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Prediction of kinase inhibitors 
binding modes with machine 
learning and reduced descriptor 
sets
Ibrahim Abdelbaky1,2,4, Hilal Tayara3* & Kil To Chong1,4*

Protein kinases are receiving wide research interest, from drug perspective, due to their important 
roles in human body. Available kinase-inhibitor data, including crystallized structures, revealed 
many details about the mechanism of inhibition and binding modes. The understanding and analysis 
of these binding modes are expected to support the discovery of kinase-targeting drugs. The huge 
amounts of data made it possible to utilize computational techniques, including machine learning, 
to help in the discovery of kinase-targeting drugs. Machine learning gave reasonable predictions 
when applied to differentiate between the binding modes of kinase inhibitors, promoting a wider 
application in that domain. In this study, we applied machine learning supported by feature selection 
techniques to classify kinase inhibitors according to their binding modes. We represented inhibitors 
as a large number of molecular descriptors, as features, and systematically reduced these features in 
a multi-step manner while trying to attain high classification accuracy. Our predictive models could 
satisfy both goals by achieving high accuracy while utilizing at most 5% of the modeling features. The 
models could differentiate between binding mode types with MCC values between 0.67 and 0.92, and 
balanced accuracy values between 0.78 and 0.97 for independent test sets.

Protein kinases are one of the largest enzyme families, representing about 2% of the human genome1. They are 
responsible for the phosphorylation process in which they catalyze the addition of phosphate groups to other 
proteins to make them functionally active. Phosphorylation relates kinases to many important biological pro-
cesses in humans as it is important for cell division, signaling, and growth2,3.

Improper regulation of kinases had been clinically proven to be associated with different diseases including 
cancers, inflammatory and cardiovascular diseases4,5. This association assigned kinases a high significance from 
drug design perspective and ensured the need to study kinases when looking for a potential treatment for such 
diseases6. Given the important role of kinases, it is not surprising that the kinase family is currently involved 
in approximately 30% of the world’s drug discovery research efforts, making them one of the most important 
drug targets5.

X-ray crystal structures of kinase-inhibitor complexes have revealed details about the binding behaviors 
of these inhibitors. Inhibitors bind in different modes depending on specific binding locations and conforma-
tional aspects of the target kinase. Understanding these binding modes is important to analyze and improve the 
inhibition of kinases while looking for potential kinase-targeting drugs. The conformational aspects associated 
with the binding modes are determined by the states of two parts in the protein binding site. The first part is the 
Asp-Phe-Gly (DFG) motif, as part of the activation loop, and the second part is the αC-helix. The DFG motif 
participates, through its -in/-out conformational states, in determining the active/inactive state of the kinase 
by closing/opening the activation loop and consequently the adenosine triphosphate (ATP) binding site7. The 
αC-helix has also -in/-out conformational states. The αC-helix-in state indicates an active kinase by helping 
the binding of the phosphate group in the ATP site. In its –out state, the αC-helix moves out from its position 
resulting in an inactive kinase state. In summary, the conformational states of the DFG and αC-helix lead to the 
kinase state becoming fully active (DFG-in, αC-helix-in), or fully inactive (DFG-out, αC-helix-out). Notably 
however, an intermediate conformational state (DFG-in, αC-helix out), has been detected in some complexes8.
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While there is a wide range of known kinase inhibitors, most of them inhibits kinases in the active form (con-
formational state: DFG-in, αC-helix-in) and are known as type I binding mode inhibitors8. Type I inhibitors bind 
to the ATP binding site and elongate to nearby regions giving them some level of selectivity6. Type II inhibitors 
bind to a kinase in its inactive state (conformational state: DFG-out, αC-helix-out). In this type, the inhibitors 
bind to the ATP binding site and extend to an adjacent allosteric back pocket that opens as a response to the 
(DFG-out, αC-helix-out) conformation6. Another group of kinase inhibitors, type I 1

2
 , binds in an intermediate 

state between the active and inactive forms (conformational state: DFG in, αC-helix out)9. Finally, allosteric 
kinase inhibitors bind completely outside the ATP binding site in allosteric regions which could be adjacent 
(type III) or distant (type IV) with respect to the ATP site8. Figure 1 shows examples for the ATP binding site in 
each of the 4 binding modes. The snapshots are obtained from the structural kinase database, KLIFS10–13 (http://
klifs.net/index.php), for structures with PDB IDs: 2J5F14, 1WBN15, 3IGG16, and 4EBV17.

In the course of inhibitor selectivity, type II inhibitors were anticipated to have high selectivity as they extend 
their binding outside of the ATP binding site. However, no experimental confirmation for this expectation has 
been made as there are selective and non-selective inhibitors of both type I and type II18. Some inhibitors of type 
I 1
2
 were found to be highly more selective for specific kinases, and allosteric inhibitors have the highest selec-

tivity—more than all the ATP binding inhibitors9,19. Low selectivity makes it difficult to differentiate between 
inhibitors of different types. It is also difficult to structurally characterize each inhibitor case individually because 
of the large quantity of available data and the lack of complete structural characterization boundaries between 
binding modes, especially types I and II20. As a result, the task of determining inhibitor binding mode based on 
its structure is challenging.

Quantitative structure activity relationship (QSAR) modeling is a technique that assumes a relationship 
between the biological activity of compounds and their physicochemical and structural properties21. Com-
pounds can be numerically represented based on their properties using molecular descriptors22 and thus they 
can undergo computational analysis predictive modelling.

Figure 1.   Snapshots, obtained from KLIFS10–13, for the binding site (with inhibitor) in each of the four binding 
modes (DFG: blue, αC-helix: red (upper right), inhibitor: light green). (a) Type I: DJK bound to EGFR (PDB 
ID: 2J5F14), (b) Type II: L09 bound to MAPK14 (PDB ID: 1WBN15), (c) Type I 1

2
:EFQ bound to CDK2 (PDB ID: 

3IGG16), and (d) Type A: 0O7 (not shown) bound to PTK2 (PDB ID: 4EBV17).
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The large amount of data about kinase inhibitors, 115000 inhibitors with a measured activity, made them a 
subject to data analysis and modelling in different studies8 There are many studies that used machine learning to 
target kinase related problems such as predicting kinase activity state23, and predicting bioactivity of compounds 
against mTOR kinase24, and others. However, few studies targeted the problem of predicting inhibitor binding 
modes. In8, they used different machine learning methods to construct 4 predictive models to distinguish between 
inhibitor binding modes of types I, II, I 1

2
 , and allosteric. They based their predictions on data from X-ray crystal 

structures and inhibitor fingerprints that were calculated using compound Simplified Molecular Input Line 
Entry System (SMILES). They used 2 types of fingerprints: Extended Connectivity Fingerprints of diameter 4 
(ECFP4) and Molecular ACCess System structural keys (MACCS). The SVM (Support Vector Machine) classi-
fier was the best performing technique in their modelling. The models achieved high classification accuracy for 
2 out of their 4 classification tasks, while the accuracy for the remaining 2 tasks was relatively low8. In25, they 
worked to improve differentiation ability between non-allosteric inhibitors of types I, II, and I 1

2
 . They built pre-

dictive machine learning models with an active learning strategy. They used different representations, including 
compound (ECFP4) and protein-ligand Interactions Fingerprints (IFPs), individually and in combination. The 
accuracy was relatively improved over their previous work25.

Motivated by the large quantity of available data, there is an increased emphasis on the role of computational 
techniques for understanding the behavior of kinase inhibitors. In this study, we worked to achieve better predic-
tions for kinase inhibitor binding modes by applying a variety of machine learning and feature selection tech-
niques. Instead of fingerprints, we calculated different types of molecular descriptors and used them to represent 
the known kinase inhibitors. The sets of descriptors were reduced using different feature reduction techniques 
and then employed to build machine learning classifiers. The developed predictive models could differentiate 
between kinase inhibitors belonging to different binding modes with a higher accuracy compared to the only 2 
previous studies in this domain.

Results and discussion
In this section we present the results obtained for the different classification tasks. In addition to the modeling 
results, we mention the feature sets used for each classification task and the number of total features that gave 
the best results. For each classification task, we first performed the workflow on each individual descriptor set, 
i.e. 8 times for each task. We then combined the best performing descriptors that produced good predictions 
for each task. The final prediction model for each task was based on the combinations of 4 or 5 descriptor sets 
based on individual set results, Fig. 2.

Individual set experiments.  For each classification task: after applying our experimental methodology on 
each of the 8 descriptor sets individually, we obtained a selected list of features from each set. Some of these lists 
showed high potential for specific classification tasks, while others showed low, or no, prediction potential. We 
mention in Table 1 the results and the descriptor set of the highest predictive lists for each task. Full results for 
all descriptor sets and classification tasks are shown in the supplementary material (Table S1). Evaluation and 
comparisons were based on the Mathews Correlation Coefficient (MCC).

Figure 2.   Testing and combining individual descriptor sets.
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Combined sets experiments.  We tried different combinations of the selected lists of descriptors to deter-
mine the most efficient overall feature set, for each task. We found that the best performing combination, for 
each classification task (CT), did not exceed 5 types of descriptors. The best combination of selected descriptors 
for the different classification tasks were as follows:

•	 CTI−II : The combination of the best 5 selected lists of descriptors included: Padel 1&2D, Padel 3D, Chemopy 
1&2D, RDKit, and Dragon. This combination led to an improved prediction MCC over the individual Dragon 
set by 0.05 for the validation test with 110 final combined descriptors.

•	 CT
I−I

1

2
 : The combination of the best 4 selected lists of descriptors included: Padel 1&2D, Padel 3D, Chemopy 

1&2D, and Dragon. This combination led to an improved prediction MCC over the individual Padel 3D set 
by 0.03 and 0.01 for the validation and independent tests respectively with 183 final combined descriptors.

•	 CT
II−I

1

2
 : The combination of the best 4 selected lists of descriptors included: Padel 1&2D, Padel 3D, Chemopy 

1&2D, and Dragon. This combination led to an improved prediction MCC over the individual Chem 1&2D 
set by 0.2 and 0.15 for the validation and independent tests respectively, with 50 final combined descriptors.

•	 CT
A−(I+II+I

1

2
) : The combination of the best 5 selected lists of descriptors included: Padel 1&2D, Padel 3D, 

Chemopy 1&2D, RDKit, and Dragon. This combination led to an improved prediction MCC over the indi-
vidual Dragon set by 0.24 and 0.19 for the validation and independent tests respectively, with 215 final 
combined descriptors.

Table 2 shows the final results for the validation and independent test sets for different classification tasks. The 
values represent the averages over the 10 validation experiments. We used three metrics for evaluating the models: 
F1 measure, Mathews Correlation Coefficient (MCC), and Balanced Accuracy (BA).

From the results in Table 2, we can see that the predictive models in the classification tasks for non-allosteric 
inhibitors always showed high accuracy. The F1 measure was between 0.94 and 0.98 showing a high ability in 
identifying the positive classes which were types I and II, in non-allosteric tasks. For CT

II−I
1

2

 , the F1 value was 

Table 1.   The best predictive descriptor set for each classification task. Desc. Set*: Descriptor Set; *: No. of 
selected descriptors; MCC valid.*: MCC for validation set; MCC Ind.*: MCC for independent set.

CT Desc. Set* Sel. Desc.* MCC Valid.* MCC Ind.*

CTI−II Dragon 185 0.87 0.74

CT
I−I

1

2

Padel 3D 39 0.86 0.87

CT
II−I

1

2

Chem 1&2D 68 0.78 0.77

CT
A−(I+II+I

1

2
)

Dragon 197 0.54 0.49

Table 2.   Evaluation results for different classification tasks on validation and independent sets.

CT Eval. metric Validation Independent

CTI−II

F1 0.99 (± 0.01) 0.97 (± 0.003)

BA 0.94 (± 0.01) 0.85 (± 0.01)

MCC 0.92 (± 0.02) 0.74 (± 0.02)

Confusion matrix (%)
[

10.5 1.3

0.4 87.8

] [

8.6 3.2

2.1 86.1

]

CT
I−I

1

2

F1 0.99 (± 0.00) 0.98 (± 0.00)

BA 0.96 (± 0.01) 0.93 (± 0.01)

MCC 0.94 (± 0.01) 0.88 (± 0.01)

Confusion matrix (%)
[

19.9 1.8

0.4 77.9

] [

18.9 2.9

0.9 77.3

]

CT
II−I

1

2

F1 0.98 (± 0.01) 0.94 (± 0.01)

BA 0.99 (± 0.01) 0.97 (± 0.01)

MCC 0.98 (± 0.01) 0.92 (± 0.02)

Confusion matrix (%)
[

66.9 0.6

0.4 32.1

] [

64.4 3.1

0.8 31.7

]

CT
A−(I+II+I

1

2
)

F1 0.77 (± 0.07) 0.65 (± 0.12)

BA 0.82 (± 0.05) 0.78 (± 0.08)

MCC 0.78 (± 0.07) 0.67 (± 0.11)

Confusion matrix (%)
[

97.6 0.1

0.8 1.5

] [

97.5 0.3

1.0 1.2

]
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0.65, considering the few number of samples in the positive class (type A), this value denotes a promising predic-
tion, although less than other CTs. BA values were always over 75%, with the highest value achieved by the model 
for CT

II−I
1

2

 : 97%. Models for all tasks performed well and without being biased to the majority class despite the 
imbalance in training data. MCC values were the most important as it has high confidence in imbalanced models 
validation. The values for MCC were between 0.67 and 0.92 showing a high predictive ability for the models in 
all tasks for both classes. The average confusion matrix shows few number of misclassified items. The highest 
rate of misclassification had the relative ratio of 5.3% in CTI−II . CTs that contained the data samples of type I 1

2
 

inhibitors achieved the highest accuracies in all metrics, suggesting that type I 1
2
 as being easier to identify. The 

results for the (80–20%) splits are shown in the supplementary material (Table S2).
We used mainly Support Vector Machines (SVM) for classification. In addition, we tested the performance 

of different machine learning techniques such as Random Forests (RF), Gradient Boosting (GB), and Linear 
Regression (LR) models based on the final selected features for different classification tasks. LR results were com-
parable to SVM and confirming the efficiency of the selected features. In general for all classification tasks, SVM 
was found to be the best performing classifier as shown in the full results, supplementary material (Table S3).

Final features.  The final number of selected features for each task is shown in Table 3. The table shows 
also the portions of final features that belong to different descriptor sets, along with their relative percentages. 
For further examination of the selected features, we extracted their sub-types. The number of final features in 
each sub-type is shown in Table 4. The counts shown are the grouped counts over all classification task results. 
Features selected from Dragon descriptors mostly lie in the GETAWAY and Functional group count descrip-
tors. From the Padel set, most final descriptors are in the E-state, RDF (Radial Distribution Functions), and 
Topological descriptors. For Chemopy 1&2D, MOE-type (Molecular Operating Environment) and Autocorrela-
tion descriptors represented the largest portion. Finally, most of the selected RDKit descriptors belong to the 
Constitutional descriptors. A list of the final selected descriptors for each classification task is available in the 
supplementary material (Tables S4:S7). We examined the frequently selected functional group descriptors and 
listed them in the supplementary material (Table S8). We show some examples of good and poor predictions by 
our models for each type in the supplementary material (Table S9). In (Table S9), structures were retrieved from 
PubChem database26 (https​://pubch​em.ncbi.nlm.nih.gov/) for 8 example compounds with PubChem identifiers 
(CID): 71737839, 45139233, 66563698, 11288934, 445840, 122235220, 129900107, and 46897873.

Results visualization.  Figure 3 shows the average precision recall curves for the 10 validation experiments 
(independent sets) for each classification task. The curve exhibits high prediction ability for the first three mod-
els, while showing less prediction ability in the fourth CT

A−(I+II+I
1

2
)
 model. This low prediction ability is likely 

the result of the high data imbalance and the low number of available positive samples. Receiver Operating 
Characteristic (ROC) curves for the final models were plotted, and the areas under the ROC curves were calcu-
lated, in the supplementary material (Figure S1). The selected features demonstrated a good ability to differenti-
ate between positive and negative classes. The t-SNE plot in Fig. 4 shows, as an example, how the discriminative 
ability for the predictive features in classification task CT

I−I
1

2

 was improved after final feature reduction.

Table 3.   Number of selected descriptors from each set in the classification tasks.

CT Descriptor set Final no. % of final Total feat.

CTI−II

Padel 1&2D 31 28

110

Padel 3D 12 11

Chemopy 1&2D 14 13

RDKit 7 6

Dragon 46 42

CT
I−I

1

2

Padel 1&2D 51 28

183
Padel 3D 20 11

Chemopy 1&2D 28 15

Dragon 84 46

CT
II−I

1

2

Padel 1&2D 9 18

50
Padel 3D 11 22

Chemopy 1&2D 18 36

Dragon 12 24

CT
A−(I+II+I

1

2
)

Padel 1&2D 65 30

215

Padel 3D 18 8

Chemopy 1&2D 28 13

RDKit 18 8

Dragon 86 40

https://pubchem.ncbi.nlm.nih.gov/
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Comparison to previous work.  We compared our results to the work of Miljkovic et al.8, as it was the only 
study that targeted the same domain for classifying all binding mode types. Table 6 shows a compassion between 
our newly proposed models and their models. Our models could achieve more accurate predictions in different 
classification tasks. The improvement in F1 score ranged between 17 and 40%, while BA was improved by 5–19%, 
and finally, the MCC was improved by 4–41%. The classification of allosteric and non-allosteric inhibitors, 
CT

A−(I+II+I
1

2
)
 , was the most challenging because of the scarcity of data for allosteric inhibitors. The feature 

selection methodology could lead to improved prediction for this task although only few number of positive 
samples were available. The improvement for this task was 29% in F1, 15% in BA, and 19% in MCC. In addition, 
a remarkable improvement could be noticed in the classification task CT

I−I
1

2

 as F1 was improved by 40%, BA was 
improved by 19%, and MCC was improved by 41%.

Case studies.  In order to evaluate the applicability of our models, we obtained and tested five new kinase 
inhibitors as case studies: L1H, JWY, 9NQ, 1LT, and 8OR. These inhibitors were not present in the original data-
set that we used for model building. We calculated their descriptors and tested our models using the descriptor 
values required for each corresponding classification task, then we evaluated the predictions against the corre-
sponding entries in KLIFS database. The CT

A−(I+II+I
1

2
)
 model could predict all the compounds correctly as 

non-allosteric. Classification task models CT
I−I

1

2

 and CT
II−I

1

2

 could correctly identify types I and II respectively. 
On the other hand, the model for CTI−II could correctly identify 9NQ, 1LT, 8OR as type I, and JWY as type II, 
while it incorrectly identified L1H as type II inhibitor. The prediction results for the five case study inhibitors are 
shown in Table 5.

Table 4.   Number of final descriptors grouped over all tasks by sub-type.

Descriptor set Descriptor sub-type Subset total Set total

Dragon

GETAWAY descriptors 38

228

Functional group counts 36

3D-MoRSE descriptors 32

RDF descriptors 30

Atom-centred fragments 29

WHIM descriptors 13

Topological 13

Others(9) 37

Padel (All) (1D+2D+3D)

E-state descriptors 41

224

RDF descriptors 36

Topological descriptors 35

Autocorrelation descriptors 34

3D Autocorrelation descriptors 23

Burden descriptors 19

Others(10) 36

Chemopy 1&2D

MOE-type Descriptors 22

103

Autocorrelation Descriptors 22

E-state Descriptors 14

Charge Descriptors 10

Others(6) 13

RDKit
Constitutional descriptors 18

25
Others(2) 7

Table 5.   Results for predicting case study inhibitors.

Inhibitor Real type

Model prediction

CTI−II CT
I−I

1

2

CT
II−I

1

2

CT
A−(I+II+I

1

2
)

L1H I II I NA Other

JWY II II NA II Other

9NQ I I I NA Other

1LT I I I NA Other

8OR I I I NA Other
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L1H was incorrectly predicted as type II while it was characterized as type I inhibitor in its complex with 
EFGR kinase in KLIFS. By an initial inspection, we found that the binding pocket sequence in the structure con-
taining L1H (PDB ID: 6S9B27) differs in 2 residues, T790M (Gatekeeper) and L858R, from other EFGR-inhibitor 
structures that are characterized as type I (2ITN28). These differences were found in some other EFGR-inhibitor 
structures that were characterized as type II (5UGC​29). While we cannot conclude this as the only reason for 
the incorrect prediction, we strongly suggest that further inspection that takes protein sequence and structure 
information into consideration could result in improved predictive models for the binding modes.

Materials and methods
In this section we will describe the data we used in our study. In addition, we will present the details of our 
workflow to produce the binding mode predictive models.

Dataset and descriptors.  Inhibitors dataset.  In our study we used a dataset of compound SMILES that 
represent previously identified kinase inhibitors categorized by their known binding mode. The dataset was ob-
tained from the previous study in8, and was originally extracted from the KLIFS database10–13, a repository that 
contains a wealth of characteristics for kinase-inhibitor complexes in the Protein Data Bank (PDB)30. The inhibi-
tors were primarily retrieved based on binding site preference: allosteric or non-allosteric. The non-allosteric 
inhibitors were then classified into 3 categories based on their binding to the ATP or nearby sites. The result is a 
total of 4 inhibitor groups divided according to their binding mode: Type I, type II, type I 1

2
 , and type A, replicat-

ing the division in8. The records in the dataset is composed of an identifier, SMILES code, and binding type code. 
The majority of the inhibitors belonged to the first class, type I, with 1420 (69.2%) entries. The least number of 
items was in the allosteric class (A), with only 47 (2.3%) entries. While Types II and I 1

2
 had 190 (9.3%) and 394 

(19.2%) inhibitors, respectively. The total number of inhibitors was 2051. SMILES in each group were used to 
calculate molecular descriptors.

Molecular descriptors.  We used molecular descriptors to represent the features for inhibitor compounds. We 
utilized a comprehensive set of descriptors calculated through a variety of methods, including physiochemical 
properties and structural 1D, 2D and 3D descriptors. Eight sets of descriptors were calculated using two online 
webservers. ChemDes31 was used to calculate 7 sets of descriptors: Padel 1&2D, Padel 3D, Chemopy 1&2D, 

(a) CTI−II (b) CTI−I 12

(c) CTII−I 12
(d) CTA−(I+II+I 12 )

Figure 3.   Average precision recall curves for the independent test sets in classification tasks. (a) CTI−II , (b) 
CT

I−I
1

2

 , (c) CT
II−I

1

2

 , and (d) CT
A−(I+II+I

1

2
)
.
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RDKit, Pybel, CDK, and BlueDesc, while e-Dragon32,33 was used to calculate an additional set. The total number 
of calculated descriptors was 4933. The number of descriptors in each set is shown in Table 7. Some descriptors 
were repeated across different sets and we handled this redundancy by dropping highly correlated features as we 
will show later.

Methods.  In order to classify inhibitors according to their binding mode, we constructed 4 classification 
tasks representing 4 pairs of classes. For simplicity, we will label a classification task between classes i and j as 
CTi-j. The 4 classification tasks are: 

(a) All (4135) Features (b) Combined Selected(276) Features

(c) Final Reduction(50) Features

Figure 4.   t-SNE plots for the features in classification task CT
II−I

1

2

 . (a) All: 4135 features, (b) combined 
selected: 276 features, (c) final reduction: 50 features.

Table 6.   Proposed models results compared to the results in Miljkovic et al.8 for independent test sets in the 4 
classification tasks.

CT Metric Proposed Miljkovic et al.

CTI−II

F1 0.97 (± 0.00) 0.71 (± 0.03)

BA 0.85 (± 0.01) 0.78 (± 0.02)

MCC 0.74 (± 0.02) 0.70 (± 0.04)

CT
I−I

1

2

F1 0.98 (± 0.00) 0.58 (± 0.04)

BA 0.93 (± 0.01) 0.74 (± 0.02)

MCC 0.88 (± 0.01) 0.47 (± 0.05)

CT
II−I

1

2

F1 0.94 (± 0.01) 0.77 (± 0.03)

BA 0.97 (± 0.01) 0.82 (± 0.02)

MCC 0.92 (± 0.02) 0.69 (± 0.03)

CT
A−(I+II+I

1

2
)

F1 0.65 (± 0.12) 0.36 (± 0.18)

BA 0.78 (± 0.08) 0.63 (± 0.07)

MCC 0.67 (± 0.11) 0.48 (± 0.09)
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1.	 (CTI−II ): To distinguish between types I and II inhibitors.
2.	 ( CT

I−I
1

2

 ): To distinguish between types I and I 1
2
 inhibitors.

3.	 (CT
II−I

1

2

 ): To Differentiate between types II and I 1
2
 inhibitors.

4.	 (CTA−Others)): To identify allosteric inhibitors, type A, from non-allosteric, types I; II; and I 1
2
 inhibitors — the 

most challenging dataset with high imbalance.

The inhibitor classes in the four classification tasks with their details are shown in Table 8.

Data Splits: For each classification task, the data were split in correspondence to different processing and 
reduction steps as shown in Fig. 5. All data passed through the cleaning, correlation, and f-score reduction steps. 
Then, we first split the data to 80% for development, and 20% for independent testing. The 80% was used for the 

Table 7.   Descriptor sets.

Descriptor set No. of descriptors

Padel 1&2D 1544

Padel 3D 431

Chemopy 1&2D 633

RDKit 196

Pybel 14

CDK 275

BlueDesc 174

Dragon 1666

Total 4933

Table 8.   Details of the classification tasks.

Classification task Positive class Negative class

Type Count Type Count

CTI−II Type I 1420 Type II 190

CT
I−I

1

2

Type I 1420 Type I 1
2

394

CT
II−I

1

2

Type II 190 Type I 1
2

394

CTA−Others Type A 47 (Type I + Type II + Type I 1
2
) 2004

Figure 5.   Data reduction and model building work flow in the proposed experimental framework.
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Recursive Feature Elimination (RFE) feature selection, model development, and with further splitting for the 
validation. In the second splitting for validation, we adopted the splitting strategy in8 to allow comparison of the 
final results. We did split the development set 10 different times to training and validation sets using 50–50% 
splits and controlled by using different random states. In addition, we also performed further validation in the 
same manner but using splits of ratios 80–20%.

We followed the data and work flows shown in Fig. 5 for each of the 4 presented classification tasks on 2 levels: 
for individual descriptor set level, and for combined selected descriptors level.

A simple flow of steps representing data prepossessing, reduction, and modelling, is shown in Fig. 6.

Data pre‑processing.  In this step, the dataset for each pair in classification tasks was cleaned by dropping fea-
tures that had:

•	 Zero variant values.
•	 Any empty values.

Correlation feature reduction.  Descriptors with mutual correlation over 0.95 were reduced by keeping only one 
of them, and dropping the other, in order to prevent redundancy and to eliminate feature repetition. The correla-
tion score was determined using Pearson correlation34.

F‑score feature selection.  F-score feature importance was calculated for each feature to decide its probable dis-
criminative ability. F-score is a simple feature ranking technique that measures the distinction between two sets 
of real values (feature/target), but ignoring mutual information among different features. It assigns each feature 
in the dataset a value, while a higher f-score value denotes a more important feature35,36. In our work, we listed 
the features in a descending order based on their assigned F-score value. Then we created different feature parti-
tions. Each partition contains a percentage of the whole features. For example: partition1: 100%, partition 2: top 
95%, partition 3: top 90%, and so on. After this division, we continue our experimental framework using one 
partition at a time and then comparing the outputs to identify the best predictive set of features. There was no 
clear correlation between the number of features in each partition and the prediction accuracy. Each data set 
had its independent threshold that was identified through different trials. In general for all classification tasks, 
using F-score selection resulted in faster modeling and better predictions over the cases of being omitted (using 
100% features).

Recursive feature elimination selection.  The third feature reduction step was the Recursive Feature Elimina-
tion (RFE) method proposed in37 for ranking and selecting features by iterative training of an SVM model. The 
model assigns a ranking for features and recursively drops low-ranked features and keeps important ones38. We 
applied this step using scikit-learn implementation of RFE, RFECV, combined with SVM linear classifier. The 
RFECV assigns important features the value of 1, which we keep for model training, and non-important features 
the value of 0, which we drop from our modelling features. Based on the final feature set determined by the RFE 
method, we reduced the number of features in our development and independent test sets, keeping only the 
RFE selected feature list. The resulting dataset from this step was the one used for model training and validation.

Model development and optimization.  We built binary classification models for predictions. In binary classifi-
cation, the model (classifier) works to assign one of two class labels to the input pattern. One class is marked as 
positive, while the other is marked as negative38. An SVM39 binary classifier model was originally selected guided 
by previous results in the domain. For more confidence, we also trained binary classifiers of different types to test 
the performance of the final selected features. Random forest (RF), gradient boosting (GB), and linear regression 
(LR) models were tested. The training set was in the form of patterns of descriptor values with a known binding 
mode label. Our SVM models were built using the minimized datasets with 50–50% training-validation splits. 
The model parameters were optimized using an initial split, and the resulting best model was then tested and 
validated using the 10-splits strategy.

Model Optimization: SVM parameters can be tuned in order to reduce overfitting. The kernel parameter 
determines the type of the hyperplane, linear or non-linear. The gamma parameter is used with non-linear 
hyperplanes and higher values indicate near to exact fit to training data but this can lead to overfitting. The C 
parameter represents the error penalty, and it controls the balance between correct classification and a smoother 
decision boundary40. The initial SVM classifier model was optimized using the grid search optimization method 
in scikit-learn. We provided different values for the parameters, including different kernel types. The resulting 
optimized models had a slight difference in the best parameter values. The selected kernel was always the ‘rbf ’ 
kernel. The optimized values for C were 100 for CTI−II and CT

II−I
1

2

 , 150 for CT
I−I

1

2

 , and 200 for CT
A−(I+II+I

1

2
)
 . 

Figure 6.   Feature processing and reduction flow.



11

Vol.:(0123456789)

Scientific Reports |          (2021) 11:706  | https://doi.org/10.1038/s41598-020-80758-4

www.nature.com/scientificreports/

The gamma selected value was always ‘auto’, while the degree value was not considered in the selection as it is 
related only to the ‘poly’ kernel.

Model training.  We did fit the optimized SVC model 10 different times using a different training set from the 
10-splits described earlier. After each fit, the model accuracy is evaluated using the corresponding validation set, 
in addition to the independent test set.

Model validation.  Model validation was performed based on the average value of each evaluation metric calcu-
lated over the 10 experiments for both validation and independent test sets.

Evaluation Metrics: In order to evaluate the model’s performance in each classification task, we used a variety 
of evaluation metrics. Taking into consideration the imbalance in the datasets for the classification tasks, we used 
balanced accuracy (BA) and Mathews Correlation Coefficient (MCC) in addition to the traditional F1 measure. 
The F1 measure, Eq. (1), is highly dependent on the positive class and it completely ignores the true negative 
rate. This could give misleading estimations when the positive class is accurately predicted but the negative class 
is poorly predicted. To handle this problem in our evaluation, we used also balanced accuracy and MCC as they 
could account for imbalanced data patterns.

Balanced Accuracy (BA) overcomes regular accuracy problems as it accounts for imbalanced classes24,41. It 
is calculated based on the confusion matrix as shown in Eq. (2).

Mathew’s correlation coefficient (MCC) is another widely used metric that has a high level of confidence and 
is considered the most important indicator when a training dataset is imbalanced24. MCC can be calculated from 
the confusion matrix as in Eq. (3). The range of the MCC values is between − 1, for complete misclassification, 
and 1, for complete classification42,43

In Eqs. (1) – (3), TP is the true positive, FP is the false positive, TN is the true negative, and FN is the false 
negative.

Conclusion
In this paper, we computationally investigated the rarely investigated domain of kinase inhibitor binding modes. 
We aimed to discriminate between four modes: 3 allosteric inhibitor modes (I, II, I 1

2
 ) and one nonallosteric mode 

(A). We combined feature selection and machine learning methods to achieve efficient binding mode predic-
tions using reduced feature sets. We used a wide range of calculated molecular descriptors as features, and these 
were collected from 8 descriptors sets, totaling 4933 descriptors. Features were initially reduced by cleaning and 
dropping high correlations. Further reduction was done using the F-score and RFE techniques to find the most 
important features for efficient modeling. Different machine learning classifiers were optimized and evaluated 
on the dataset with the reduced set of features. The final best performing models were SVM models as they 
could achieve accurate predictions with less than 5% of the original number of features. Previous studies have 
provided fairly accurate predictions using only fingerprints. However, the prediction accuracy of our models 
exceeded the similar previous work in all evaluation metrics. MCC values in our results were 4–41% higher for 
the different classification tasks. The most challenging task was the discrimination between allosteric and non-
allosteric inhibitors, as few samples were available, but our model achieved 19% higher MCC value than the 
previous study. The less distinction ability between types I and II could be related to the low selectivity among 
inhibitors of these types. On the other hand, type I 1

2
 inhibitors were highly discriminated with our models as 

seen in the results when using the I 1
2
 data. The results proved that extending the feature space by using real-

valued molecular descriptors, instead of fingerprints, could substantially improve predictions. At the same time, 
the rational selection of features with dedicated techniques is important to keep reasonable and efficient model 
performance. It is also expected to help in design and analysis of selective kinase inhibitors. Finally, we could 
show that machine learning, supported with other computational methods could efficiently help in identifying 
inhibitor binding modes. The availability of further structural data for kinase-inhibitor complexes is expected 
to improve predictions.
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