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two topographically delimitable connectivity networks 
(weighted directed networks) are established; one associ-
ated with the alpha and one with the theta frequency band. 
The theta network sequence can be described as a set of 
subnetworks (modules) comprising the frontal, central and 
parietal cortex with individual temporal and spatial devel-
opments within and between those modules. In the alpha 
network, the occipital electrodes O1 and O2 act as a source, 
and the interactions propagate predominantly in the direc-
tions from occipital to parietal and to centro-parietal areas. 
These important findings indicate that balance control is 
supported by at least two functional cortical networks.

Keywords  Posture · Brain · EEG · Directed functional 
connectivity · Partial directed coherence

Introduction

Balance control is a fundamental component of human 
every day motor activities such as standing or walking, and 
its impairment is associated with an increased risk of fall-
ing. Controlling posture and balance requires a complex 
interplay within and between the sensory and the motor 
systems. Early animal preparation studies suggest upright 
posture and balance are predominantly controlled by neural 
circuits in the spinal cord, the brainstem and the cerebel-
lum. However, in humans, there is also strong evidence 
for a crucial contribution of the cerebral cortex (Jacobs 
and Horak 2007; Maki and McIlroy 2007; Papegaaij et al. 
2014). In two recent experiments, we used electroenceph-
alography (EEG) to identify cortical regions that become 
activated during a wide range of continuous standing bal-
ance tasks differing in difficulty by changing the base of 
support, surface stability, or both (Hülsdünker et al. 2015), 
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as well as after sudden perturbation of balance (Mierau 
et al. 2015). The results of these experiments indicate the 
performance of balancing tasks is associated with signifi-
cant activation of the fronto-central and centro-parietal cor-
tical regions. Specifically, when balance tasks became more 
challenging a significant increase in cortical theta activity 
was observed in the aforementioned regions (Hülsdünker 
et  al. 2015). This is consistent with previous research 
reporting significant increases in cortical theta activity in 
response to visually induced postural perturbations (Slo-
bounov et  al. 2013), during unstable one leg stance (Slo-
bounov et  al. 2009), or walking on a balance beam when 
compared to normal treadmill walking (Sipp et al. 2013).

The working hypothesis of this study is that cortical 
networks contribute to an optimization of balance control 
and that this contribution can be revealed by time-variant, 
directed functional connectivity analysis between EEG 
electrodes. Directed functional connectivity, also referred 
to as effective connectivity (Friston 2003), can be defined 
as the causal influence of one electrode (or region) on 
another, where the results are often represented as a net-
work (nodes = electrodes; directed edges = connectiv-
ity measures) or a temporally varying network sequence. 
Time-variant, frequency-selective connectivity analysis 
is suitable to investigate the temporal dynamics of corti-
cal networks and allows frequency-dependent conclusions 
about the connectivity structure (Pester et  al. 2015). Our 
study aims to answer the as of yet open question on whether 
cortical connectivity networks during balancing exist—
and if so, how these networks develop in time and which 
possible functions they have. From previous, above men-
tioned studies it can be speculated that during balancing on 
an unstable surface, at a minimum a connectivity network 
related to theta oscillations with nodes over the fronto-cen-
tral and centro-parietal cortical regions is involved.

To test this hypothesis, partial directed coherence 
(PDC), based on time-variant multivariate autoregressive 
(tvMVAR) models (Milde et al. 2010; Leistritz et al. 2013), 
is used as a time-variant, directed and frequency-selective 
interrelation measure (directed interrelation = interaction) 
that provides several methodological advantages in com-
parison to other approaches (Winterhalder et al. 2005). Our 
connectivity analysis is intrinsically linked with a multifac-
eted investigation of the influential patterns of movement-
related artifacts in order to identify time–frequency ranges 
without or with a low degree of artifacts. This strategy is 
preferred to straight artifact rejection because the applica-
tion of all tvMVAR-based connectivity measures to real 
data leads to the dilemma that on the one hand artifacts can 
severely affect the results of any analysis, yet on the other 
hand pre-processing steps such as narrow bandpass filter-
ing and artifact rejection can lead to serious disadvantages 
in the identification of the network (Leistritz et al. 2013).

According to our working hypothesis, we intend to 
provide new impetus by testing a novel methodological 
strategy for the analysis of human balance control. The 
main information about methods and analysis results are 
described in the body of the article. In addition, support-
ing information (SI) is provided which encompasses further 
details about the analysis strategy, as well as complemen-
tary results of our investigations.

Methods

Participants, Data Acquisition and Preprocessing

Thirty-nine healthy male university students participated in 
this experiment. Two subjects were excluded from subse-
quent data analyses due to technical problems during data 
recording resulting in excessive artifacts in the EEG signal. 
Therefore, the data of 37 participants [mean (SD) age: 24.7 
(3) years; body weight: 77.3 (8.1) kg; height: 180.4 (5.1) 
cm; body mass index: 23.8 (2.4) kg/m2] were analyzed. All 
subjects stated that they were: free of injury for at least the 
last 6 months, had no pain or discomfort and/or were not 
experiencing any limitation in the range of motion during 
their daily routine and physical activity. In addition, all par-
ticipants confirmed that they did not undertake any physi-
cal exercise within 48  h prior to the experiment. Partici-
pants were informed about the experimental protocol and 
their written consent was obtained beforehand. The study 
was designed and performed according to the standards 
set by the latest revision of the Declaration of Helsinki for 
medical research involving human subjects, and all proce-
dures were approved by the Ethics Committee of the Ger-
man Sport University.

The experimental setup is illustrated in Fig. SI 1 A. Each 
participant completed ten trials of balancing on a stable sur-
face followed by balancing on an unstable surface using the 
“Posturomed” (Haider Bioswing, Pullenreuth, Germany). 
The Posturomed (http://www.posturomed.de) is a balance 
testing and training apparatus equipped with a passively 
oscillating platform (60 × 60  cm) mounted on eight steel 
cables. The steel cables are covered by stiff plastic which 
“progressively dampens/attenuates” the oscillating behav-
ior of the platform in response to external forces (i.e. mus-
cular force). Progressively attenuated oscillating behavior 
means that the attenuation and thus, the deflection resist-
ance exponentially grows with increasing deflection of the 
platform. The platform was laterally deflected by 2.2  cm 
and fixed by an anchor in this position [i.e. balancing on 
a stable surface (BSS)]. Subjects positioned themselves on 
their dominant leg in center of the platform. Motor asym-
metry was determined beforehand using a standardized 
inventory (Reiss and Reiss 2000). Each experimental trial 

http://www.posturomed.de
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lasted a total of 30  s. In each trial the investigator ran-
domly released the anchor within the 5th and 20th second. 
Mean across subjects onset times did not significantly dif-
fer between trials. The anchor release induced a medial 
movement of the supporting platform and allowed the plat-
form to move freely [i.e. balancing on an unstable surface 
(BUS)]. The inter-trial interval was set at 1  min to avoid 
fatigue, and anchor release was synchronized with the 
ongoing EEG. Onset timing of BUS was determined as the 
time point following anchor release at which the platform 
motion exceeded its mean oscillation level in a medial–lat-
eral or anterior–posterior direction during the last 5 s prior 
to anchor release by five standard deviations. During per-
formance of the task subjects were instructed to place their 
hands at the iliac crests, focus on a fixation crosspoint at 
eye level, and to reduce sway to a minimum. EEG was 
recorded from 32 scalp locations (Brain Products GmbH, 
Gilching, Germany) overlying the whole scalp and equally 
distributed over both hemispheres according to the inter-
national 10:10-system (Jurcak et al. 2007). One additional 
electrode was used to measure the electrooculographic 
signal. The electrical reference and the ground electrode 
were located on positions FCz and AFz, respectively. The 
sampling rate was set to 1000  Hz. Electrode impedances 
were kept below 5 kΩ. The electrode scheme together with 
corresponding mean recorded time series (averaged by sub-
jects and trials) is depicted in Fig. SI 1B.

The data were first segmented into 8 s epochs based on 
platform release (i.e. switch from a stable to an unstable 
surface). Therefore, the last 3 s of BSS and the first 5 s of 
BUS were analyzed. For connectivity analyses data were 
re-referenced to the common average reference and ocular 
artifacts were corrected using the Gratton and Coles ocu-
lar correction algorithm (Gratton et al. 1983) implemented 
in the Brain Vision Analyzer 2 software (Brain Products, 
Gilching, Germany). Finally, data were downsampled to 
100 Hz (Matlab decimate function).

Time–Frequency Analysis of EEG Activity

The time–frequency analysis of EEG activity aimed at 
identifying and quantifying oscillatory components of the 
signal as provided by the resulting amplitude time–fre-
quency maps (TFMs); furthermore the TFMs were used for 
the detection of possibly occurring artifacts. This time-var-
iant amplitude spectrum analysis was carried out by means 
of time-variant, multivariate autoregressive (tvMVAR) 
models and matched Gabor transform (MGT) (Wacker and 
Witte 2011). MGT is a fusion of the Gabor Transform and 
the Matching Pursuit approach, which allows amplitude 
as well as phase extraction with an optimal (individual) 
time–frequency resolution for each transient signal com-
ponent. The tvMVAR model estimation was performed by 

means of the multivariate linear Kalman Filter approach 
(Milde et  al. 2010). In addition to its advantage of time 
variance, this algorithm separately integrates multiple trials 
and thus, a loss of information due to averaging by trials 
prior to or after model estimation is avoided. Consequently, 
for multi-trial data, it has been demonstrated that this algo-
rithm has an overall superior performance in comparison 
with other Kalman (Ghumare et  al. 2015) and alterna-
tive approaches (Milde et al. 2010). The required Kalman 
control parameters were set to 0.02 (adaption of covari-
ance matrix) and 0.005 (step-width of random walk). The 
tvMVAR model order p was chosen according to Akaike’s 
information criterion (Akaike 1974) which penalizes both, 
a poor model fit as well as an excessive number of involved 
model parameters that have to be estimated. Under fur-
ther consideration of a sufficient fit between parametric 
tvMVAR spectra and empirical Fourier spectra, the model 
order was finally set to p = 20. It should be noted, that the 
same tvMVAR model was subsequently used for the com-
putation of the time-variant PDC.

The tvMVAR model parameters and the MGT both 
provide TFMs that represent EEG activity (amplitude-
TFMs). While the MGT amplitude-TFMs have an optimal 
time–frequency resolution, the tvMVAR amplitude-TFMs 
possess a comparable resolution as the subsequently calcu-
lated PDC-TFMs and thus allow a more appropriate com-
parison between time-variant spectrum and time-variant 
connectivity.

Furthermore, a MGT-based phase locking index (PLI) 
analysis (Witte et  al. 2008) has been used. The PLI anal-
ysis yields TFMs indicating the degree of phase-locked 
oscillations. The ‘sway-related’ interference (i.e. artifact) 
is observed to varying degrees in all EEG signals, and it 
is phase-locked to the onset of the BUS condition. Con-
sequently, possibly occurring higher harmonics must also 
be phase-locked and can be detected via PLI in order to 
avoid misinterpretations (Wacker et al. 2011). The detailed 
description of the whole artifact detection and rejection 
strategy and its results can be found in SI 2.

Time–Frequency Analysis of EEG Connectivity

The connectivity analysis was conducted by means of time-
variant PDC (Baccalá and Sameshima 2001). It is a causal 
(i.e. directed) connectivity measure that is calculated on 
the basis of the Fourier transform of the tvMVAR model 
parameters. In Leistritz et  al. 2013, this approach is sys-
tematically evaluated with regard to influencing algorith-
mic parameters (model order, control parameters), effects 
caused by preprocessing (narrow-band filtering, artifact 
rejection, number of measurement trials) as well as the 
modeling approach (bivariate vs. multivariate model), 
and physiological effects (volume conduction). Such 
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preliminary investigations enable a more reliable PDC 
analysis and help to avoid misinterpretations of the results.

In order to prevent artificial results due to differing sig-
nal amplitudes, time-variant generalized PDC (in the fol-
lowing also abbreviated as PDC) was used in this study. It 
is a scale-invariant development of PDC which is normal-
ized by the model error variances, dispensing any prior 
signal normalization (Baccalá and Sameshima 2007). For a 
number of D electrodes the results of PDC computation can 
be represented as a D × D block-matrix (PDC matrix) with 
zero diagonal elements. This consists of D ⋅ (D − 1) PDC-
TFMs (x-axis = time, y-axis = frequency, z-axis (color) =

PDC values
∧
= interaction values). In Fig.  1a several 

sub-matrices of the grand mean (i.e. mean over subjects) 
PDC matrix are depicted. Each PDC-TFM comprises all 
information on the interactions for one of two directions 
between a pair of electrodes (e.g. FCz → FC1, designation 
①, Fig. 1a) and the corresponding PDC-TFM of the reverse 
direction (FC1 → FCz) is represented by the symmetric 

matrix element (designation ②, Fig. 1a). The PDC results 
can be transferred into a weighted, directed network that 
is composed of all electrodes and the interaction values 
(PDC) between them (Fig.  1b). As a scalar interaction 
measure, the mean within a region of the PDC-TFMs is 
used (e.g. red solid frame), where a region is defined by 
a frequency band Δf  and a time interval TI of interest (as 
an example Fig.  1b: Δf = 5−7Hz, TI = 6.5–7.5  s). Both, 
Δf  and TI values constitute the regions of interest (ROI) 
from which the mean PDC is extracted. For better visual 
analyzability, disjunct value ranges of mean PDC values 
(0.08–0.1, 0.1–0.12 and >0.12) are used for network con-
struction. During BSS the highest mean PDC for the theta 
network is around 0.08 whereas during BUS it is around 
0.18. Based on this information, the PDC’s discretization 
ranges have been defined. In this way the time evolution 
of the network weights (mean PDC within an ROI) can be 
studied as an overlay of weight-related subnetworks (red, 
green, and black arrows in Fig. 1) for each analysis interval.

Fig. 1   Transition from grand 
mean PDC-TFMs (a) to a 
weighted directed network of 
a selected midline electrode 
array (b). The color coding 
represents the PDC value range. 
To provide a simplified visual 
analysis, we discretized the 
weighted networks based on 
three different mean interaction 
strengths (0.08–0.1, 0.1–0.12, 
>0.12). The change from BSS 
to BUS occurred at time 3 s. 
(Color figure online)
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The PDC connectivity analysis can be condensed to 
essential characteristics by calculating basic network meas-
ures (Rubinov and Sporns 2010). One appropriate meas-
ure for quantifying the global degree of connectivity is the 
average node strength (ANS) (Barrat et al. 2004) which can 
be used to demonstrate significant connectivity differences 
between BSS and BUS for each frequency bin (see “Sta-
tistics” section). The node strength of one node quantifies 
the general level of communication between this node and 
the other nodes of the system and is defined as the sum of 
all incoming and outgoing weights associated to this node. 
The ANS of the network is then gained by the arithmetic 
mean of all node strengths and provides a measure of the 
global connectedness within the whole system. The results 
of ANS analysis are based on the computed PDC-TMFs 
without discretization.

Tensor Decomposition

Because of the massive production of data resulting from 
PDC analysis, tensor decomposition was proposed (Pester 
et  al. 2015). This application decomposes the multivari-
ate PDC output into a sum of rank-1 outer products (Kolda 
and Bader 2009) which leads to a significant reduction in 
the volume of results, thereby considerably simplifying the 
identification of general connectivity patterns and eliminat-
ing the requirement for any preliminary definition of spa-
tial/temporal/frequency ROIs. Furthermore, it enables a 
straightforward integration of multiple subjects without the 
need for a subject-by-subject analysis or a prior averaging 
over the group.

Statistics

The non-corrected Rayleigh test was used to create a trig-
ger threshold for the detection of time segments of strong 
phase locking in a PLI time–frequency map (Fig. 2c). The 
null hypothesis is that the phases are uniformly distributed. 
Under this hypothesis, the PLI tends to zero. The applica-
tion of the statistical threshold results in binary PLI-maps 
(0 = below the threshold or 1 = above the threshold). In this 
study, the significance level for thresholding was α = 0.05.

In order to test whether there is a significant difference 
of frequency band activity between BSS and BUS situa-
tion, a Bootstrap approach was used. For each channel and 
the theta and alpha frequency band, the confidence tube 
was estimated based on 1000 Bootstrap replications, where 
the 2.5% quantile defined the lower bound, and the 97.5% 
quantile defined the upper bound of the confidence tube. A 
detailed description of the method is provided in SI 2.

A statistical difference between global connectivity 
during BSS vs. BUS was confirmed as follows: for each 
frequency bin, the PDC networks were averaged across 

time during the BSS and the BUS period separately; and 
for the resulting two networks, ANS was calculated as a 
measure of global connectedness. In order to test whether 
there is a significant change of frequency-dependent con-
nectivity between BSS and BUS, a paired t test across 
subjects has been used. Common type I error level was 
set to α = 0.05 and was adjusted to multiple testing by 
Bonferroni correction.

Results

Time–Frequency Analysis of EEG Activity

The grand mean amplitude-TFMs of activity showed 
strong theta oscillations at about 6  Hz (e.g. CPz) and 
alpha oscillations at 10  Hz (amplitude-TFMs based on 
the tvMVAR model and matched Gabor transformation). 
The results of the confidence tube analyses can be sum-
marized as follows: in particular at CPz the mean ampli-
tude within the theta sub-band was increased about 2  s 
after the onset (from about 7.5 to 10  µV) to the BUS 
situation. For the electrodes CPz and Pz (5–8 s) as well 
as Cz, C1, CP1, CP2 (5–6  s) the mean theta amplitude 
significantly increased during BUS compared to BSS. 
For each of these electrodes no overlap of the confidence 
tubes (95% confidence interval) for BSS and BUS could 
be observed, meaning that there is a significant difference 
in activity between these two balancing conditions in the 
theta band. In addition, strong alpha amplitude suppres-
sion (‘alpha drop’) occurred at the occipital electrodes 
and, in a weaker form, at the parietal electrodes (Fig. 2b). 
This ‘alpha drop’ reaches its maximum about 1 s after the 
onset of BUS. A significant difference of the alpha ampli-
tude between BSS and BUS, after the ‘alpha drop’, was 
not observed. Examples of the confidence tube analysis 
are illustrated in Fig. SI 2.2.

The results of this detailed time–frequency analy-
sis were also used to investigate whether and, if so, in 
which frequency bands (ROI) a connectivity analysis 
is appropriate. The results are described in detail in SI 
2 and can be summarized as follows: (1) for the theta 
and the alpha band a contamination by higher harmon-
ics of the ‘sway-related’ interference is unverifiable, so 
that a connectivity analysis within the chosen frequency 
bands is meaningful; (2) the time-interval ranging from 3 
to 3.5 s is strongly influenced by the BUS onset (motion 
artifact). This is also true for the theta and alpha band. 
According to the time-resolution of the tvMVAR-based 
analysis, the artifact influence is detectable until 1 s after 
the BUS onset, i.e. the interpretation of this fact must be 
considered.
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Connectivity and Network Analysis

According to the results of activity-based time–frequency 
analyses, the regions of interest with regard to electrodes, 
temporal samples, and frequencies for our PDC-based net-
work analysis were chosen. The mid frequencies of the 
selected frequency bands, which include a theta (5–7 Hz) 
and an alpha (9–11 Hz) sub-band, correspond to the grand 
mean results of the time–frequency analysis. For the net-
work representation of our results, the following ROIs 1–4 
were defined according to time intervals: TI1 = 3.5–4.5  s, 
TI2 = 4.5–5.5  s, TI3 = 5.5–6.5  s, TI4 = 6.5–7.5  s. The pro-
cedure illustrated in Fig. 1 was applied for each sub-band 
to each TI which leads to two sequences of four weighted, 
directed networks that represent the connectivity proper-
ties during the BUS for both the theta and alpha networks 
(sequence).

In a preliminary step the influence of remaining artifacts 
on the connectivity analysis was investigated. The conclu-
sions drawn from these investigations are that interactions 
which are originated from the electrode sites Fp1 and Fp2 
should be excluded from an interpretation and those related 
to the sites T7, T8, P7, and P8 must be interpreted care-
fully. Furthermore, the influence of artifactual EEG activity 
on the central, centro-parietal, parietal and occipital net-
work interactions is only marginal. According to our work-
ing hypothesis that the connectivity networks are presum-
ably located in these brain areas, the full tvMVAR model 
has been used for further investigations.

The results for the connectivity analysis for the BSS and 
BUS are reported here, but those for the BSS are not illus-
trated. For network analysis the lowest discretization level 
for the mean PDC values was chosen in such a way that for 
the theta networks during BSS no strong interactions exist. 

Fig. 2   Selected results of the 
grand mean time–frequency 
analysis (amplitude spectrum) 
for the EEG at CPz and O2. 
The TFMs in row (a) are based 
on our tvMVAR approach and 
those in row (b) on MGT. The 
color coding represents absolute 
amplitude values (µV). The 
TFMs of significant PLI-values 
(significance level = 0.05) 
are depicted in row (c) and 
designated by black color. The 
horizontal red dashed lines 
designate 2.6, 5.2, 7.8, and 
10.4 Hz (possible harmonics of 
the sway-related interference). 
The change from BSS to BUS 
occurred at time 3 s. (Color 
figure online)
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For better illustration of the results, only the PDC ranges 
0.08–0.1, 0.1–0.12 and >0.12 are used (Fig. 3), represent-
ing the strongest interaction degrees. The theta networks 
formed by the strongest interactions are depicted for all 
electrodes in Fig. SI 2. These results provide a clear ration-
ale for using a limited set of electrodes for presenting the 
networks in Fig.  3, i.e. the theta network topography for 
the strongest interactions is restricted to these electrodes. 
This is also true for the alpha network topography, which is 
restricted to another but also topographically circumscribed 
electrode set.

For the description of the network structure we use the 
term module, which is defined as a set of nodes that main-
tain a large number of interactions amongst each other 
(intra-module edges) and a small number of interactions 
to nodes outside their module (inter-module edges) (van 
den Heuvel and Sporns 2013). For the BUS-related theta 
band network sequence it can be clearly demonstrated that 
CPz and the surrounding electrodes constitute a module. 

CPz acts as a central source electrode, where the interac-
tion effect is topographically limited. The electrode site 
Cz is also involved and forms a second theta subnetwork 
together with CPz. A further module is formed by the 
electrode sites FCz, FC1, and Fz. The interactions in the 
frontal, fronto-central sub-module are not as strong as 
in the sub-module CPz/Cz and those between both sub-
modules are even lower. The basic structure of the theta 
network can already be observed right after the onset of 
BUS (time interval 3.5–4.5 s). However, the interactions 
become stronger with increasing temporal distance to the 
onset. The module structures and their changes can also 
be obtained by using the extended theta band (4–8  Hz) 
and different bands e.g. 6–8 Hz (not documented in this 
article). As already mentioned above, another important 
finding is that during BSS (baseline) no interactions with 
(mean) PDC values >0.08 can be observed, i.e. these 
module structures are unique to BUS.

Fig. 3   Dynamics of the theta network (5–7 Hz) after onset of BUS. The color coding of the PDC-TFMs are discretized in three ranges (red, 
green and red arrow). (Color figure online)

Fig. 4   Dynamics of the alpha network (9–11 Hz) after onset of BUS. The color coding of the PDC-TFMs are discretized in two ranges (red and 
green arrow). (Color figure online)
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In the same way, the sequence of alpha networks was 
investigated. Figure 4 illustrates the results for the TI1–4, 
where only two discretization steps were used (0.1–0.12 
and >0.12). For BSS (not shown), the strongest interac-
tions can be observed between the occipital electrodes with 
O1 and O2 acting as sources for Oz. For TI4 during BUS 
this network structure shows an expansion towards the left 
and right parietal as well as centro-parietal electrode sites 
(P7/8, P3/4, CP5/6). This expansion encompasses large 
parts of the magnocellular and parvocellular systems, 
which are hypothesized to form two subsystems within the 
pathway for processing of visual information (Vialatte et al. 
2010). Specifically, the interactions between CP5/6, P7/8, 
O1/2/z are suggested to reflect the parvocellular system and 
those between P3/4, O1/2/z the magnocellular system. The 
most noteworthy point is that the nodes O1 and O2 act as a 
source, and that the interactions propagate predominantly 
in the directions from occipital to parietal and to centro-
parietal areas. The midline areas (i.e. Pz/CPz) are clearly 
omitted. A topographical overlap with the theta network 
does not exist for the two strongest interaction degrees (i.e. 
red and green arrows in Figs. 3, 4). The network based on 
TI1 is very similar in comparison to the later networks. 
This means that the ‘alpha drop’ (see above) is not associ-
ated with a specific network structure.

Finally, we found a significant global increase of the 
degree of connectivity within the PDC networks during 
BUS as compared to BSS: the paired t tests for ANS values 
during BSS as compared to during BUS yielded p values 
below the significance level of α = 0.05 (Bonferroni cor-
rected with respect to considered frequencies) across the 
entire frequency range 0–30 Hz. That means, compared to 
the BSS task, the BUS task leads to an enhanced connect-
edness within the whole network, irrespective of the con-
sidered frequency.

Tensor Decomposition

The set of subject-related PDC matrices forms a fourth 
order tensor (PDC tensor) with the modes space, time, 
frequency, and subject, i.e. a 4-mode tensor decomposi-
tion enables a subject-wise investigation with a reduced 
dimensionality of results without using regions of inter-
ests with respect to topography, time or frequency. The 
application of a 4-mode parallel factor analysis (PARA-
FAC) with M factors results in M spatial matrices (mode 
space) that indicate the strength of interactions concern-
ing all electrode combinations, in M time courses (mode 
time) that indicate the time-variant changes of connec-
tivity, in M frequency loadings (mode frequency) that 
indicate the frequency-dependent variability of network 
patterns, and finally in M subject-related loadings (mode 
subject) that indicate the individual differences between 

the subjects. The handling and interpretation of these fac-
tors is then considerably easier and more intuitive than 
the evaluation of raw, subject-related PDC matrices.

We performed both, full-node (PDC matrix with all 
PDC-TFMs, not shown here) PARAFAC analysis, as well 
as the decomposition of a tensor with a reduced number 
of electrodes, namely electrodes which have turned out to 
be particularly involved in the theta and alpha network. It 
is important to note that the full tvMVAR, applied first, is 
used to derive the PDC-TFMs under consideration of the 
whole set of electrodes. Then, the tensor decomposition 
of the subset PDC-TFMs is aimed to reveal subset-imma-
nent connectivity patterns.

Figure 5 shows the results of a 4-mode tensor decom-
position with M = 5 factors for a partial network, which 
comprises the main nodes of the theta and alpha net-
works (C1, Cz, C2, CP1, CPz, CP2, P7, P8, O1, Oz, 
O2). Factor #1 (1st column) can be clearly attributed to 
the sway-related interference at 2.6  Hz (mode C) in all 
selected electrodes (mode A) and subjects (mode D). The 
proportion of this specific mode to the network strength 
increases over time (mode B). Factor #2 (2nd column) 
describes the circumscribed theta network (red frame in 
the 1st row, 2nd column) which occurs after the onset of 
BUS (green line in the 2nd row, 2nd column) and remains 
thereafter. The frequency mode (3rd row, 2nd column) 
has a peak maximum at the border between the theta and 
alpha bands. This is true for the vast majority of subjects 
(mode D). Factor #3 represents the alpha network, which 
is clearly visible in the topography mode (red frame in 
the 1st row, 3rd column) as well as in the correspond-
ing frequency mode (blue line in the 3rd row, 3rd col-
umn). The time mode (Fig. 4b, 3rd column) indicates that 
the presence of the alpha network related to this factor 
increases during both, BSS and BUS. The subject mode 
shows more variability as compared to the first two fac-
tors. The strong, impulse-like artifact at the onset of BUS 
(release of the platform anchor) is reflected by factor #4 
(2nd row, 4th column), where all frequencies are involved 
(3rd row, 4th column). Factor #5 represents the topogra-
phy of the alpha network (red frame in the 1st row, 5th 
column) during BSS (2nd row, 5th column). The corre-
sponding peak in the frequency mode of this alpha net-
work is about 11  Hz and thus, slightly lower than the 
frequency peak around 12 Hz of factor #2 (3rd row, 2nd 
column vs. 3rd row, 5th column). It must be noted at this 
point that the interpretations of a frequency mode and of 
a spectrum are different because the frequency mode is a 
result of a mathematical decomposition procedure for the 
connectivity analysis results (PDC-TFMs), rather than a 
representation of spectral properties of the recorded EEG 
data.
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Discussion

Theta Network

The theta network occurring after the transition from BSS 
to BUS is associated with a notable increase in activity 
(static balancing as baseline) at a few network electrodes in 
proximity to the CPz. This network comprises more elec-
trodes than those with a significant theta activity increase. 
However, theta oscillations derived from CPz (see Fig. 2) 
and Pz (not shown) are characterized by a circumscribed 
trace within the amplitude-TFM. It can be assumed that 
activity recorded by these electrodes contain activity from 
the midline of the posterior somatosensory association 
cortex (SAC). The SAC is found within the parietal cortex 
and it is directly interconnected with the (pre)motor cortex, 
including the frontal eye field which is crucially involved 
in the control of eye movements (Kandel 2013). Among 
other important higher order central functions, the SAC 

is engaged in somatosensory integration (Iwamura 2003) 
and visuomotor coordination (Georgopoulos and Grillner 
1989). This is consistent with our hypothesis that a theta 
network may contribute to an optimization of the balancing 
control and our results concerning theta activity confirm 
our previous investigation (Hülsdünker et al. 2015), which 
show a significant increase of theta activity in fronto-cen-
tral and centro-parietal cortical areas with increasing bal-
ance task demands. All our results confirm the results from 
Sipp et al. (Sipp et al. 2013), who investigated the localiza-
tion of the theta band response related to the loss of bal-
ance during balance beam walking. These authors reported 
that if subjects lost their balance and stepped off the nar-
row treadmill-mounted balance beam, then a significant 
increase of theta activity within the cortical areas occurred 
that have projections to electrodes constituting the nodes of 
the theta connectivity network identified by this study.

The centrally located theta network module around CPz 
is already established around one second after the onset 

Fig. 5   Results of the tensor decomposition. a The spatial maps 
(where are the connections of this factor?) comprising the channels 
C1, Cz, C2, CP1, CPz, CP2, P7, P8, O1, Oz, O2. The red frames des-
ignate the electrodes which clearly form separate modules within a 
common factor. b The temporal development (when do the connec-
tions of this factor occur?). The green lines at time point 3 s indicate 
the transition from BSS to BUS. c The spectra (at which frequencies 

do the connections of this factor occur?). The blue lines point out the 
frequency where the loadings reach the maximum for a given factor. 
Finally, d shows the subject-wise loadings (which subjects share this 
factor?). Every column represents one factor, i.e. spatial map, time 
course, spectrum and frequency loadings of one column correspond 
to the same factor. (Color figure online)



443Brain Topogr (2017) 30:434–446	

1 3

of BUS and remains stable until the end of the analyzed 
period (5 s). It is striking that this module remains mostly 
‘undisturbed’ from interactions of other electrodes, i.e. 
it is almost isolated. Additionally, a strong directed inter-
action towards Cz develops during BUS (about 1.5–2  s 
after the onset), which itself acts as source for neighbor-
ing nodes (C1/2). This could mean that the involvement of 
the primary motor cortex within this network occurs after 
involvement of the SAC, which highlights the advantages 
of the time-variant approach in contrast to stationary meth-
odologies. The somatotopic representation of the feet and 
legs comprises the medial part of the primary motor cor-
tex M1 and that of the neck and trunk comprises the more 
lateral parts. Coinciding with the beginning of interactions 
related to M1 a frontal module (nodes FCz, FC1/2, Fz, 
F3/4) evolves over the supplementary motor area (SMA) 
and the premotor area (PMA). Associated functions are e.g. 
motor sequencing and planning as well as movement initia-
tion and inhibition (Nachev et al. 2008). Towards the end of 
TI4, weak interactions from parietal nodes to nodes of the 
frontal module (Pz → FCz, CPz → Fz) can be observed. 
This suggests the relevant sensory information sent to the 
medial frontal cortex becomes an integral part of balance 
control once the individual experiences the initial balance 
disturbance, and consequently more finely tuned motor 
responses are needed to meet demands of the task (i.e. keep 
platform movements to a minimum). Interestingly, no inter-
actions were found from SMA/PMA to M1. The results of 
tensor decomposition clearly show that BUS is associated 
with a development of centro-parietal theta network in each 
of the 37 subjects (factor #2).

Alpha Network

According to the ‘gating function’ theory for alpha activity, 
higher alpha amplitudes can be predicted in inhibited corti-
cal areas and lower amplitudes (e.g. during ‘alpha drop’) in 
the cortical areas involved in information processing (Tos-
cani et al. 2010), i.e. ‘alpha drop’ can be interpreted as loss 
of inhibition. This effect is most pronounced at the occipi-
tal (O1/2/z), parietal (P3/4/7/8/z) and temporal electrodes 
(T7/8) and may reduce the inhibitory function of alpha 
activity during the first second after onset of BUS. It can be 
speculated that the transient ‘alpha drop’ acts as an ‘initial 
boost’ to establish the theta and/or the alpha network; in 
general, such interplay between release from and recovery 
of inhibition can be considered as an active process for sup-
porting information processing. The ‘alpha drop’ effect can 
also be observed at the beginning of other postural or bal-
ance control situations (Slobounov et al. 2008).

The electrodes of the alpha connectivity network cover 
those of the centro-parietal theta network like a hull, and 
almost no topographical overlaps (see below, specialty of 

Pz) between both networks exist. In contrast, strong oscil-
latory alpha activity can be detected at electrodes over the 
whole parietal lobe. During BSS a narrow circumscribed 
network already exists (O1 → Oz, O2 → Oz, not shown). 
However, it spreads out topographically after the onset 
of BUS, and its interactions become stronger over time. 
This spreading includes exactly those temporo-parietal 
(also centro-parietal) electrodes at which the ‘alpha drop’ 
(amplitude suppression) is observed (except for Pz). In its 
final state (TI4) this network encompasses large parts of the 
assumed ventral and dorsal pathways of visual information 
processing (Vialatte et al. 2010), where the main direction 
of interactions (processing) is clearly from the occipital to 
the temporo-parietal cortical areas (O1 → P3, O2 → P4; 
O1 → P7 → CP5, O2 → P8 → CP6). This finding indi-
cates that both the ventral (also known as focal or ‘what’ 
system—object motion perception and object recognition) 
and the dorsal (also known as ambient or ‘where’ system—
e.g. sensitive to movement scene) visual system are prob-
ably involved into the optimization of balancing control. 
Vision is not necessary for normal balance. However, pos-
tural stability is improved by vision (Guerraz and Bronstein 
2008). Importantly, P7/8 are part of the network and overly 
areas that have visual functions.

By overlaying the connectivity structures of the theta 
and the alpha networks, the unique characteristics of the 
Pz node become visible—it acts as a sink. Additionally, the 
Pz is also distinctive because of its activity pattern, as the 
alpha (before and after the ‘alpha drop’) and theta oscilla-
tions have comparatively high amplitudes of about 10 µV. 
In contrast, at CPz only weak alpha activity and theta oscil-
lations with similar amplitude values can be observed.

The tensor decomposition shows that the peak frequency 
of the frequency mode of factor #3 is located at a slightly 
higher frequency (12  Hz) than the corresponding peak of 
factor #5 (11 Hz); however due to the low frequency reso-
lution of PDC one should be very careful when interpreting 
this finding. Factor #5 describes the alpha connectivity net-
work during BSS; this is clearly shown by the time mode. 
This may indicate that the alpha network during BUS is not 
an expanded variant of the network which can be observed 
during BSS, i.e. different visual information processing 
and connectivity properties could be assumed for both 
situations.

Methodological Considerations

The occurrence of strong movement-related artifacts limits 
the interpretation of our results. The state-of-the-art tech-
niques for the rejection of such artifacts are ICA-based 
(Gwin et al. 2010). We have previously shown that not only 
the artifact itself, but also artifact rejection can influence 
the results of connectivity analysis. Thus, if a selection of 
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artifact-free analysis intervals and/or frequency ranges is 
possible, then such a selection-based strategy should be 
preferred. By using time-variant PDC approaches artifact 
contaminated time intervals and/or frequency ranges can be 
excluded from interpretation, but some residual uncertainty 
from artifactual influences remains. A further uncertainty 
results from the frequency resolution of all PDC approaches 
(time-invariant and time-variant), which is lower than the 
frequency resolution of a corresponding spectral analysis 
based on the same multivariate model (time-resolutions are 
comparable).

The discretization of PDC values is a necessary step to 
construct visually assessable weighted directed networks. 
We used different discretization schemes, where the funda-
mental network structures and their time evolution remain.

One observation during BUS must be mentioned within 
the framework of a critical discussion of methodology. 
That is, the strengths of the interactions from Fp1 and Fp2 
to the theta network electrodes (‘showerhead-like’ sources 
of interactions) decrease to the degree that the interac-
tion strength of the theta network increases. Therefore, the 
strength gain could be partially caused via the tvMVAR 
model. The minor extent of such a hypothesized methodo-
logical contribution can be demonstrated by the finding that 
the corresponding network sequence on the basis of the 
reduced tvMVAR (SI 2.3B) shows a similar structure and 
also a gain of interactions over time.

Additionally, the influence of filtering for data down-
sampling (see “Methods ” section) must be considered. The 
possible effects can be discussed by results of two studies 
which used different filter settings to investigate their influ-
ence on time-invariant (Florin et  al. 2010) and time-vari-
ant PDC (Leistritz et  al. 2013). For the Matlab decimate 
procedure (downsampling from 1000 to 100  Hz, i.e. the 
upper frequency limit is 50 Hz) a low pass Chebyshev Type 
I IIR filter of order eight is used. Our own investigations 
concerning low pass filter influences on time-variant PDC 
(Leistritz et  al. 2013; Pester 2016) have shown that ratios 
of the upper frequency limit (filter) and the frequency peak 
of the signal higher than two are less relevant, in particular 
when using IIR filter. The ratio values for downsampling 
are higher (theta: 8.33; alpha: 5), i.e. influences are rather 
unlikely.

Finally, a notable point is that all analyses have been 
performed in sensor space. We were aware that an ‘inter-
pretation of estimated connectivity from sensor level 
recordings is not straightforward, as these recordings are 
severely corrupted by effects of field spread’ (Schoffelen 
and Gross 2009), i.e. that results obtained from sensor 
space analyses should be discussed more cautiously than 
results from source space. Source space connectivity analy-
ses by using our time-variant PDC computation were suc-
cessfully performed (Astolfi et al. 2008, 2010; Fallani et al. 

2008; Leistritz et al. 2016), notably with a high number of 
electrodes and an individual, realistic head model. Particu-
larly these two prerequisites are still considered as basic 
requirement for sufficiently accurate connectivity analysis 
in source space. However, there are some known, unre-
solved issues which were emphasized once again by current 
studies. Problems caused by source mixing due to volume 
conduction arise not only in sensor space (Leistritz et  al. 
2013), but also in source space (Haufe and Ewald 2016). 
There are altogether three methodological issues which 
must be taken into consideration for source connectivity 
analysis (Hassan et al. 2014; Leistritz et al. 2016): (1) the 
solution of the inverse problem is ill-posed, (2) an appro-
priate source and head model as well as connectivity meas-
ure must be chosen, and (3) volume conduction effects can 
never be completely abolished. Furthermore, in their recent 
work, Blinowska and colleagues argue that ‘pre-processing 
such as Hjorth transform or projection into source space 
involves mathematical operations that mix the information 
from the signals of the set, so the phase information is lost. 
Therefore, this kind of pre-processing should be avoided’ 
(Kaminski et  al. 2016). This is important because causal 
information is coded in the delays between given signals 
(Kaminski et al. 2016). This discussion concerning reliable 
analysis and interpretation gave the impetus for the devel-
opment of evaluation and benchmarking strategies (e.g. 
Haufe and Ewald 2016), which will be helpful to improve 
analysis strategies and/or the interpretation of results.

Conclusions

It can be concluded that in humans at least two topographi-
cally delimitable functional cortical networks could con-
tribute to an optimization of balance control. The theta 
network is suggested to facilitate somatosensory informa-
tion processing and integration as well as the planning and 
execution of required motor responses. The alpha network 
encompasses the assumed ventral and dorsal pathways, 
and is suggested to promote visual information processing 
necessary for optimal body stability. Our results reveal that 
PDC is capable of minimizing the influence of movement-
related artifacts which makes it a particularly valuable anal-
ysis tool for mobile EEG research. The application of ten-
sor decomposition offers important additional information 
on an individualized level for each subject.
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