, 12].

On the other hand, the main source of error in these
approaches depends on the registration techniques. Indeed,
insufficient similarity between the registered atlas and the
target image often produces unreliable segmentations. An
improvement could be achieved by registering the atlases
only near the object of interest and not in the entire image
[13]. Therefore, we propose a process for refining the seg-
mentation. An initial solution is obtained using low-level
operations that define the regions of interest (ROIs). Then,
a combination of strategies based on a group of atlases can
be applied for each ROI, potentially making the registration
and segmentation operations more successful. Liver segmen-
tation fromCT scans is a good example of these difficulties in
registration-based approaches.The success of a registration in
an abdominal CT is compromised by the complexity of this
scenario. Before performing any registration, the ROI around
the liver needs to be defined.

There are two different atlas-based segmentation strate-
gies that use a group of atlases: (a) probabilistic atlas and
(b) multiatlas segmentation. We discuss the advantages and
disadvantages of these two atlas-based segmentation strate-
gies with the use of multiple atlases and how they can be
combined.

Probabilistic Atlas. In general, a probabilistic atlas is a spatial
statistical model of the appearance and shape of some struc-
tures to be studied. The construction of a probabilistic atlas
consists of a spatial-normalisation step as well as an intensity-
normalisation step. The spatial normalisation is needed to
capture the intersubject variability of the structures. Spa-
tial normalisation of the training atlases can be achieved
with different registration algorithms. Because registration
methods are a trade-off between warp regularisation and the
fidelity term, probabilistic atlases possess arbitrary sharpness:
weak regularisation leads to a sharp atlas, whereas strong
regularisation yields a blurry atlas [14]. Given a smoothness
parameter that controls the registration, an iterative atlas
generation scheme is usually employed [11, 15, 16].

Subsequently, the statistical parameter spatial maps,
which belong to the probabilistic atlas, are computed for each
label. The simplest probabilistic atlas provides only the prior
probability of labels at a spatial position and no information
regarding the expected appearance of the image [15, 16].
More complex probabilistic atlases provide statistics on the
relationship between the labels and the intensities [17, 18].

We focus on a probabilistic atlas by modelling both the
appearance and shape of the objects to be segmented.

Once the probabilistic atlas is constructed and given an
image to be segmented, the probabilistic atlas is registered
into the target image, and then it is used in the segmentation
task as prior information in the Bayesian formulation [15–17].
The advantage of this approach is that once the probabilistic
atlas has been generated, only a single registration from the
atlas to the target image is required to obtain a segmentation.
However, this method depends on the success of a single
registration. To overcome this drawback, the new approaches
combine the registration and segmentation of a unseen
image as an iterative process of estimating the labelling
and calculating of the registration parameters [14, 19–21]. In
this work, we construct a probabilistic atlas, and a coarse
segmentation of the target image is obtained by applying
the probabilistic atlas using an iterative process of affine
registration and segmentation.

Multiatlas Segmentation. Atlases within a database can be
registered to a target image, and their segmentations can be
transformed and subsequently fused to provide a consensus
segmentation. The main benefit of the multiatlas segmen-
tation approach is that the effect of errors associated with
any single atlas propagation can be reduced in the process
of combination. The main drawback is the computational
complexity. Indeed, the computational time for segmentation
increases linearly with the number of atlases that have to be
registered. Some authors [9, 12] have demonstrated that the
precision in segmentation is improved as more atlases are
combined.The overlap accuracy of a multiatlas segmentation
starts to rapidly increase and then very slowly increases as
more segmentations are fused. Therefore, an atlas selection
is required such that the number of atlases is as low as
possible so that no further improvement is expected when
more atlases are added. Finally, a label fusion method is also
required to obtain a consensus segmentation. The fusion of
the propagated segmentations can be achieved in different
ways:majority voting rule [11], STAPLE [22], orminimisation
of an energy function with intensity and prior terms [23].
Therefore, the nonrigid registrations, the atlas selection, and
the label fusion method must be investigated to improve the
performance of the multiatlas segmentation approach.

This paper is organised as follows. In Section 2, the
proposed method of combining low-level operations with a
probabilistic atlas and a multiatlas segmentation approach
is presented. The experiments that are performed for the
liver segmentation are described in Section 3.The results and
conclusions are presented in Section 4.

2. Methods

A flow chart of the proposed framework is shown in Figure 1.
Given an initial solution of the object of interest by using
low-level operations, a ROI is determined. Next, a fast
probabilistic atlas is applied to the ROI, and a coarse binary
segmentation (𝑆

𝐶
) is calculated using an iterative process of

segmentation-affine registration. 𝑆
𝐶
is a binary mask image,

which is used to define the domain of nonrigid registrations
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Figure 1: Flow chart summarising the three main steps of the proposed method.

and similarity measures of the atlas selection. Finally, the
atlases are ranked and the selected atlases are propagated to
the target image, and a label fusion method, which is based
on minimisation of a discrete energy function, improves the
segmentation with higher accuracy. Below, we present how
the ROI of the liver is obtained, the segmentation method
and the combination of a probabilistic atlas with a multiatlas
segmentation.

2.1. Initial Solution. An initial solution is required to define
the region of interest around the anatomical structure to be
segmented. The initial solution allows us to introduce prior
knowledge regarding the segmentation problem using low-
level operations. For example, in the case of liver segmen-
tation from these CT scans, the liver and heart have nearly
the same intensity, and a liver-heart separation algorithm has
to be applied to prevent oversegmentation [3]. In particular,
a combination of conventional and specific techniques is
applied to obtain the initial solution: liver-heart separation,
nonlinear diffusion, 3D edge detection, and morphologi-
cal postprocessing. First, a liver-heart separation surface is
computed following [3]. The segmentations of the lungs are
calculated. For each coronal slice, a minimal length curve is
found, which connects the bottom of the right lung lobe with
the bottomof the left lung lobe.The set of these curves defines
the liver-heart separation surface. Then, the target image is
filtered using a nonlinear diffusion filter with selection of the
stopping time [24].The filtered image is similar to a piecewise
smooth model. Histogram analysis, 3D edge detection, and
the liver-heart separation surface are applied to the filtered

image, which produces a partition in isolated regions. The
segmentation is followed by various postprocessing steps in
which the size (largest organ) and the location (mostly on
the right side) are used to determinate the initial solution.We
denote this initial segmentation as 𝑆0.

2.2. Segmentation Method. Both the probabilistic atlas and
the multiatlas segmentation run a segmentation method
based on minimising a pseudo-Boolean function by using
a graph-cut technique. A conditional random field (CRF)
model [25] is used to incorporate terms for appearance and
shape, which are estimated from the training atlases. Other
authors have previously used this framework [23, 26, 27].
Our method incorporates the following differences: (a) a
generative appearance model based on the intensity from
each pixel and its neighborhood, (b) a label prior probability
which is estimated using a majority voting rule, and (c) a
spatial regulariser that minimises the surface of separation
between two different labels using a Finsler metric [28].

Consider a set of𝑁 training atlases for a ROI with binary
labelling {𝐴

𝑖
}
𝑖=1,...,𝑁

= {𝐼
𝑖
, 𝑆
𝑖
}
𝑖=1,...,𝑁

and a target image 𝐼 with
initial solution 𝑆

0, where 𝐼𝑖 : Ω𝑖 ⊂ R𝑛 → R, 𝑛 = 3,
and 𝑆𝑖 : Ω𝑖 ⊂ R𝑛 → {0, 1} are the labelled maps. In
the labelled images, object pixels are labelled as 𝑆(𝑥) = 1

background pixels as 𝑆(𝑥) = 0. Let Φ
𝑖
: Ω → Ω

𝑖
be

the spatial mapping from the target image coordinates to
the coordinates of the 𝑖th training subject. For simplicity,
we assume that {Φ

𝑖
}
𝑖=1,...,𝑁

have been precomputed using a
pairwise registration procedure.This assumption allows us to
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shorthandA = {𝑆
𝑖
= 𝑆
𝑖
∘ Φ
𝑖
, 𝐼
𝑖
= 𝐼
𝑖
∘ Φ
𝑖
}
𝑖=1,...,𝑁

as the training
set into the common coordinates.

The segmentation of an image 𝐼, based on image intensi-
ties and prior knowledge, is computed by the minimisation
of a discrete energy function:

𝑆
∗
= argmin

𝑆

𝐸
A
(𝑆) , 𝐸

A
(𝑆) = 𝐸

A
𝐵
(𝑆) + 𝐸

𝐹 (𝑆) , (1)

where the term 𝐸
A
𝐵
(𝑆) is derived fromA using the framework

of Bayesian estimation theory and 𝐸𝐹(𝑆) is associated with
an image-based Finsler metric. We consider 𝑆 to be a discrete
randomfieldwith a neighbourhood systemE, which is the set
of edges connecting variables in the random field. The CRF
model is defined by unary and pairwise potentials:

𝐸 (𝑆) = ∑

𝑥∈Ω

𝜓
𝑥 (𝑆 (𝑥) ; 𝐼,A) + ∑

𝑥,𝑦∈E

𝜓
𝑥𝑦
(𝑆 (𝑥) , 𝑆 (𝑦) ; 𝐼) . (2)

The unary potentials of the CRF model are defined as the
negative log of the likelihood of a label being assigned to a
pixel. It is computed from an appearance model and a label
prior. The pairwise edge potentials of the CRF take the form
of a contrast-sensitive Potts model.

The Unary Potentials. The Bayesian formulation allows the
incorporation of prior information about the shape and
appearance of the structures to be segmented. To find
the maximum, a posteriori probability (MAP) estimation
is equivalent to minimising the following energy function
where the Bayes theorem is applied:

𝐸
A
𝐵
(𝑆) = − log (𝑝 (𝑆 | 𝐼;A)) = − log(

𝑝 (𝐼 | 𝑆;A) 𝑝 (𝑆;A)

𝑝 (𝐼;A)
) .

(3)

We assume that the observed intensities of 𝐼 are indepen-
dent random variables. The image likelihood 𝑝(𝐼 | 𝑆;A, 𝑆𝑘)

can then be written as a product of the likelihoods of the
individual pixels

𝑝 (𝐼 | 𝑆;A) = ∏

𝑥∈Ω

𝑝 (𝐼 (𝑥) | 𝑆 (𝑥) ;A) . (4)

In general, the intensity distribution is modelled by a
mixture ofGaussians [19, 20]. Alternatively, we use aGaussian
distribution for each pixel and for each label [18, 21]:

𝑝 (𝐼 (𝑥) | 𝑆 (𝑥) = 𝑙;A)

=

exp (−(𝐼(𝑥) − 𝜇
𝑙 (𝑥))
2
/2𝜎
2

𝑙
(𝑥)) /𝜎𝑙 (𝑥)

∑
𝑗∈{0,1}

exp (−(𝐼 (𝑥) − 𝜇
𝑗 (𝑥))
2

/2𝜎
2

𝑗
(𝑥)) /𝜎𝑗 (𝑥)

,

(5)

where 𝑙 ∈ {0, 1}. We estimate the statistical parameters 𝜇
𝑙
(𝑥)

and 𝜎
2

𝑙
(𝑥) from the registered atlases as follows:

𝜇
𝑙 (𝑥) =

∑
𝑖∈𝑄𝑙(𝑥)

𝐼
𝑖 (𝑥)

#𝑄𝑙 (𝑥)
,

𝜎
2

𝑙
(𝑥) =

∑
𝑖∈𝑄𝑙(𝑥)

(𝐼
𝑖 (𝑥) − 𝜇

𝑙 (𝑥))
2

#𝑄
𝑙 (𝑥) − 1

,

(6)

where 𝑄
𝑙
(𝑥) = {𝑖 | 𝑆

𝑖
(𝑥) = 𝑙}. The means and variances

are estimated using a variable number of samples #𝑄
𝑙
(𝑥). To

overcome bias in the statistical maps, they are smoothed by
means of linear diffusion with Neumann boundary condi-
tions:

𝜇𝑙 (𝑥) = ℎ
𝜎𝑠
(𝑥) ∗

∑
𝑖∈𝑄𝑙(𝑥)

𝐼
𝑖 (𝑥)

#𝑄
𝑙 (𝑥)

,

𝜎
2

𝑙
(𝑥) = ℎ

𝜎𝑠
(𝑥) ∗

∑
𝑖∈𝑄𝑙(𝑥)

(𝐼𝑖 (𝑥) − 𝜇
𝑙 (𝑥))
2

#𝑄𝑙 (𝑥) − 1
,

(7)

where ∗ denotes the convolution operator and ℎ𝜎𝑠
(𝑥) is a

Gaussian mask, with 𝜎𝑠 as the scale parameter [29], which is
a tunable parameter.

The label prior probability 𝑝(𝑆;A) models the joint
probability of all pixels in a particular label configuration.
Instead, we assume that the prior probability that a pixel 𝑥
has label 𝑙 only depends on its position:

𝑝 (𝑆;A) = ∏

𝑥∈Ω

𝑝 (𝑆 (𝑥) ;A) . (8)

For each pixel 𝑥 and each label 𝑙 ∈ {0, 1}, we define

𝑝 (𝑆 (𝑥) = 𝑙;A) =
#𝑄
𝑙 (𝑥)

𝑁
. (9)

The image likelihood and label prior terms are combined
to define the unary potentials 𝜓

𝑥
(𝑆(𝑥); 𝐼,A):

𝜓
𝑥 (𝑆 (𝑥) ; 𝐼,A)

= − log(
𝑝 (𝐼 (𝑥) | 𝑆 (𝑥) ;A) 𝑝 (𝑆 (𝑥) ; 𝐼,A)

𝑝 (𝐼 (𝑥))
) .

(10)

Spatial Regularisation. Following the work of Kolmogorov
and Boykov [28, 30], the smoothness term 𝐸

𝐹 of the energy
function is defined from a Finsler metric. These authors
decomposed the energy into 𝐸

𝑅
and 𝐸

𝑓
with weights 𝜆

1
, 𝜆
2
∈

R; that is,

𝐸
𝐹 (𝑆) = 𝜆

1
𝐸
𝑅 (𝑆) + 𝜆

2
𝐸
𝑓 (𝑆) . (11)

The first part minimises the segmentation surface by a
Riemannian metric, and the second one takes into account
the orientation of the segmentation surface in the metric.
We consider that the isotropic Riemannian metric from the
image is defined by𝐷(𝑥) = 𝑔(‖∇𝐼(𝑥)‖)I, where I is an identity
matrix, 𝑔(𝑥) = (exp(−𝑥/𝛾))1/3, and 𝛾 is estimated as the
average of ‖∇𝐼(𝑥)‖. The pairwise potentials are defined by

𝜓
𝑥𝑦 (𝑆 (𝑥) , 𝑆 (𝑦) ; 𝐼)

= 𝜆
1𝜔
𝑅

𝑥
(𝑦) (1 − 𝑆 (𝑥)) 𝑆 (𝑦)

+ 𝜆2𝜔
𝑓

𝑥
(𝑦) (𝑆 (𝑥) (1 − 𝑆 (𝑦)) − 𝑆 (𝑦) (1 − 𝑆 (𝑥))) ,

(12)

where 𝜔𝑅
𝑥
(𝑦) = 𝑔(‖∇𝐼(𝑥)‖)/‖𝑥 − 𝑦‖ and 𝜔

𝑓

𝑥
(𝑦) is assigned by

the dot product between ∇𝐼(𝑥) and the vector defined by 𝑥

and 𝑦.
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Therefore, the proposed model is characterised by a
pseudo-Boolean function defined on unary and pairwise
potentials, and the optimal labelling is determined by apply-
ing the min-cut/max-flow algorithm of [31].

2.3. Obtaining the Coarse Segmentation. The coarse seg-
mentation 𝑆𝐶 is used to define the domain of nonrigid
registrations and similarity measures of the atlas selection.
𝑆𝐶 is obtained using a probabilistic atlas. We observed that
𝑆𝐶 improves the performances of themultiatlas segmentation
with respect to the initial solution, 𝑆0, or the conventional
approach (i.e., without defining the domain using binary
masks for registering and atlas selections) [32].

In a probabilistic atlas, the information from atlases is
usually combined into a generative model in a common
coordinate system. In this paper, an atlas is selected as a
reference to which all atlases are then coregistered using a
particular registration method [17]. An affine registration
is applied for spatial normalisation. The principle that we
have adopted for spatially normalising transformations is that
these transformations should align the anatomical structures
with low computational effort. We only expect a coarse
segmentation of the target image that improves the results
of the multiatlas segmentation. For this purpose, the affine
transformations are sufficient. In general, the affine registra-
tion is performed with intensity-based similarity measures.
Because we have an initial solution (𝑆0) and because iterative
segmentation-registration approaches perform better than
a single propagation of the probabilistic atlas [20], we use
a fast affine registration based on the alignment of the
labelled images, where its parameters are calculated using
the geometric moments of the labelled images [33, 34]. The
atlases are coregistered using the atlas-labelled images. A
manual segmentation is selected as a reference, and the atlases
are coregistered. Next, the statistical parameter spatial maps
of the probabilistic atlas are calculated using (7) and (9).

Due to the complex dependencies between the unknown
segmentation, the target image, and the registration param-
eters, this problem is simplified using an EM framework
[35]. The E-Step captures the posterior probability of the
structure depending on the registration, and the M-Step
updates the registration parameters [20]. A coarse segmen-
tation is obtained using an iterative method of registration-
segmentation. Given an initial solution of the ROI (𝑆

0
)

belonging to the target image, {𝐼, 𝑆0} are aligned into the
selected atlas as a reference using the same affine transforma-
tionmethod that was used to construct the probabilistic atlas.
Although the atlases are coregistered into the target image in
the segmentation method (see Section 2.2), there is no loss
of generality in assuming that {𝐼, 𝑆

𝑘
} are aligned into the nor-

malised atlases using affine transformations. A segmentation
of 𝐼 is computed by minimising our energy function in (2),
which is based on the statistical parameter spatial maps of the
probabilistic atlas. The resulting segmentation is again used
for registering {𝐼, 𝑆1} into the selected atlas as a reference.

This process converges with a few iterations. In each
iteration, the centroid and the axes of the structure to be
segmented are better estimated, and thus, the registration

between {𝐼, 𝑆
𝑘
} and the coregistered atlases is less biased,

which also implies an improvement in the segmentation.
Certainly, there is a feedback effect between the affine
registration and the labelling using the minimisation of the
energy function. Finally, an inverse affine transformation is
applied to return the segmentation to the native space of the
target image.

2.4.Multiatlas Segmentation. Given the coarse segmentation,
a multiatlas approach improves the segmentation with higher
accuracy. Not all of the atlases need to be registered into the
ROI of the target image [9, 12]. An atlas selection framework
is required to select the atlases that best propagate their
labels. Several methods to rank atlases have been tested
[9, 36]. These methods are generally based on a similarity
measure between each atlas with respect to the target image.
Other criteria, which are not based on the similarity between
images, are not considered in this study (e.g., the age of the
patients in the medical image analysis). The best strategy
as a trade-off between reliability and computational cost
consists of registering the target image into a reference in
which the atlases were previously registered. This approach
requires only one registration during runtime. Most often,
the ranking is performed using an intensity-based similarity
measure computed between the target image and each atlas.
We propose using the DICE coefficient [37] as a similarity
measure between an aligned coarse segmentation of the target
image and each aligned atlas-labelled image.The above affine
registration, which is based on geometric moments of the
labelled images, is used for the alignment of images because it
was previously used for calculating the coarse segmentation
and because it is now also employed for the atlas selection.

After the atlases are ranked, the number of the selected
atlases is required. Aljabar et al. [9] showed that, given an
ordered list of atlases, the accuracy of the final segmentation
rapidly increases to a maximum level followed by a gradual
decline according to the number of fused atlases. This result
indicates that a fixed number of atlases can be determined for
each application.

Nonrigid Registration. We have chosen a technique based on
the maximisation of an intensity-based similarity measure
in combination with a deformation field parameterised by
cubic B-splines [38]. Klein et al. [39] demonstrated that for
some intensity-based similarity measures, the optimisation
converges to the solution when a very small number of ran-
dom samples of intensity pairs are used. The flexibility of the
control point grid also allows for the introduction of a binary
mask image, in which only the nonrigid transformation is
applied. Here, this binary mask is defined using a dilated
version of the coarse segmentation, 𝑆𝐶. The dilation is used
to include borders of the anatomical structure and of some
surrounding tissues.

Given a target image, the selected atlases are first aligned
into the target image using the above affine registration.These
affine parameters are calculated with the coarse segmentation
of 𝐼, 𝑆

𝐶
, and the corresponding atlas-labelled images. This

step is faster than the rest of the nonrigid registration. Next,
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a multiresolution scheme is used in the nonrigid registration
step to avoid local minima.

Label Fusion Method. Several methods have been proposed
to combine the propagation segmentations of the selected
atlases into a single segmentation.Thesemethods include the
majority voting rule [11], STAPLE [22], or the minimisation
of an energy function with intensity and prior terms [23].
In this work, we consider a segmentation method that uses
graph cuts to optimise a discrete energy function. Given
the registered atlases to the target image, a statistical model
of appearance and shape is computed with (7) and (9).
Subsequently, a graph-cut technique is used to minimise the
energy function defined in (2), and the consensual segmen-
tation is obtained from the graph cut [23]. The difference
with the segmentation based on the proposed probabilistic
atlas is that the fusion method does not require iterations
of registration-segmentation. Now, the statistical parameter
spatial maps are not biased because the selected atlases are
considered to be better registered into the target image.
Therefore, given the set of selected registered atlases into
the target image, the statistical parameter spatial maps are
calculated, and a consensual segmentation is obtained by 𝑆∗ =
argmin

𝑆
(𝐸

A󸀠

𝐵
(𝑆) + 𝐸

𝐹
(𝑆)) using graph cuts.

3. Experiments with Liver CT Data

Theatlases and the test datawere taken fromapublic database
for liver segmentation [40] (http://www.sliver07.org/). We
used this public database because it allows us to compare our
approach to a large number of other segmentation methods,
including other atlas-based schemes [32]. A total of 30 images
were randomly divided into 20 images that were used for the
training set, and the remaining 10 images were used for the
test set. All of the CT images are enhanced with a contrast
agent and scanned in the central venous phase using diverse
scanners (machines with 4, 16, and 64 detector rows). The
pixel spacing varies from 0.55 to 0.88mm, and the interslice
distance varies from 1 to 3mm. Most images in this study
exhibited pathologies, including tumours, metastasis, and
cysts of different sizes.

To evaluate the quality of a given segmentation, we used
the following five error measures [40]: overlap error (𝑚1),
relative absolute surface difference (𝑚2), average symmetric
distance (𝑚3), root mean square symmetric distance (𝑚4),
andmaximum symmetric distance (𝑚5).Themain advantage
of using multiple measures rather than a single measure
is that different measures detect various aspects of the
segmentation quality. The problem of how to combine the
different measures to produce a ranking of the segmentation
results is solved by transforming the result of each error
measure to a common scale and averaging the resulting values
to obtain the final score [40]. Each measure is converted to a
scale ranging from 0 to 100 by

𝛼𝑗 (𝑋, 𝑌) = max(100 − 25
𝑚
𝑗 (𝑋, 𝑌)

𝑚̃
𝑗

, 0) , 𝑗 = 1, . . . , 5,

(13)

where𝑋 and 𝑌 represent the manual and automatic segmen-
tation binary images, respectively, 𝑚

𝑗
is an error measure,

and 𝑚̃
𝑗
is the corresponding reference value, which was

obtained by averaging the manual segmentations. A score of
one hundred points (𝛼

𝑗
= 100) is a perfect match with the

reference segmentation, and a score around 75 is equivalent
to human performance. The final score is the average of the
individual measure scores: 𝛼(𝑋, 𝑌) = ∑

𝑗=5

𝑗=1
0.2 ⋅ 𝛼

𝑗
(𝑋, 𝑌). To

compare our approach with other methods and applications,
the resulting segmentations were also measured using the
DICE coefficient.

3.1. Experiments with Ground Truth. The training atlases are
used for experimental validation in a leave-one-out fashion:
one atlas is used as the target image, and the other 19 are used
as training atlases. The manual segmentation of the target
image is used as the ground truth.This procedure is repeated
in all atlases that belong to the training set.

For the coarse segmentation and the atlas selection,
the atlases and the target image are first subsampled by a
factor of two in each dimension to reduce the computation
time. Preliminary experiments showed that using the full-
resolution data increased the computation times and negligi-
bly improved the results. However, the nonrigid registrations
of the atlases into the target image are performed within the
original resolution.

3.1.1. Setting the Probabilistic Atlas Parameters through Train-
ing. Three parameters of the probabilistic atlas are tuned: (a)
the scale parameter 𝜎

𝑠
of (7), (b) the multipliers 𝜆

1
and 𝜆

2
of

the energy function, and (c) the number 𝑘 of iterations in (1).
Twenty leave-one-out segmentations on the training atlases
are performed to determine the tunable parameters. These
parameters are varied in certain ranges, and their effects are
measured by the overlap between the resulting segmentation
and the ground truth. The DICE coefficient is selected as the
measure of the segmentation overlaps. In our experiments, 𝑘
varies from 1 to 10. Because 𝜎

𝑠
and themultipliers are coupled

together, an iterative adjustment is used. We observed that
the Riemannian metric is more influential than the surface
orientation term in the optimisation process. Therefore, 𝜆1
is tuned first, and then 𝜆2 is adjusted. Considering 3D grid
graphs with a 6-neighborhood system in the CRF model,
𝜎𝑠 = 1, 𝑘 = 1, 𝜆2 = 0, and ∇𝐼(𝑥) are calculated by
Gaussian derivatives at a scale of 1; 𝜆1 is varied, and DICE
is used to detect the optimal value (see Figure 2(a)), which is
tuned with 𝜆1 = 10. With a 6-neighborhood system, ∇𝐼(𝑥)
is easily decomposed into 𝜔

𝑓

𝑥
(𝑦) and 𝜆2 can take positive or

negative values due to the orientation of ∇𝐼(𝑥). Indeed, the
grey level of the liver may be brighter than in other adjacent
tissues (the majority of the time), but it may also become
darker in other areas (e.g., liver-kidney contact). Figure 2(b)
presents the trend of 𝜆

2
(𝜎
𝑠
= 1, 𝑘 = 1, 𝜆

1
= 10), and

the flow term shows the least impact on the success of the
segmentation. With fixed values of 𝜆

1
= 10 and 𝜆

2
= 4, 𝜎

𝑠

and 𝑘 are tuned to 2 and 4, respectively (Figure 2(c)). The
tuning process is repeated with 𝜎

𝑠
= 2. The parameters did
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Figure 2: Tuning of parameters 𝜆
1
, 𝜆
2
, and 𝜎

𝑠
. (a) The distributions of DICE(𝑆

𝑅
, 𝐿
𝑖
) with the values of 𝜆

1
, where 𝑆

𝑅
is the reference

segmentation and 𝐿
𝑖
is the automatic segmentation obtained with 𝜆

1
(𝜎
𝑠
= 1, 𝑘 = 1, 𝜆

2
= 0). (b) The distributions of DICE(𝑆

𝑅
, 𝐿
𝑖
) with

the values of 𝜆
2
(𝜎
𝑠
= 1, 𝑘 = 1, 𝜆

1
= 10). (c) The average DICE in segmenting all target images for 𝜎

𝑠
and for each iteration (𝜆

1
= 10, 𝜆

2
= 4).

not vary substantially (𝜆1 = 8, 𝜆2 = 4), and the performances
were virtually the same.

The experimental results show the utility of perform-
ing an iterative scheme of segmentation-registration for
obtaining 𝑆𝐶 (see Figure 2(c)). Compared to the classical

registration-segmentation with a probabilistic atlas (𝑘 = 1),
the iterativemethod given in (1) performs better for 𝑘 > 1 due
to the more reliable estimation of the posterior probabilities,
which are produced by a better registration, between the
probabilistic atlas and the target image. We also observe the
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effect of spatial regularisation {𝜇(𝑥, 𝑙), 𝜎2(𝑥, 𝑙)}
𝑙∈{0,1},𝑥∈Ωref

ofA
by linear diffusion. With the linear diffusion, the parameter
estimations of the appearance model are less biased and the
iterative process is convergent and stable, otherwise (𝜎

𝑠
= 0)

it is not.
Furthermore, we have experimentally observed that if our

probabilistic atlas does not have the appearance model as in
[15], the numerical scheme does not work because there is a
weak feedback effect between segmentation and registration.
Indeed, the intensities of the target image are only used in the
regularisation term of the optimisation process; that is, the
pairwise potentials are only updated in each iteration of the
EM framework. Therefore, there are no substantial changes
in the new segmentation, and, consequently, the parameters
of the affine registration are not varied.

3.1.2. The Ranking of Atlases for the Multiatlas Segmentation.
Any ranking of atlases based on similarity measures requires
a spatial normalisation step. In this paper, the atlases and the
target image are registered into a common reference using
affine transformations. An atlas of the training set is chosen
as a reference for the spatial normalisation [41].

Three criteria for ranking the atlases are tested: (a) a
random order that does not require any registration task,
(b) using Mutual Information (MI) as in [9], and (c) our
method based on a similarity measure between each atlas-
labelled image and 𝑆

𝐶
with DICE coefficient. After the atlases

are ranked, they are registered into the target image. The
same nonrigid registration method is applied for the three
ranking criteria. All nonrigid registrations are computed
using Elastix [42], which is an available public package for
medical image registration. This framework is based on the
techniques described in [38, 39, 43]. We employ a four-level
multiresolution scheme. In our experiments, the B-Spline
grid spacings are 64, 32, 16, and 8mm in all directions for
the four respective resolutions.The negativeMI is used as the
cost function, which is implemented according to [43]. For
the optimisation of the cost function, an iterative stochastic
gradient descent optimiser is used [39]. In each iteration,
2000 random samples are used to calculate the derivative
of the cost function. Random samples are acquired from a
domain defined by a binary mask, which is set by a dilated
version of 𝑆

𝐶
.

We denote by Φ
𝑖
the combined transformation of the

affine and nonrigid registrations from the domain of 𝐼 to 𝐴
𝑖
.

Figure 3 shows the relationship between the individual atlases
and their performance in segmenting the target images.
The results are shown in two graphs: (a) the distributions
of 𝛼(𝑆𝑅, 𝑆𝑖) for a given rank (random, MI, proposed, or
optimal), where 𝑆𝑅 is the ground-truth segmentation of the
target image, 𝑖 is the order of atlas in the database from
the similarity to the target image, and 𝑆

𝑖
= 𝑆
𝑖
∘ Φ
𝑖
is the

corresponding deformed labelled image and (b) the average
of 𝛼(𝑆

𝑅
, 𝑆
𝑖
) or DICE(𝑆

𝑅
, 𝑆
𝑖
) against the rank where each

plotted point shows the average score or DICE for all of the
target images at a given rank.The optimal ranking is obtained
by sorting in descending order according to the score of
each label using 𝑆

𝑅
. Our atlas selection is the most similar

to the optimal ranking. Although the segmentations are not
fused in this experiment, there are relationships between the
atlas rankings and the segmentation accuracies derived from
fusing these selected atlases (which will be shown in the
following experiment).

3.1.3. Stopping Criterion. The following experiment describes
a test of the effect of varying the number of selected atlases
for generating the consensual segmentation. Given a rank of
atlases and a number of selected atlases, the single consensual
segmentation is computed. The same method of nonrigid
registration and label fusion are applied for all samples
and for all rankings. The registrations are performed under
the same conditions as in the previous experiment. The
label fusion method is based on minimising our energy
function, as explained in Section 2.4. Figure 4 shows how
the segmentation accuracy varies with the number of fused
atlases. In the upper part of the figure, each box and whiskers
in the upper part of the graph illustrate the distributions
of 𝛼(𝑆𝑅, 𝐿 𝑖) for each criterion depending on the ranking of
atlases. 𝐿 𝑖 is a binary image of the target image obtained by
the fusionmethodwith the first 𝑖 selected atlases. In the lower
part of the figure, each plotted point shows the average score
or DICE coefficient in segmenting all of the target images
for the number of fused atlases. The general pattern shows
a sharp initial increase up to a maximum score followed
by a gradual decline, as in [9]. The decrease in the score
when two atlases are fused is due to increased uncertainty.
Discrimination with only two registered atlases cannot rely
on other sources in doubtful cases. We also observe that the
score system is more sensitive than the DICE coefficient. The
DICE coefficient does not exhibit a decrease when two atlases
are fused.

Our approach requires 6 or 7 atlases for obtaining the
maximum score and DICE (𝛼 = 76.3 ± 8.6 and DICE =

0.973 ± 0.007). The other atlas selections (MI and ran-
dom) require a greater number of atlases for obtaining the
maximum score (MI: 9, random: 12), and their scores are
worse (MI: 𝛼 = 74.50 ± 10.9 and DICE = 0.972 ± 0.01,
random: 𝛼 = 74.80 ± 9.5 and DICE = 0.972 ± 0.008).
However, no significant improvements are obtained between
our proposedmethod and the other atlas selections. Only the
effect of atlas selectionwas evaluated. Recall that themethods
of registration and fusion are applied in the same manner
in all atlas selection frameworks. Statistical significance is
evaluated using a paired two-sided Wilcoxon test, where a
𝑃 value of < 0.05 indicates significant improvement. Given
a fixed number of atlases equal to 6 and compared to our
proposal, the 𝑃 values are 0.456 and 0.297 for the MI-based
and random-based atlas selections, respectively.

3.1.4. Comparison with a Conventional Multiatlas Segmenta-
tion. The atlas database from Heimann et al. [1] is used for
comparing several methods for liver segmentation from CT
images. One of the presented methods is based on multi-
atlas segmentation [32]. A fixed number of twelve selected
atlases are registered to the target image using an affine
transformation followed by aB-spline approachwithmultiple
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Figure 3: Relationship between the individual atlases and their performance in segmenting the target image. The upper part of the graph
illustrates the scoring distribution in segmenting by label propagation for a given rank (random, MI, proposed, or optimal) and for an
individual atlas, 𝛼(𝑆

𝑅
, 𝑆
𝑖
). The lower part of the figure shows the average scoring and the average DICE on all target images against the

rank.

resolutions.The cost function used for the registrations is the
negative MI. Using this approach, we implement a conven-
tional multiatlas segmentation. The atlases are registered to
the entire target image as in [32], and the ranking of the atlases
is performed according to [9]. We compare this approach
with our proposed approach. Our proposed label fusion is
used in both approaches.The upper part of Figure 5 illustrates
the distributions of𝛼(𝑆𝑅, 𝐿 𝑖)with the number of fused atlases.
The lower part of the figure shows the average scores and
DICE in segmenting all of the target images for the number

of fused atlases and for each approach. Setting the number of
fused atlases to 6, the conventional approach provides poorer
results (𝛼 : 61.5 ± 25.1, DICE : 0.957 ± 0.037) than the
proposed approach (𝛼 : 76.3 ± 8.6, DICE : 0.973 ± 0.007).
For all cases, the 𝑃 values are always less than 0.05, indicating
a significant improvement between our approach and the
conventional one for any number of fused atlases.

3.2. Results. The performances of the three stages (initial
solution, coarse segmentation, and label propagations) are



10 Computational and Mathematical Methods in Medicine

Random MI Proposed Optimal

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

𝛼
(S

R
,L

i)

(a)

0 2 4 6 8 10 12 14 16 18 20
60

62

64

66

68

70

72

74

76

78

80

Number of fused atlases

Mean score evolution depends on the number of fused atlases

0 2 4 6 8 10 12 14 16 18 20
0.95

0.955

0.96

0.965

0.97

0.975

Number of fused atlases

Mean DICE evolution depends on the number of fused atlases

𝛼
(S

R
,L

i)

D
IC

E(
S
R
,L

i)

Random
MI

Proposed
Optimal

Random
MI

Proposed
Optimal

(b)

Figure 4: Relationship between the segmentation accuracy and the number of fused atlases.The upper part of the graph illustrates the scoring
distribution in segmenting by label propagation for a number of fused atlases depending on the type of rankings, 𝛼(𝑆

𝑅
, 𝐿
𝑖
). The lower part of

the figure shows the mean scoring and DICE in all target images against the different number of fused atlases and for different atlas selection
criteria.

evaluated by computing {𝑚
𝑗
, 𝛼
𝑗
}
𝑗=1,...,5

for the case of liver
segmentation. Table 1 presents the mean values and standard
deviations for each step of the measures and scores of the
segmentations of the target images.TheDICE coefficients are
0.910 ± 0.024, 0.943 ± 0.016, and 0.973 ± 0.007 for the initial
solution, coarse segmentation, and multiatlas segmentation
method, respectively, and the scores are 34.4 ± 14.3, 56.3 ±

15.1, and 76.3 ± 8.6 (see Figure 6). The evaluation of the test
images is performed by an external team by submitting the
results to the website as in [1].The scores of the test images are

lower than that of the training set: 70.5±16.4 (test), 76.3±8.6
(training).

Figure 7 shows slices from two cases, drawing the result
of themethod (in red) and themanual segmentation (in blue)
from the training database. Figure 8 shows two cases with
tumours from the test database. The proposed approach is
shown to be robust for the first case but not for the second
case when tumours appear in the boundary of the liver.
Figure 8(b) shows the worst score of all images. The results
listed at http://www.sliver07.org/ show that our approach is
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Table 1: Average values of the measures and scores for all 20 training images and 10 test images: volumetric overlap error (𝑚
1
), relative

absolute volume difference (𝑚
2
), average symmetric surface distance (𝑚

3
), root mean square symmetric surface distance (𝑚

4
), andmaximum

symmetric surface distance (𝑚
5
).

Type 𝑚
1
[%] 𝑚

2
[%] 𝑚

3
[mm] 𝑚

4
[mm] 𝑚

5
[mm] 𝛼()

Initial
Solution

Measures 16.5 ± 3.8 8.6 ± 5.8 3.6 ± 1.6 7.1 ± 3.9 50.2 ± 24.8
Scores 37 56 21 19 39 34.4

Affine prob.
Atlas

Measures 11.2 ± 2.8 2.3 ± 1.8 2.2 ± 0.9 4.4 ± 1.9 35.8 ± 15.5
Scores 56 88 44 40 53 56.3

The proposed approach
20 training images

Measures 5.2 ± 1.2 0.9 ± 1.2 1.0 ± 0.4 2.2 ± 1.1 26.9 ± 10.7
Scores 79 91 76 70 65 76.3

The proposed approach
10 training images

Measures 7.6 ± 3.2 −0.5 ± 3.9 1.3 ± 0.7 2.9 ± 1.8 24.7 ± 10.7
Scores 70 87 68 60 68 70.5
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Figure 5: Comparison between a conventionalmultiatlas segmentation and the proposed approach depending on the number of fused atlases.
(a) The distribution of 𝛼(𝑆

𝑅
, 𝐿
𝑖
) with 𝑆

𝑅
is the ground-truth segmentation, and 𝐿

𝑖
is the consensual segmentation with the first 𝑖 atlases. (b)

The distributions of 𝛼(𝑆
𝑅
, 𝐿
𝑖
) for the proposed approach. (c)The average scores in segmenting all target images for the number of fused atlases

and for each approach. (d) The average DICE in segmenting all target images for the number of fused atlases and for each approach.

comparable to the performance of human experts and other
recently published results.

The method is implemented with the ITK library, and
some procedures are parallelised with OpenMP. The major
computational cost is clearly the multiatlas segmentation
method. However, the low cost of multicore processors is
making this approach faster. The average computational
times are 17.16 ± 6.18 s and 33.29 ± 9.27 s for the initial solu-
tion and coarse segmentation (including the initial solution),
respectively. The average computational time for registering
one atlas is 34.63 ± 2.93 s. When fusing six atlases into the

target image, the total runtime to segment one sample is
261.35 ± 18.6 s ([Dual CPU] Intel Xeon E5520 @ 2.27GHz).

4. Discussion and Conclusions

An atlas-based segmentation framework is proposed that
combines low-level operations and a fast probabilistic atlas
with multiatlas segmentation. The proposed combination
provides high accuracy in segmentation due to registrations
and atlas selection based on ROIs and coarse segmentations.
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(a)

(b)

(c)

Figure 6: Resulting segmentations for a representative patient from the training database. From left to right, a sagittal, coronal, and axial slice
for the (a) initial solution, (b) coarse segmentation, and (c) multiatlas segmentation.The outline of the ground-truth segmentation is in blue;
the outline of the segmentation of the method described in this paper is in red.

Our approach shares the following common elements
between the proposed probabilistic atlas and the multiatlas
segmentation: (a) the spatial normalisation and (b) the
segmentation method. Spatial normalisation is used for both
constructing the probabilistic atlas and for obtaining the atlas
selection for each ROI. The segmentation method is based
on standard CRF models, allowing for the incorporation of
appearance and shape in a single unified manner.

Specifically, ROIs of the target image are obtained using
low-level operations. A probabilistic atlas is constructed
for each ROI using affine registrations based on geometric
moments from labelled images. The label prior probability
was estimated by voting, and the image likelihood was mod-
elled using independent Gaussian distributions for each pixel
and for each label. To overcome bias in the statistical parame-
ter spatial maps of the probabilistic atlas, they were smoothed
using spatial linear diffusion. Other statistical models can
be used as in [23], where the image likelihood is approx-
imated using a Parzen window estimator. An advantage

of our approach is that there is only one probabilistic atlas; it
is not necessary to recalculate the statistical parameter spatial
maps for each target image.

Given an initial solution in a ROI using low-level opera-
tions, an EM framework is used to obtain a coarse segmen-
tation. In each iteration, a new segmentation is computed
by minimising a discrete energy function, and this labelling
is again aligned with the probabilistic atlas by geometric
moments belonging to labelled images. The energy function,
which is applied for segmentation, combines the maximi-
sation of the posterior probability and the minimal area of
the separation surfaces between the object and background
under an image-based Finsler metric. The resulting energy
function was globally minimised using graph cuts. A few
iterations were sufficient for this process to reach conver-
gence. We experimentally observed that the iterative method
outperforms the classical approach of a single registration and
obtaining the segmentation using the probabilistic atlas. We
also observed that the effect of spatial regularisation of the



Computational and Mathematical Methods in Medicine 13

(a)

(b)

Figure 7: From left to right, a sagittal, coronal, and axial slice for an easy case (a) and for a difficult case (b). The outline of the ground-
truth segmentation is in blue, and the outline of the segmentation of the method described in this paper is in red. The outline of the lung
segmentations is also illustrated in green (left lung) and yellow (right lung).

statistical parameter spatial maps of the probabilistic atlas by
linear diffusion causes the process to converge within a few
iterations.

The computational time for obtaining the coarse segmen-
tation is low due to affine registrations based on the geometric
moments of the labelled images and the min-cut/max-flow
algorithm.

The coarse segmentation is employed in the next step
to define the registering mask and to obtain the rankings
of atlases that are more similar to the target image for each
ROI. Three aspects of the multiatlas approach were analysed:
image registration, atlas selection, and label fusion methods.
In image registration, we proposed aligning the selected
atlases to the target image by geometrical moments using
𝑆
𝐶
followed by a local deformation in the ROI. For atlas

selection, the DICE coefficient was used to rank the atlases.
Different atlas selection methods were compared. Although
our atlas selection framework is the most similar to the
optimum one and provides better segmentation results, the
improvements are not statistically significant with respect to
the other atlas selections. However, our complete approach
shows significant improvements relative to the conventional
framework for any number of fused atlases in liver segmenta-
tion. In label fusion, a standard CRF model is used for MAP
inference.

Comparing the segmentation results between different
published methods is always difficult. The quality of the

databases used for validation, the anatomical definition of the
structure, the quality of expert segmentations, the popula-
tions studied, and the different measures reported all make
it difficult to compare results. With these caveats in mind,
we compared our segmentation results with other approaches
that used the same database, that is, http://www.sliver07.org/
[40]. Maklad et al. [44] used blood vessel information to
segment the liver through the portal phase of an abdominal
CT dataset. This semiautomatic method requires a small
group of manual seeds. Their results are evaluated with an
overall score of 85.7, which is ranked as the best in this public
database. Peng et al. [8] presented another semiautomatic
method, which is a level set-based variational approach.Their
model is not restricted by training data and can be applied to
livers of any shape.They reported a score of 80±4. Ruskó et al.
[3] proposed a fully automaticmethod for liver segmentation.
Their method is essentially an advanced region growing and
performs with an average total score of 61 ± 21. Linguraru
et al. [45] presented an automated segmentation of livers.
An affine invariant shape parameterisation is combined with
a geodesic active contour and graph cuts. They reported a
score of 76 ± 6. Our method has higher scores than the
other automatic methods and close to those of the best
semiautomatic methods. Our results provide high accuracy
in automatic segmentation, and the computational time
depends on the level of accuracy requested by the user.
The results listed at http://www.sliver07.org/ show that our
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(a)

(b)

Figure 8: Large tumours in the boundary of the livers from the test database. From left to right, a sagittal, coronal, and axial slice for the two
worst cases, which present the worst scores. The outline of the ground-truth segmentation is in blue, and the outline of the segmentation of
the method described in this paper is in red. The outline of the lung segmentations is also illustrated in green (left lung) and yellow (right
lung).

approach is comparable to that of human experts and other
recently published results.

However, the issue of liver segmentation has only a
single ROI and does not show the full potential of the
proposed method. New problems that require two or more
regions of interest should be analysed. We have applied the
label fusion method to the hippocampal segmentation from
magnetic resonance imaging [46]. It is partially shown that
the proposed methods in this work are generic and could be
incorporated to other applications.
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