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The draft genome sequence of the oleaginous yeast Yarrowia lipolytica stain PO1f, a commonly used metabolic engineering host,
is presented here. The approximately 20.3-Mb genome sequence of PO1f will greatly facilitate research efforts in metabolic engi-
neering of Yarrowia lipolytica for value-added chemical production.
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Yarrowia lipolytica, a nonconventional oleaginous yeast, has re-
cently emerged as a potential host strain that is recognized

both as safe (1) and as a potent producer of value-added chemicals
and industrial protein (2, 3). As a result, there has been a growing
interest in biotechnological applications in this host strain due to
both established biological information and intriguing physiolog-
ical characteristics. Recent efforts have further expanded the ge-
netic toolbox for Y. lipolytica (4, 5) and rewired metabolic net-
works for high-level production of fatty acid-based value-added
chemicals (6–9).

Although a high-quality genome sequence of Y. lipolytica strain
CLIB122 (E150) has been available (10), this strain is not the most
popular for metabolic engineering applications. Specifically, Y. li-
polytica strain W29 (CLIB89) and its derivatives, such as PO1f,
have been more widely used, especially in metabolic engineering
studies for value-added chemical production (6, 7, 9, 11–13), ther-
apeutic protein production (14, 15), and fundamental microbiol-
ogy studies (16–18). As one of the parental strains of the French
inbred lines, the wild-type haploid strain, W29, was originally iso-
lated from sewage material (19). A preliminary sequencing effort
was conducted with only 4.9 Mb available (20). To gain a better
understanding of the strain W29 and its potential for value-added
chemical production, we generated the genome sequence for its
derivative strain, PO1f.

The genome of Y. lipolytica PO1f was sequenced using the Il-
lumina HiSeq DNA sequencing platform (PE2X100). The raw se-
quence data comprise a total of 8,740,022 reads that together pro-
vide very high sampling coverage of the genome (43.7-fold
coverage). The reads were assembled using Velvet with a k-mer
size of 55 (21). This led to a genome assembly containing 669
contigs (each at a length of �500 bp). The total length of the
genome assembly is 20,282,994 bp, with an N50 equal to 58 kbp.
The reads were also assembled using the A5 pipeline (22), and gaps
were closed with IMAGE (23) to 348 contigs (each at a length of
�500 bp) and further scaffolded based on the genome sequence of
strain CLIB122 using ABACAS (24). A total of 19,922,824 bp was
placed to the final 6 scaffolds.

The final de novo assembled genome was analyzed to assign
open reading frames (ORFs) with Augustus (25) trained with Y. li-
polytica CLIB122 data. A total of 6,420 putative ORFs were iden-
tified and 4,096 were annotated with Blast2Go (26). The genome
sequences of PO1f and strain CLIB122 are very similar in nature.
By mapping the Illumina reads to the CLIB122 genome using
BWA (27) and analyzing using Samtools (27) and BEDTools (28),
a total of 24,675 single nucleotide variations were called in PO1f
genome sequences (QUAL �30; DP �10). Long terminal repeat
(LTR)-retrotransposon elements are confirmed to be absent in
strain PO1f, matching prior information about this strain (20).
There is one large deletion in chromosome A with four ORFs
missing. Two of them are weakly similar to the SMC5/6 complex
(YALI0A01562p and YALI0A01602p), which are related to
double-strand break repairing and homologous recombination
(29). These absences may give rise to differences in homologous
recombination efficiencies in this strain.

Nucleotide sequence accession numbers. This whole-genome
shotgun analysis has been deposited at DDBJ/EMBL/GenBank
under the accession no. JAFI00000000. The versions described in
this paper are versions JAFI01000000 and JAFI02000000.
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