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Background: Sepsis-induced coagulopathy (SIC) denotes an increased mortality rate

and poorer prognosis in septic patients.

Objectives: Our study aimed to develop and validate machine-learning models to

dynamically predict the risk of SIC in critically ill patients with sepsis.

Methods: Machine-learning models were developed and validated based on two

public databases named Medical Information Mart for Intensive Care (MIMIC)-IV and

the eICU Collaborative Research Database (eICU-CRD). Dynamic prediction of SIC

involved an evaluation of the risk of SIC each day after the diagnosis of sepsis

using 15 predictive models. The best model was selected based on its accuracy and

area under the receiver operating characteristic curve (AUC), followed by fine-grained

hyperparameter adjustment using the Bayesian Optimization Algorithm. A compact

model was developed, based on 15 features selected according to their importance

and clinical availability. These two models were compared with Logistic Regression and

SIC scores in terms of SIC prediction.

Results: Of 11,362 patients in MIMIC-IV included in the final cohort, a total of 6,744

(59%) patients developed SIC during sepsis. The model named Categorical Boosting

(CatBoost) had the greatest AUC in our study (0.869; 95%CI: 0.850–0.886). Coagulation

profile and renal function indicators were the most important features for predicting SIC.

A compact model was developed with an AUC of 0.854 (95% CI: 0.832–0.872), while

the AUCs of Logistic Regression and SIC scores were 0.746 (95% CI: 0.735–0.755)

and 0.709 (95% CI: 0.687–0.733), respectively. A cohort of 35,252 septic patients

in eICU-CRD was analyzed. The AUCs of the full and the compact models in the

external validation were 0.842 (95% CI: 0.837–0.846) and 0.803 (95% CI: 0.798–0.809),

respectively, which were still larger than those of Logistic Regression (0.660; 95% CI:

0.653–0.667) and SIC scores (0.752; 95% CI: 0.747–0.757). Prediction results were
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illustrated by SHapley Additive exPlanations (SHAP) values, which made our models

clinically interpretable.

Conclusions: We developed two models which were able to dynamically predict the

risk of SIC in septic patients better than conventional Logistic Regression and SIC scores.

Keywords: sepsis-induced coagulopathy, dynamic prediction, machine learning, Logistic Regression, external

validation, model interpretation

INTRODUCTION

Sepsis, defined as life-threatening organ dysfunction caused by a
dysregulated host response to infection, remains the first leading
cause of mortality in critically ill patients (1, 2). Coagulopathy
is one of the major complications of sepsis, leading to a
higher risk of thrombosis, the deterioration of organ failure,
and an increased mortality rate (3–6). However, the usefulness
of anticoagulant therapies has not been confirmed in septic
patients (7, 8). Recent observational studies and subgroup
analyses of large-scale randomized controlled trials revealed that
anticoagulant therapies might result in a significant reduction
in mortality risk and improved outcome in septic patients with
coagulopathy (9–12). In contrast, anticoagulant therapies in
patients without coagulopathy should be avoided due to the
increased risk of bleeding with no survival benefit (11, 13).
Furthermore, some drugs commonly administered in septic
patients, such as linezolid and vancomycin, may alter coagulation
function through various mechanisms and should be used with
caution in patients with a high risk of coagulopathy (14). These
study results have heightened the need for early identification of
coagulopathy in septic patients in a timely way.

Sepsis-induced coagulopathy (SIC) criteria were developed
by members of the Scientific and Standardization Committee
(SSC) on Disseminated Intravascular Coagulation (DIC) of the
International Society of Thrombosis and Haemostasis (ISTH) in
2017 (15) (Supplementary Table 1). The criteria are a scoring
system designed to identify patients with “sepsis and coagulation
disorders.” SIC is defined as a score ≥ 4. It was found that the
mortality rate increased as the SIC score rose and exceeded 30%
at a score of 4 (15). Compared with DIC, SIC is more relevant for
the updated Sepsis-3 criteria (1, 16). In addition, observational
evidence has shown that SIC preceded DIC inmost cases (17, 18).
As a result, the new guideline in 2019 recommended that septic
patients with thrombocytopenia (platelet count < 150 × 109/L)
should be screened, first using SIC diagnostic criteria and then
using ISTH DIC diagnostic criteria (16). However, the SIC score
mainly serves as a diagnostic system; there is still a lack of reliable
predictive tools for SIC in clinical practice.

In recent years, the emergence of new machine-learning
algorithms has enabled us to predict disease events dynamically
based on huge and complicated clinical information. Advanced
machine-learning models can fit high-order relationships
between covariates and outcomes, and therefore, they excel
in the analysis of complex signals in data-rich environments
(19–22). The aims of this study were to develop and validate
to develop and validate machine-learning models for the early
dynamic prediction of SIC, and to assess the risk features by
interpreting the final model.

MATERIALS AND METHODS

Source of Data
We conducted this retrospective study based on two sizeable
critical care databases the Medical Information Mart for
Intensive Care (MIMIC)-IV (23) and the eICU Collaborative
Research Database (eICU-CRD) (24). The MIMIC-IV database
is an updated version of MIMIC-III and currently contains
comprehensive and high-quality data of patients admitted to
intensive care units (ICUs) at the Beth Israel Deaconess Medical
Center between 2008 and 2019. The other database, eICU-CRD,
is a multicenter database comprising de-identified health data
associated with over 200,000 admissions to ICUs across the
United States between 2014 and 2015. One author (QZ) obtained
access to both databases and was responsible for data extraction.
The study was reported according to the recommendations of the
Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) statement (25).

Selection of Participants
In MIMIC-IV, patients who fulfilled the definition of sepsis
between 2008 and 2019 were included. According to the
Sepsis-3 criteria, sepsis was defined as a suspected infection
combined with an acute increase in Sequential Organ Failure
Assessment (SOFA) score ≥ 2 (1). Patients with prescriptions
of antibiotics and sampling of bodily fluids for microbiological
culture were considered to have suspected infection. In line
with previous research, when the antibiotic was given first, the
microbiological sample must have been collected within 24 h;
when the microbiological sampling occurred first, the antibiotic
must have been administered within 72 h (26). Hourly SOFA was
evaluated based on the clinical and laboratory data. In eICU-
CRD, microbiology data were not well populated due to the
limited availability of microbiology interfaces; instead, infection
was identified according to documented diagnosis.

Only patients who were older than 18 years and stayed in the
ICU formore than 24 h were included. No patients were excluded
due to missing values. We made no attempt to estimate the
sample size of the study; instead, all eligible patients in MIMIC-
IV and eICU-CRD were included to maximize the statistical
power of the predictive model.

Outcome (SIC)
We annotated patients’ every day when the sepsis definition was
fulfilled with their current coagulation state according to the SIC
criteria, as recommended (16). Specifically, the worst daily values
of SIC-related indicators were extracted. Then daily repeated
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scoring was performed. A patient was annotated as SIC positive
if he or she had a SIC score ≥ 4 on that day.

Predictors of SIC
Clinical and laboratory variables were extracted during sepsis.
For some variables with multiple measurements, average
values were assessed. For the prediction of SIC, 88 variables
were collected (Supplementary Table 2), including patient
characteristics (age, gender, ethnicity, admission type), vital
signs (respiratory rate, blood pressure, heart rate, SpO2,
and temperature), laboratory data (blood gas, routine blood
analysis, liver function, renal function, and coagulation profile),
transfusion (red blood cells, platelets, and fresh frozen plasma)
and urine output. Comorbidities were also collected based on
the recorded International Classification of Diseases (ICD)-9
and ICD-10 codes, including hypertension, diabetes mellitus,
chronic obstructive pulmonary disease, congestive heart failure,
myocardial infarction, chronic kidney disease, leukemia,
stroke, cancer, and liver disease. Lastly, medications such
as heparin, antibiotics and vasopressors, continuous renal
replacement therapy (CRRT), and mechanical ventilation (MV)
were collected.

Statistical Analysis
Baseline characteristics on the first sepsis day were compared
between SIC and non-SIC groups in MIMIC-IV. Values are
presented as the means [standard deviations] (if normal) or
medians [interquartile ranges] (if non-normal) for continuous
variables, and total numbers [percentages] for categorical
variables. Comparisons were made using the Student t-test
or rank-sum test for continuous variables, and the Chi-
square test or Fisher’s exact test for categorical variables,
as appropriate.

As shown in Figure 1A, our model generated a continuous
prediction score based on the above-mentioned 88 variables
on each day when patients were diagnosed with sepsis. The
scores assessed the risk of SIC in the following day. Prediction
was not performed if SIC criteria were already fulfilled on
that day; when the patients recovered from SIC, our model
then restarted to predict if they still had sepsis. None of the
imputation methods were used for advanced boosting machine-
learning methods as they automatically handle missing values;
in contrast, missing values were imputed using the median
values for continuous variables or mode values for categorical
values when training other models. As shown in Figure 1B,
we preliminarily compared the prediction performance of 15

FIGURE 1 | Schematic illustration of the study design. (A) Design of dynamic prediction in our study. Daily assessment was performed from the time when sepsis was

diagnosed. If SIC criteria were not fulfilled, the risk of SIC the next day was predicted by our model. Prediction stopped when SIC was diagnosed, and restarted when

patients recovered from SIC. (B) Schematic illustration of model development. We compared the discrimination of 15 machine-learning models using 10-fold

cross-validation. The model with the best accuracy and greatest AUC was chosen. Fine-grained hyperparameter adjustment was performed using Bayesian

Optimization. Fifteen features were selected according to their SHAP values and clinical availability. A compact model was developed based on the selected features.

Lastly, these two models were validated in eICU-CRD. ICU, intensive care unit; SIC, sepsis-induced coagulopathy; SHAP, SHapley Additive exPlanations; MIMIC-IV,

Medical Information Mart for Intensive Care-IV; C.V., cross-validation; eICU-CRD, the eICU Collaborative Research Database.
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FIGURE 2 | Flow chart of patient selection.

algorithms using the PyCaret Python package (version 1.0.0),
an open-sourced, automated machine-learning workflow. The
assessment process was performed using 10-fold cross-validation.
Accuracy and area under the receiver operating characteristic
curve (AUC) were calculated on each fold and pooled to
evaluate each model. The algorithm with the highest accuracy
and the largest AUC was selected. Then, we performed fine-
grained hyperparameter adjustment for the potential model
using the Bayesian Optimization Algorithm. This algorithm is
an efficient constrained global optimization tool, which was
performed using the functions of the bayes_opt Python package
(version 1.2.0) (27). The optimized model was the best model
for SIC prediction in this study and was defined as the
full model.

The effects of features on prediction scores were measured
using the functions of the SHapley Additive exPlanations
(SHAP) Python package (version 0.32.1), which assessed the
importance of each feature using a game-theoretic approach
based on the validation set (28). We selected 15 features
which had great importance and were as easy as possible
to collect in the clinical setting (Supplementary Table 2). A
compact model was then trained for SIC prediction based
on the selected features. Although this model was not as
accurate as the full model, it might be more practical in
clinical settings.

External validation of the full and compact models was
performed in eICU-CRD. The median and 95% confidence
intervals of AUC were calculated using the Bootstrap
Resampling technique with 1,000 iterations. Conventional
Logistic Regression and the SIC scoring system were assessed to
predict the risk of SIC and were compared with our models in
both internal and external validations.

All analyses were performed using Python (version 3.7.6), and
p < 0.01 was considered statistically significant.

TABLE 1 | Performance of different models in internal validation.

Model Accuracy AUC

1 CatBoost Classifier 0.913 (±0.004) 0.841 (±0.025)

2 Light Gradient Boosting 0.912 (±0.005) 0.835 (±0.024)

3 Extreme Gradient Boosting 0.912 (±0.004) 0.837 (±0.025)

4 Gradient Boosting Classifier 0.911 (±0.005) 0.832 (±0.023)

5 Extra Trees Classifier 0.911 (±0.002) 0.819 (±0.032)

6 Random Forest Classifier 0.909 (±0.002) 0.760 (±0.022)

7 Ridge Classifier 0.908 (±0.003) 0.753 (±0.031)

8 Logistic Regression 0.908 (±0.002) 0.746 (±0.030)

9 K Neighbors Classifier 0.904 (±0.001) 0.611 (±0.040)

10 Ada Boost Classifier 0.902 (±0.003) 0.804 (±0.029)

11 Linear Discriminant Analysis 0.902 (±0.003) 0.796 (±0.027)

12 Multi-Level Perceptron 0.883 (±0.004) 0.754 (±0.022)

13 Decision Tree Classifier 0.861 (±0.003) 0.593 (±0.019)

14 SVM – RBF Kernel 0.859 (±0.004) 0.777 (±0.015)

15 Naive Bayes 0.805 (±0.005) 0.756 (±0.031)

Models are ordered according to their accuracy.

AUC, area under receiver operating characteristic curve; CatBoost, Categorical Boosting;

SVM, support vector machine; RBF, Radial Basis Function.

RESULTS

Baseline Characteristics
As shown in Figure 2, of 12,381 septic patients in MIMIC-
IV, 11,362 were included in the final cohort. A total of 6,744
patients developed SIC during sepsis, and 4,618 patients did not.
A cohort of 35,252 septic patients in eICU-CRD was included as
external dataset.

Variable values on the first day of sepsis in MIMIC-IV
were analyzed; the differences in characteristics were compared
(Supplementary Table 3). The SIC group had a higher rate of
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comorbidities, higher SAPS-II scores (44 [35, 54] vs. 37 [30, 45];
p < 0.001), higher SOFA scores (6 [4, 9] vs. 4 [3, 5]; p < 0.001),
longer prothrombin time (PT) (16.9 [14.3, 21.8] vs. 13.0 [11.9,
14.1]; p < 0.001), less urine output (790 [300, 1,545] vs. 1,205
[605, 2,015]; p < 0.001), higher rates of linezolid (2.9 vs. 1.7%; p
< 0.001), vancomycin (55.6 vs. 46.0%; p < 0.001), CRRT (5.0 vs.
0.6%; p< 0.001), vasopressors (46.8 vs. 23.2%; p< 0.001) andMV
(50.3 vs. 40.6%; p < 0.001), and higher 28-day mortality (27.0 vs.
10.8%; p< 0.001) than the non-SIC group. The length of hospital
stay was also longer in the SIC group than in the non-SIC group
(14.4 [7.9, 26.7] vs. 10.9 [6.5, 19.5], p < 0.001).

Comparison of 15 Models
Daily data were extracted, and 16,183 samples for prediction in
MIMIC-IV were created. Of these samples, 1,489 were labeled

as positive (SIC the next day), 14,694 were labeled as negative
(still non-SIC the next day). The prediction performances of
the various models are listed in Table 1. As shown, Logistic
Regression had an acceptable performance (accuracy: 0.908;
AUC: 0.746). Ensemble learning algorithms had better accuracy
and larger AUC than others, such as Categorical Boosting
(CatBoost) (accuracy: 0.913; AUC: 0.841), Light Gradient
Boosting (accuracy: 0.912; AUC: 0.835) and Random Forest
Classifier (accuracy: 0.909; AUC: 0.760). The CatBoost model had
the most powerful discrimination for predicting SIC risk, and we
optimized this model in the next step.

Full and Compact Models
Fifteen iterations of Bayesian optimization were performed. The
hyperparameter search domains and final settings are listed in

FIGURE 3 | Distribution of the impact each feature had on the full model output estimated using the SHapley Additive exPlanations (SHAP) values. The plot sorts

features by the sum of SHAP value magnitudes over all samples. The color represents the feature value (red high, blue low). The x axis measures the impact on the

model output (right positive, left negative). Taking the feature platelet as an example, red points are on the left whereas blue points are on the right. This means

prediction scores will be smaller when patients have a low level of platelets. PT, prothrombin time; INR, international normalized ratio; SIC, sepsis-induced

coagulopathy; SIC platelet, platelet term in the SIC score; SOFA, sequential organ failure assessment; PTT, Partial Thromboplastin Time; BMI, body mass index; MAP,

mean arterial pressure; WBC, white blood cell count; RDW, red cell distribution width; MV, mechanical ventilation.
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Supplementary Table 4. The optimized CatBoost model had the
greatest AUC in our study (0.869; 95% CI: 0.850–0.886). SHAP
values were calculated and are plotted in Figure 3. The summary
plot sorts features by the sum of SHAP value magnitudes
over all samples and shows the distribution of the impact that
each feature has on the full model output. As shown, the
coagulation profile (platelet, International Normalized Ratio,
PT) and renal function indicators (urine output, creatinine)
are the most important features for distinguishing the SIC and
non-SIC groups. Fifteen features were selected based on their
SHAP values and clinical availability. The compact CatBoost
model was built based on the selected features. It had a
slightly smaller AUC (0.854; 95% CI: 0.832–0.872), but is
considered more practical in clinical practice. The medians and
95% confidence intervals of AUCs are plotted in Figure 4 to
compare the discrimination of different methods in MIMIC-
IV. As shown, our two models outperformed conventional
Logistic Regression (0.746; 95% CI: 0.735–0.755) and the SIC
scoring system (0.709; 95% CI: 0.687–0.733) in terms of
SIC prediction.

Prediction Performance in eICU-CRD
The results of external validation are shown in Figure 4

([0.842; 95% CI: 0.837–0.846] for the full model, and [0.803;
95% CI: 0.798–0.809] for the compact model). It can be
seen that the SIC scoring system had better predictive power
(0.752; 95% CI: 0.747–0.757) than in MIMIC-IV but its
AUC was still worse than those of our two models (p <

0.001), while Logistic Regression had the poorest generalization
ability (0.660; 95% CI: 0.653–0.667). The sensitivity and
specificity analysis of the four predictive methods is summarized
in Table 2.

Model performance in different patient cohorts in eICU-
CRD is shown in Figure 5. As shown, the two models had the
greatest AUC for patients who had APACHE-IV scores between
81 and 100, who were younger than 65 years, or who were
admitted to the NICU and SICU. The two models maintained
good performance over four regions of the United States. In
addition, the two models had better discrimination when sepsis
lasted for several days. A similar sub-cohort analysis was also
performed in MIMIC-IV (Supplementary Figure 1).

Model Interpretation
The summary plot of SHAP in Figure 3 provides an overview
of the impact of features on the final models. Additionally,
the prediction results of two specific instances are explained
in Figure 6. The bars in red and blue represent risk factors
and protective factors, respectively; longer bars represent greater
feature importance. For the example in Figure 6A, although
the patient’s coagulation profile was normal, she had a poor
circulatory status with a high serum lactate level and the
vasopressor administration. The model successfully predicted
that she would have SIC the next day. For the example in
Figure 6B, the patient’s condition was more moderate, and our
model predicted a low-risk value.

FIGURE 4 | AUCs of four predictive methods in internal (MIMIC-IV) and

external (eICU-CRD) validations. AUCs of our two models, Logistic Regression

and SIC scores were assessed using the Bootstrap Resampling technique

with 1,000 iterations. The heights of the bars represent the median AUCs,

while the error bars represent the 95% confidence intervals. Full, the full

model; Comp, the compact model; LR, Logistic Regression; SIC, the

sepsis-induced coagulopathy criteria; AUC, area under receiver operating

characteristic curve; MIMIC-IV, Medical Information Mart for Intensive Care-IV;

eICU-CRD, the eICU Collaborative Research Database.

Website-Based Tool
A website-based tool was established for clinicians to use the
compact model, http://www.aimedicallab.com/tool/aiml-sicrisk.
html. The SIC risk in the following day can be assessed by
using this tool, and interpretation of the prediction result in the
instance level will be shown to the user.

DISCUSSION

To the best of our knowledge, this is first attempt to apply
machine-learning models for the dynamic prediction of SIC. Our
study developed and validated two variants of dynamic machine-
learning models, providing an accurate predictive tool for SIC in
sepsis patients.

In this study, we reconfirmed that coagulopathy worsens
the clinical outcomes of septic patients (15). As shown in
Supplementary Table 3, SIC can lead to a higher mortality rate
and longer length of hospital/ICU stay. In addition, SIC patients
received more advanced antibiotics (linezolid and vancomycin),
implying a more severe state of infection. On the other hand,
the administration of these drugs may also alter coagulation
function through various mechanisms (29, 30). As a result, early
identification of septic patients with high coagulopathy risks is of
great importance.

Currently, there is a lack of reliable tools for the early
prediction of coagulopathy in septic patients. Our study
demonstrated that the family of gradient boosting algorithms,
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TABLE 2 | Performance of the final models and SIC scores in internal and external validations.

Internal validation (MIMIC-IV) External validation (eICU-CRD)

Model AUC Youden Sensitivity Specificity AUC Youden Sensitivity Specificity

The full model 0.869 0.577 0.820 0.757 0.842 0.54 0.8 0.741

The compact model 0.854 0.564 0.848 0.716 0.803 0.477 0.745 0.732

Logistic Regression 0.746 0.433 0.753 0.680 0.660 0.230 0.582 0.648

SIC scores 0.709 0.368 0.707 0.661 0.752 0.448 0.655 0.793

The discrimination of three models (the full model, the compact model and Logistic Regression) and SIC scores were compared in internal and external validations. The full and the

compact models were developed in MIMIC-IV, based on all or selected features, respectively. Logistic Regression was developed based on all features. In addition, the current SIC

score was used to predict patient’s SIC risk the next day. Youden Index, defined as Sensitivity + Specificity − 1, and AUC assessed the performance of different models. All statistics

were the median values in 1,000 iterations of the Bootstrap Resampling technique.

SIC, Sepsis-induced coagulopathy; AUC, area under receiver operating characteristic curve; MIMIC, Medical Information Mart for Intensive Care; eICU-CRD, the eICU Collaborative

Research Database.

FIGURE 5 | Model performance in different patient cohorts in eICU-CRD. Different validation sets were derived based on APACHE-IV (A), age (B), region of the

United States (C), ethnicity (D), time since sepsis onset (E) and unit type (F). AUC of the full and the compact models in each set was measured using the Bootstrap

Resampling technique. The colored area represents 95% confidence intervals. Full, the full model; Comp, the compact model; AUC, area under receiver operating

characteristic curve; APACHE-IV, Acute Physiology and Chronic Health Evaluation-IV; CICU, cardiac intensive care unit; CSICU, cardiac surgical intensive care unit;

CTICU, cardiothoracic intensive care unit; MICU, medical intensive care unit; NICU, neuro intensive care unit; SICU, surgical intensive care unit.

such as CatBoost, Light Gradient Boosting and Extreme Gradient
Boosting, can predict SIC with higher accuracy than others.
In short, gradient boosting is a powerful machine-learning
technique that iteratively trains a weak classifier (e.g., decision

tree) to fit residuals of previous models (31). CatBoost, one
of gradient boosting algorithms, showed the greatest AUC in
our study, partly because it had two main advantages. First, it
successfully handles categorical features and deals with them
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FIGURE 6 | Explanation of the prediction results for specific instances. The base value (−3.33) is the average value of the predictive model; the output values are the

predicted SIC risks. The bars in red and blue represent risk factors and protective factors, respectively; longer bars mean greater feature importance. Here, these

values are the model outputs before the SoftMax layer, and therefore, they are not equal to the final predicted probabilities. This figure shows the explanation for a

high-risk instance (A) and a low-risk instance (B). RDW, red cell distribution width; PT, prothrombin time; WBC, white blood cell count; PTT, Partial Thromboplastin

Time; INR, international normalized ratio; MAP, mean arterial pressure; BMI, body mass index.

during training instead of preprocessing time (32). This means
that categorical features no longer need to be encoded, and a
CatBoost model can be developed based on raw data. Another
advantage of this algorithm is that it uses a new schema to
calculate leaf values when selecting the tree structure. The schema
helps to reduce overfitting, a major problem that constrains the
generalization ability of machine-learning models (32).

In this study, we developed two variants of CatBoost models
that can identify patients with a high risk of SIC and provide
clinical decision-makers with more information. As shown in
Figure 5, our models had comparable AUCs in different patient
cohorts, demonstrating that machine-learning models based on
big data have good generalization capability.

In general, based on more valuable variables, models have
better discrimination but worse clinical usability. Therefore, in
our study, two model variants were developed for different
application scenarios. The full model predicted SIC based on
88 clinical variables and achieved the highest AUC in this
study. In the external validation, the full model maintained good
discrimination with only a slight reduction in AUC. However,
it is difficult to collect 88 variables and apply this model. As a
result, the full model is recommended in hospitals with a well-
designed clinical data system. By contrast, the compact model
was trained based on 15 selected variables. Under the condition
of ensuring accuracy, it achieved practicality as far as possible. In
addition, a website tool was developed to help clinicians use the
compact model in clinical practice. By logging on to the website
and entering the values of 15 variables, our compact model will
give the prediction result, and interpretation of the prediction
result will be shown to the user.

By interpreting the full model, it was found that many
clinical variables can help to indicate the risk of SIC. In this
study, coagulopathy profile was found to be the most important
variable in predicting SIC followed by renal function indicators
(urine output and creatinine). As shown in Figure 3, patients
with poorer renal function (less urine output and higher serum

creatinine) tended to have a higher risk of SIC. Also, body mass
index (BMI), vital signs (heart rate and mean arterial pressure),
laboratory tests (such as lactate and white blood cell count), the
use of MV and vasopressors, and SAPS-II scores can help assess
the risk of SIC. In addition, prediction results can be illustrated at
the instance level, as shown in Figure 6, which makes our model
clinically interpretable.

Several limitations of this study should be considered.
Firstly, only septic adults in ICUs were included, whereas
hospitalized sepsis cases were not analyzed. In addition, in
consideration of the immaturity of the coagulation system
in children, especially newborns, more research is needed
on SIC in children with sepsis. Secondly, our models screen
out patients with a high risk of SIC but do not indicate
who will benefit from anticoagulant therapy. It is still up to
clinicians to decide whether to administer anticoagulant agents.
However, the process from sepsis to severe coagulopathy is
a continuous condition arising from a coagulation disorder.
Early and accurate prediction of SIC can provide more time
for clinicians to adjust treatment strategies, and study the
potential effect of anticoagulant therapy in the early stage.
Thirdly, this is a retrospective observational study. Missing data
and input errors exist, despite the very high quality of the
MIMIC-IV and eICU-CRD databases. Therefore, prospective
validation is still required in the future. Compared with septic
shock, for which advances have been made in recent years,
giving rise to significant survival improvements, there is still
a long way to go in the diagnosis and management of sepsis-
associated coagulopathy.

CONCLUSIONS

In conclusion, the present study developed two variants of the
CatBoost model, which can discriminate septic patients who
would and would not develop SIC.
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