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Abstract: Lytic transglycosylases such as Slt35 from E. coli are enzymes involved in bacterial cell wall
remodelling and recycling, which represent potential targets for novel antibacterial agents. Here,
we investigated a series of known glycosidase inhibitors for their ability to inhibit Slt35. While
glycosidase inhibitors such as 1-deoxynojirimycin, castanospermine, thiamet G and miglitol had
no effect, the phenothiazinium dye thionine acetate was found to be a weak inhibitor. IC50 values
and binding constants for thionine acetate were similar for Slt35 and the hen egg white lysozyme.
Molecular docking simulations suggest that thionine binds to the active site of both Slt35 and
lysozyme, although it does not make direct interactions with the side-chain of the catalytic Asp and
Glu residues as might be expected based on other inhibitors. Thionine acetate also increased the
potency of the beta-lactam antibiotic ampicillin against a laboratory strain of E. coli.

Keywords: lytic transglycosylase; thionine acetate; enzyme inhibition; antibacterial

1. Introduction

Bacterial cells are surrounded by a peptidoglycan sacculus on the outside of the cy-
toplasmic membrane, which is essential for maintaining cell strength and integrity [1].
Peptidoglycan is composed of glycan strands of repeating N-acetylglucosamine (NAG)
and N-acetylmuramic acid (NAM) residues linked by β-1,4-glycosidic bonds, cross-linked
via peptide side-chains [2]. Escherichia coli turns over about 50% of its sacculus per gen-
eration, to allow cell growth and division, insertion of proteins into the cell wall and
other processes [3]. The muropeptides released from the sacculus are recycled by the cell.
The sacculus degradation and remodelling activities are catalysed by enzymes including
glycosidases, amidases, endopeptidases and carboxypeptidases [4,5].

Lytic transglycosylases are important peptidoglycan-degrading glycosidases [6–8],
that catalyse cleavage of the β-1,4-glycosidic bond between NAM and NAG residues. Un-
like lysozymes, they do so by catalysing an intramolecular transglycosylation reaction that
forms 1,6-anhydromuropeptides [9], which can be recycled to form fresh peptidoglycan
but which may also act as inducers of β-lactamase production [10] and as virulence fac-
tors [11–13]. Many bacterial species, including human pathogens such as Bacillus anthracis,
Staphylococcus aureus, Neisseria meningitides and Neisseria gonorrhoeae, inhibit the activity of
both lysozyme and lytic transglycosylases by acetylation of C-6 hydroxyl moieties of NAM
residues in their peptidoglycan [14,15]. This is used to control lytic transglycosylase activity
and so prevent autolysis [7]. Vertebrate lysozymes are also inhibited by the proteinaceous
inhibitor Ivy, which is produced by certain Gram-negative bacteria [16]. Inhibition of the
membrane-bound lytic transglycosylase MltB from P. aeruginosa by Ivy was suggested to
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regulate the autolytic activity of lytic transglycosylases in Gram-negative bacteria that are
unable to O-acetylate their peptidoglycan [17]. However, despite preventing autolysis,
specific inhibition of LTs may also increase the potency of β-lactam antibiotics against
bacteria, as exemplified by the action of the bulgecins [18–25].

Iminosugars, alkaloids and their synthetic analogues (Figure 1) can act as glycosidase
inhibitors by mimicking the glycosyloxocarbenium ion intermediate and related tran-
sition states in enzymatic glycoside hydrolysis [26]. 1-Deoxynojirimycin, a D-glucose
analogue, is the best known iminosugar. The alkaloid castanospermine is also a β-
glucosidase inhibitor [27]. The NAG-thiazoline derivative thiamet G is a potent inhibitor
of β-acetylglucosaminidases [28], while miglitol (Glyset) is used as a drug for treatment
of type II diabetes [29]. Thionine acetate, a planar cationic phenothiazinium dye, has
been shown to bind to lysozyme [30]. This compound is also used in electrochemical
and photochemical biosensors [31,32] and has antibacterial activity toward pathogenic
bacteria [33].
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A turbidimetric assay [34] was used to determine the activity of hen egg white lyso-
zyme and Slt35, by monitoring peptidoglycan solubilisation when the enzyme is added 
to Micrococcus lysodeikticus cell suspension. Although this assay has previously been per-
formed in sodium phosphate buffer for the same enzymes [17], we found Tris-maleate to 
give superior enzyme activity: maximum 0.018 A min−1 for phosphate (pH 6.4) and 0.068 
A min−1 for Tris-maleate (pH 5.8), both containing 100 mM NaCl. Acetate, MES and 
HEPES buffers gave very poor activity: maximum 0.020 A min−1 for sodium acetate (pH 
5.5), 0.003 A min−1 for MES (pH 6.0) and 0.003 A min−1 for HEPES (pH 7.0), all containing 
100 mM NaCl.  

2.1.2. Effect of Salts 
The effect of NaCl, KCl, MgCl2 and CaCl2 on enzyme activity was determined. The 
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difficulty in handling and storing the protein. Monovalent cations did not have a signifi-
cant effect on Slt35 activity, whereas 10 mM divalent cations gave optimal activity (Figure 
2A). The thermostability of Slt35 has been shown to increase when it is bound to calcium 
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In this study, we evaluated thionine acetate and some known glycosidase inhibitors
against hen egg white lysozyme and Slt35, using a combination of enzyme activity assays,
dissociation constant determination and molecular docking analysis.

2. Results and Discussion
2.1. Enzyme Activity Assay
2.1.1. Effect of the Buffer

A turbidimetric assay [34] was used to determine the activity of hen egg white
lysozyme and Slt35, by monitoring peptidoglycan solubilisation when the enzyme is
added to Micrococcus lysodeikticus cell suspension. Although this assay has previously been
performed in sodium phosphate buffer for the same enzymes [17], we found Tris-maleate
to give superior enzyme activity: maximum 0.018 A min−1 for phosphate (pH 6.4) and
0.068 A min−1 for Tris-maleate (pH 5.8), both containing 100 mM NaCl. Acetate, MES
and HEPES buffers gave very poor activity: maximum 0.020 A min−1 for sodium acetate
(pH 5.5), 0.003 A min−1 for MES (pH 6.0) and 0.003 A min−1 for HEPES (pH 7.0), all
containing 100 mM NaCl.

2.1.2. Effect of Salts

The effect of NaCl, KCl, MgCl2 and CaCl2 on enzyme activity was determined. The
activity of Slt35 was not determined in the absence of salts, due to very low activities and
difficulty in handling and storing the protein. Monovalent cations did not have a significant
effect on Slt35 activity, whereas 10 mM divalent cations gave optimal activity (Figure 2A).
The thermostability of Slt35 has been shown to increase when it is bound to calcium ions,
but not sodium, potassium or magnesium ions at 10 mM [35]. The melting temperature
of Slt35 increased from 48.0 ◦C in the absence of salts to 55.5 ◦C in the presence of 1 mM
CaCl2, suggesting that the EF-hand calcium binding site of Slt35 plays an important role in
protein stability [35]. However, the functional role of this site has not been established. The
effect of salts on lysozyme activity was also assessed (Figure 2B). Potassium was found to
be the optimal cation in this case, as other cations caused a reduction in lysozyme activity
at higher concentrations.
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Figure 2. Effect of salt concentration on (A) Slt35 and (B) lysozyme activity. For Slt35, 7 µM enzyme and 0.6 mg ml−1

cell suspension were used at 37 ◦C in 25 mM Tris-maleate (pH 5.8). For lysozyme, 0.1 µM enzyme and 0.6 mg ml−1 cell
suspension were used at 37 ◦C in 25 mM Tris-maleate (pH 6.0).

2.1.3. Effect of pH

The activity of Slt35 showed a bell-shaped dependence on pH, with maximum activity
at pH 5.8 (Figure 3A). Lysozyme displayed a much broader pH range giving maximum
activity, and was generally more tolerant of changes in the pH, although activity was de-
creased below pH 5 and above pH 8 (Figure 3B). It has been noted that the pH dependence
of lysozyme activity is strongly affected by the ionic strength [36], which was different for
the two enzymes here. The accepted mechanism of catalysis [37] by the hen egg white
lysozyme requires Asp52 to be deprotonated and Glu35 to be protonated. The pKa values
of these residues are 3.7 and 6.2 respectively [38], accounting for the reduction in activity at
low and high pH. The suggested mechanism for Slt35 requires Glu162 to be protonated,
but there is no requirement for an equivalent deprotonated residue. The side-chain pKa
of free glutamate is 4.5, suggesting that Glu162 has its pKa value perturbed to a higher
value by its local environment, as seen in the hen egg white lysozyme [38] and many other
enzymes [39]. The loss of activity at lower pH is then likely to be due to unfavourable
protonation of a different residue, with a pKa below 6, that may affect substrate binding or
the overall arrangement of the active site.
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were used at 37 ◦C in 25 mM Tris-maleate containing 10 mM CaCl2. For the lysozyme, 0.1 µM enzyme and 0.6 mg mL−1 cell
suspension were used at 37 ◦C in 25 mM Tris-maleate containing 100 mM KCl.

2.1.4. Effect of the Substrate

Slt35 showed maximum activity at a substrate concentration of 0.4 mg mL−1 (Figure 4A),
in keeping with previous studies, where substrate concentrations of 0.4–0.6 mg mL−1 were
used [17]. Above this, Slt35 activity reduced significantly, demonstrating substrate inhibi-
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tion [40]. The optimal lysozyme activity was observed at substrate concentrations above
0.6 mg/mL (Figure 4B). Unlike Slt35, the lysozyme was not inhibited by further increases
in the substrate concentration, in the range used here. Due to the high concentration of the
enzyme used here, lysozyme did not follow Michaelis–Menten kinetics, so the data were
instead fit to the Morrison equation for tight binding of the substrate [41], giving an appar-
ent Km of 0.034 mg mL−1 cell suspension. This is in keeping with previous studies, which
found Km values in the region of 0.01–0.05 mg mL−1 for M. lysodeikticus cell suspension [42],
and a Kd value of 14 µM for chitotriose [43]. As Slt35 displayed both substrate inhibition
and tight substrate binding, we were unable to obtain good fits for the experimental data.
Fitting to an expression for substrate inhibition based on Michaelis–Menten kinetics [40]
gave a value of 7.54 mg mL−1 for Km and 0.0012 mg mL−1 for KI.
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Figure 4. (A): Effect of the substrate concentration on (A) Slt35 and (B) lysozyme activity. For Slt35, the 7 µM enzyme was
used at 37 ◦C in 25 mM Tris-maleate (pH 5.8) containing 10 mM CaCl2. A fit to an expression for substrate inhibition [40] is
shown. For lysozyme, 0.1 µM enzyme was used at 37 ◦C in 25 mM Tris-maleate (pH 6.0) containing 100 mM KCl. A fit to
the Morrison equation for the tight-binding substrate [41] is shown.

2.1.5. Effect of Temperature

To investigate the effect of temperature on enzymatic activity, Slt35 and the lysozyme
were incubated at different temperatures for 10 min before they were added to the substrate.
The maximum lytic activity of Slt35 was recorded when the enzyme was incubated below
15 ◦C, while the enzyme lost about half of its activity at 25–40 ◦C, and at 50 ◦C the enzyme
precipitated (Figure 5A). Increasing the incubation temperature as high as 60 ◦C did
not show any significant effect on lysozyme activity (Figure 5B). Although all kinetic
measurements in this work were performed at the physiologically relevant temperature of
37 ◦C, the enzyme was always stored at <4 ◦C, and all incubations with potential inhibitors
were performed on ice to avoid denaturation of the enzyme prior to measurements. We
did not expect significant denaturation of the enzyme to occur during the 1 min assay
at 37 ◦C; initial rates were linear. Others have also performed experiments with Slt35 at
temperatures of 25–37 ◦C [18,44,45].
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0.6 mg mL−1 cell suspension were used in 25 mM Tris-maleate (pH 6.0) containing 100 mM KCl. The enzyme was incubated
for 10 min at the temperatures indicated before being added to the substrate. Activity was monitored at 37 ◦C.

2.2. Enzyme Inhibition Studies

The same turbidimetric assay was used to evaluate the inhibition of lysozyme and
Slt35. 1-Deoxynojirimycin, castanospermine, thiamet G and miglitol did not inhibit either
enzyme at concentrations up to 10 mM. Thionine acetate was also evaluated for inhibition
of Slt35 and HEWL. Increasing the concentration of thionine acetate reduced the rate of
the lytic reaction for both enzymes (Figure 6). The IC50 was found to be 89.3 ± 3 µM for
lysozyme and 66.0 ± 0.1 µM for Slt35.
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2.3. Binding Studies

Interestingly, although 1-deoxynojirimycin did not inhibit Slt35, the saturation transfer
difference NMR spectroscopy showed weak enhancement of signals from 1-deoxynojirimycin
on selective excitation of Slt35 (Figure S1), suggesting that this compound is capable of
binding to Slt35. Conversely, saturation transfer difference NMR did not detect any binding
of castanospermine to Slt35.

The extinction of the intrinsic fluorescence of Slt35 and lysozyme in the presence of
thionine acetate was used to determine the binding constant. The effect of thionine acetate
on the fluorescence emission of Slt35 and lysozyme was similar (Figure 7), and the Kd
values of thionine acetate complexed to Slt35 and lysozyme were found to be 17.1 ± 1.0
and 18.6 ± 1.2 µM respectively.
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2.4. Molecular Docking Studies

Docking was performed using the Bristol University Docking Engine (BUDE) [46],
to elucidate the binding mode of thionine acetate in the active of both Slt35 and hen egg
white lysozyme. The docking suggests that thionine binding to lysozyme is dominated
by H-bonding interactions between amino groups in the inhibitor and Glu35 and Arg61
residues in the lysozyme active site (Figure 8). Another, weaker, interaction could occur
between Asn59 and the inhibitor.
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The lysozyme–thionine binding mode obtained here is similar, but not identical, to
that obtained in previous docking studies using the lower-resolution PDB 6LYZ [30], which
showed thionine acetate forming hydrogen bonds to the main-chain carbonyl groups
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of Leu56 and Ile58 of lysozyme. In our work, thionine acetate is shifted more into the
centre of the active site; the orientation and approximate position of thionine is similar to
that observed in the previous work, but hydrogen bonds are made to different residues
(Figure S2). To investigate whether the differences in the predicted binding mode are due
to the different docking software used, we repeated all docking using AutoDock [48]. We
found only small differences between the binding mode of thionine acetate predicted by
BUDE or AutoDock when PDB 2VBI was used (Figure S3), and obtained poses very similar
to those observed previously [30] when PDB 6LYZ was used (Figure S4). This suggests that
the small differences in the lysozyme-thionine binding mode observed between our work
and the previous studies are due to the different crystal structures used.

Docking of thionine with Slt35 suggested the presence of hydrogen bonds between
the two amino groups of the inhibitor and the carbonyls of Glu162 and Gly215 residues
(Figure 9). Another hydrogen-bonding interaction was observed between one of the amino
groups in thionine and the side-chain hydroxyl of Thr172 in the active site of Slt35, while
the side-chain of Val168 formed a hydrophobic interaction with one of the aromatic rings
in thionine. As observed for lysozyme, the Slt35-thionine docking result was very similar
when AutoDock was used (Figure S5).
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Thionine does not make direct interactions with the side-chain of the key catalytic
Glu162 of Slt35 and adopts a quite different binding mode to bulgecin A (Figure S6) [50].
Based on the interactions of bulgecin A with Slt35, an interaction between the cationic
nitrogen of the inhibitor and the carboxylate side chain would be expected, to mimic the in-
teraction between the carboxylate of Glu162 and the oxocarbenium ion intermediate [49,50].
However, such an interaction is not required for inhibition, as long as the active site is ob-
structed. Indeed, thionine sits across the mouth of the Slt35 active site (Figure 9, Figure S6),
blocking binding of the large peptidoglycan chain. As the structure of thionine is quite
different to that of peptidoglycan, and the active site of Slt35 contains numerous other
residues capable of interacting with a cation [49,50], the different orientation of the inhibitor
is not surprising.

Our docking studies suggest that the binding affinity of Slt35 for thionine could be
improved by extending the thionine core at positions C3 and C13 (i.e., the carbon atoms
between the amino groups and the ring bridgeheads; Figure 1). Extension at these positions
with chains or rings containing polar groups would allow additional hydrogen bonding
and/or ion-pair interactions within the active site, increasing affinity and boosting the
inhibition of the enzyme.
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2.5. Antibacterial Testing

Thionine acetate showed no antibacterial activity against Escherichia coli JM109 by
disk diffusion assays. However, when inoculated onto the same disk as ampicillin, thion-
ine acetate did give a small increase in the inhibition zone diameter (Table 1), suggesting
synergism with the antibiotic. This is consistent with previous studies, where the lytic trans-
glycosylase inhibitor bulgecin was shown to greatly increase the potency of beta-lactam
antibiotics [18,19,22], and further supports the view that lytic transglycosylase inhibitors
may be used clinically as combination therapies with beta-lactam antibiotics [7,8,51,52].
Bulgecin A is also an inhibitor of metallo-β-lactamases [53].

Table 1. Effect of thionine acetate on the inhibition zone diameter of ampicillin against E. coli.

Mass of Thionine Acetate/µg Inhibition Zone Diameter/mm

0 25 ± 1

125 25 ± 2

250 28 ± 1

500 30 ± 1

1000 31 ± 1

3. Materials and Methods
3.1. Chemical Reagents and Enzymes

A pET28a plasmid harbouring the gene encoding Slt35 with an N-terminal His-tag, be-
tween NdeI and BamH1 restriction sites, was purchased from Epoch Life Science (USA). The
hen egg white lysozyme was purchased from Sigma-Aldrich. Thionine acetate and other
chemicals were purchased from Sigma-Aldrich or Fisher Scientific unless otherwise stated.

3.2. Protein Production and Purification

Escherichia coli XL-1 Blue and BL21(DE3) cells were transformed with a pET28a plas-
mid harbouring the slt35 gene using standard techniques. A single colony of freshly-
transformed E. coli BL21(DE3) cells was inoculated in LB medium containing kanamycin
(50 µg mL−1) and grown overnight at 37 ◦C and 180 rpm. This overnight culture was used
to seed (1:50 dilution) fresh kanamycin-selective LB medium and growth was continued at
37 ◦C and 180 rpm until the OD600 was 0.6–0.8. slt35 expression was induced using 120 mg
L−1 isopropyl-β-D-thiogalactopyranoside and cultures were incubated at 18 ◦C overnight.
The cells were harvested via centrifugation in a Sorvall RC 6 Plus centrifuge (Thermo
Fisher Scientific, Inc, MA, USA) at 6080× g, and stored at –20 ◦C. When required, cells
were resuspended in a minimal volume of 50 mM Tris-HCl buffer at pH 7.0 supplemented
with 500 mM NaCl, 10% glycerol and 0.05% Tween-20, thawed and lysed by sonication on
ice. Cell debris was removed by centrifuging at 17,065× g in a Sorvall RC 6 Plus centrifuge
(Thermo Fisher Scientific, Inc, MA, USA). The supernatant solution was loaded onto a
HiTrap Chelating column (Ni-NTA resin), which was then washed with the same buffer
and bound protein eluted using a gradient of 0–500 mM imidazole in the same buffer. Frac-
tions containing pure Slt35 were combined and dialysed overnight against 50 mM Tris-HCl
buffer at pH 7.0 supplemented with 300 mM NaCl, 10% glycerol and 0.05% Tween-20.

3.3. Enzyme Activity

Whole Micrococcus lysodeikticus cells were suspended in assay buffer and incubated
at 37 ◦C before adding the purified enzyme (final concentration 0.1 µM for lysozyme
and 7 µM for Slt35). The decrease in turbidity was monitored at 600 nm for 1 min at
37 ◦C, and the initial rate determined. A range of different buffers, pH, salt concentrations,
substrate concentrations and temperatures were investigated. All investigations used
three independent repeats of each condition, and results are expressed as the average
± standard deviation. The optimum assay buffer was found to be 25 mM Tris-maleate
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(pH 5.8) containing 10 mM CaCl2 for Slt35 and 25 mM Tris-maleate (pH 6.0) containing
100 mM KCl for lysozyme. A 0.6 mg mL−1 cell suspension was used in all subsequent
assays. For the substrate dependence of the enzyme activity, the data for the lysozyme
were fitted by nonlinear regression using SigmaPlot 10 to the Morrison equation for tight
binding of the substrate [41]:

v = vmax
(ET + ST + Km)−

√
(ET + ST + Km)

2 − 4ETST

2ET
(1)

The data for Slt35 were fitted by nonlinear regression using SigmaPlot 10 to an expres-
sion for substrate inhibition based on Michaelis–Menten kinetics [40]:

v =
vmaxS

Km + S + S2

KI

(2)

3.4. Enzyme Inhibition

Slt35 or lysozyme was preincubated with the potential inhibitor for 10 min at 0 ◦C
before being added to the assay mixture as above (Section 3.3). Three independent repeats
were performed for each inhibitor. Initial rate data were normalised between the rate in the
absence of the inhibitor and the rate in the absence of the enzyme, and reported as a percent
of inhibition (where the normalised rate in the absence of the inhibitor = 0% inhibition
and normalised rate in the absence of the enzyme = 100% inhibition). The data were fitted
by nonlinear regression using SigmaPlot 10 (Ligand Binding, sigmoidal dose-response,
variable slope):

%inhibition = min +
max − min

1 + 10(logEC50−x)·Hillslope
(3)

3.5. Saturation Transfer Difference NMR

Saturation transfer difference NMR was performed on a Bruker AVANCE III 600 MHz
(1H) NMR spectrometer with a QCI cryoprobe at 25 ◦C. Test compounds (to 5 mM) and Slt35
(to 20 µM) were added to 50 mM potassium phosphate (450 µL final volume) with 50 µL
of D2O. The spectra were produced using excitation sculpting for solvent suppression, a
relaxation delay of 6 s and a saturation time of 5.9 s containing a train of 50 millisecond
E-BURP shaped pulses at 0.5 ppm. For each experiment a corresponding control spectrum
was taken whereby the saturation was performed in the absence of the enzyme; no signal
enhancement was observed in this case.

3.6. Determination of Kd

Dissociation constants were determined by fluorimetric titration, using an LS-22
Luminescence Spectrometer (Perkin-Elmer, Buckinghamshire, UK) attached to a Julabo
F25 water bath (Julabo, Seelbach, Germany). A total volume of 2 mL of 3.0 µM enzyme
in the same buffer as that used for the turbidometry assay was titrated by increasing the
concentration of inhibitors. Fluorescence spectra of the enzyme and enzyme–inhibitor
solution was recorded after each addition. Three independent repeats were performed for
each inhibitor. The excitation wavelength and slit width were 280 and 10 nm respectively,
and the emission wavelength and slit width were 290–450 and 5 nm respectively. The
maximum emission of lysozyme was at 348 nm while that of Slt35 was at 344 nm. The
fluorescence intensity at maximum wavelength was corrected for dilution and for a small
inner-filter effect, and converted to a fluorescence difference:

∆I f = Iinitial
f − I f inal

f (4)
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The fluorescence difference data were then fitted by nonlinear regression using
SigmaPlot 10 (Ligand Binding, one site saturation):

∆I f =
Bmax·x
Kd + x

(5)

3.7. Antibacterial Activity

An overnight culture of E. coli JM109 in the LB medium was diluted to an OD500 of
0.5 and 100 µL aliquots that were spread onto fresh LB-agar (2% agar) plates. Ampicillin
and thionine acetate were dissolved in water to give 3 mg/mL and 100 mg/mL solutions
respectively. Aliquots of these solutions, to give 30 µg ampicillin and 125–1000 µg thionine
acetate, were applied to 5 mm diameter filter paper discs, which were placed onto the
surface of the agar. Plates were incubated at 37 ◦C for 24 h and inhibition zones observed.
Each compound was tested in triplicate.

4. Conclusions

A range of glycosidase inhibitors were found to have no inhibitory activity against
either the hen egg white lysozyme or Slt35, whereas thionine acetate exhibited a high
micromolar inhibition of both enzymes. Although the structure of thionine does not mimic
the structure of peptidoglycan enzymes substrate, molecular docking analysis suggested
that it is able to block the active sites of both enzymes. The activity of Slt35 was much more
sensitive to environmental conditions such as the salt concentration, pH and temperature
than that of the lysozyme and Slt35 was inhibited by high concentrations of the substrate
while lysozyme was not. However, fluorescence results revealed strong binding affinities
of thionine to both enzymes and inhibition constants were similar for the two enzymes.
This work could provide groundwork towards the design of effective inhibitors for LTs
based on modifications to the thionine structure.

Supplementary Materials: The following are available online, Figure S1. Saturation transfer differ-
ence NMR spectrum (A) and solvent-suppressed 1D 1H NMR spectrum (B) of 20 µM Slt35 and 5 mM
1-deoxynojirimycin, in 50 mM potassium phosphate buffer (pH 7.0) at 25 ºC. Signals at 7–8 ppm
in B are from residual imidazole; these signals are not visible in the saturation transfer difference
spectrum (A). Figure S2. Comparison of the predicted binding mode of thionine with hen egg white
lysozyme (PDB 2VB1) according to BUDE (thionine shown as orange sticks), and thionine manually
docked into hen egg white lysozyme (PDB 6LYZ) based on the results of Shanmugaraj et al. (thionine
shown as blue-green sticks). The enzyme is shown in pink as a surface representation of the binding
site (left), and a cartoon representation showing the amino acid residues (as sticks) located in the
active site close to the inhibitor (right). The catalytic Glu35 and Asp52 residues are shown with
the backbone ribbon coloured yellow. The predicted hydrogen bonding interactions are shown as
green dashes with distances in Å. Figure S3. Comparison of the predicted binding modes of thionine
with hen egg white lysozyme (PDB 2VB1) according to BUDE (thionine shown as orange sticks) and
AutoDock (thionine shown as green sticks). The enzyme is shown in pink as a surface representation
(left) or as a cartoon representation with key active-site residues shown as sticks (right). The catalytic
Glu35 and Asp52 residues are shown with the backbone ribbon coloured yellow. Enzyme-ligand
hydrogen bonds are shown in green with the distances indicated. Figure S4. Comparison of the
predicted binding mode of thionine with hen egg white lysozyme (PDB 6LYZ) according to AutoDock
(thionine shown as orange sticks), and thionine manually docked into hen egg white lysozyme (PDB
6LYZ) based on the results of Shanmugaraj et al. (thionine shown as blue-green sticks). The enzyme
is shown in pink as a surface representation (left) or as a cartoon representation with key active-site
residues shown as sticks (right). The catalytic Glu35 and Asp52 residues are shown with the back-
bone ribbon coloured yellow. Enzymeligand hydrogen bonds are shown in green with the distances
indicated. Figure S5. Comparison of the predicted binding modes of thionine with Slt35 (PDB 1QUS)
according to BUDE (thionine shown as orange sticks) and AutoDock (thionine shown as green sticks).
The enzyme is shown in blue as a surface representation (left) or as a cartoon representation with key
active-site residues shown as sticks (right). The catalytic Glu162 residue is shown with the backbone
ribbon coloured yellow. Enzyme-ligand hydrogen bonds are shown in green with the distances
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indicated. Figure S6. Comparison of the predicted binding mode of thionine (orange sticks) with
Slt35 (PDB 1QUS) according to BUDE, and the experimental crystal structure of Slt35 with bulgecin
A (grey sticks) bound (PDB 1D0L). The enzyme is shown in blue as a surface representation (left) or
as a cartoon representation with key active-site residues shown as sticks (right). The catalytic Glu162
residue is shown with the backbone ribbon coloured yellow.
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