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Abstract

Microbial community assembly is shaped by deterministic and stochastic processes, but the

relationship between these processes and the environment is not understood. Here we

describe a rule for the determinism and stochasticity of microbial community assembly

affected by the environment using in silico, in situ, and ex situ experiments. The in silico

experiment with a simple mathematical model showed that the existence of essential symbi-

otic microorganisms caused stochastic microbial community assembly, unless the commu-

nity was exposed to a non-adapted nutritional concentration. Then, a deterministic

assembly occurred due to the low number of microorganisms adapted to the environment.

In the in situ experiment in the middle of a river, the microbial community composition was

relatively deterministic after the drastic environmental change caused by the treated waste-

water contamination, as analyzed by 16S rRNA gene sequencing. Furthermore, by culturing

microbial communities collected from the upstream natural area and downstream urban

area of the river in test tubes with varying carbon source concentrations, the upstream com-

munity assembly became deterministic with high carbon concentrations while the down-

stream community assembly became deterministic with low carbon concentrations. These

results suggest that large environmental changes, which are different from the original envi-

ronment, result in a deterministic microbial community assembly.

Introduction

Microbial communities in the human gut, floral nectars, and bioreactors are shaped by not

only deterministic but also stochastic processes, which result in different microbial communi-

ties even in the same environment [1]. The deterministic convergence and stochastic variation

among microbial community replicates have been studied with various systems, such as bot-

tom-up synthetic microbial communities with a few microbial species and microbial commu-

nities cultivated from the natural environment. Previous research has used the bottom-up

synthetic microbial communities to study population density fluctuations around replicate-

average dynamics in three microbial species communities [2], stochastic assembly in the host

by two bacterial species [3], priority effects among four yeast species [4], and high-order
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interactions among three bacteria [5]. These results are important to know the core rules of

microbial community assembly; however, it is also necessary to extract the rules for stochastic

processes from communities consisting of many microorganisms. This can be done by culti-

vating microbial communities collected from in situ environments, and analyzing 16S rRNA

gene sequences [6, 7]. Interestingly, assembled microbial composition in communities from

the surface of leaves were taxonomically diverse at the genus level, but converged at the family

level [7]. This suggests that many genus-level taxa have similar functions to adapt to the envi-

ronment, but family-level taxa have different functions to adapt. However, the impact of the

environment on the stochasticity of microbial community assembly remains unknown.

In this study, to determine a rule for the determinism and stochasticity of microbial com-

munity assembly, the hypothesis that microbial community assembly becomes deterministic

by large environmental change was examined in in silico, in situ, and ex situ experiments (Fig

1). In the in silico experiment, by constructing a mathematical model in which the traits of

nutrient intake differed among microbial species and adding an effect of essential microorgan-

isms, the stochasticity of the microbial community assembly was examined by adding noise to

initial microbial abundances. Then, by virtually constructing microbial communities adapted

to high/low nutritional concentrations, which consisted of many microorganisms adapted to

high/low nutritional concentrations, the stochasticity of the microbial community assembly

was examined when exposed to non-adapted nutritional concentrations. In the Tama River in
situ experiment, we examined the stochasticity of the microbial community composition

where the river environment changed drastically after mixing with the treated wastewater. Fur-

thermore, by culturing microbial communities collected upstream and downstream of the

Tama River in test tubes with varying carbon source concentrations, the effect of the combina-

tion of the original environment and the culturing environment on the stochasticity of micro-

bial community assembly was examined.

Materials and methods

Ethics statement

We sampled water from the Tama river in public space for this study. The Ministry of the

Environment in Japan does not restrict to sample water (~10 L) from the Tama River in public

space.

Mathematical model of the microbial community

The mathematical model used in this study was based on MacArthur’s consumer resource

model modified by J. E. Goldford et al. (Fig 2) [7]. The model was further modified by the

addition of the effect of essential symbiotic microorganisms and the intake specialty for a spe-

cific resource concentration. The modified mathematical model was as follows:

dNi

dt
¼
P

a
FiGiaCiaRaNi � miNi ð1Þ

dRa
dt
¼ Ha �

P
iFiGiaCiaRaNi þ

P
b;iFiGiaD

i
ab
CiaRaNi ð2Þ

where Ni and Rα represent the biomass of microbial species i and the amount of resource α (S1

Table). In Eq (1), the first term indicates microbial growth by consuming resources and the

second term indicates the death and dormancy of microorganisms. Resource consuming rates

are decided by effects of essential symbiotic microorganisms Fi, specialization for a specific

resource concentration Giα, and a species-specific resource α consuming rate Ciα. Fi ¼
si

Kiþsi
, in
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which si represents the total amount of essential microorganisms for species i and Ki represents

a value similar to the Michaelis constant, indicates that a decrease in the total essential micro-

organism amount si represses the resource consuming activity of species i. Gia ¼ 4
Ia

LiþIa
Li

LiþIa
, in

Fig 1. Schematic of a rule proposing deterministic assembly by environmental change. If the environment changes from its original state that fits many

pooled microorganisms, the assembly of microbial communities may become deterministic due to the limitation of possible self-organization patterns.

https://doi.org/10.1371/journal.pone.0260591.g001

Fig 2. In silico model design. Each microbial species uptakes resources and secretes metabolic byproducts. Arrows from resources to microbial species indicate

resource uptake and opposite arrows indicate secretion of metabolic byproducts. All resources are associated with specialized microbial species, as indicated by

thick arrows. Each microbial species has essential symbiotic microorganisms, indicated by dashed arrows. For example, the metabolism of the microbial species

N1 is activated by the existence of microbial species N3.

https://doi.org/10.1371/journal.pone.0260591.g002
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which Iα represents the supply concentration of resource α into the medium and Li represents

a value similar to the Michaelis constant, indicates that the specific resource concentration

activates the resource consuming activity of species i (S1 and S2 Figs). In Eq (2), the first term

indicates the resource supply, the second term indicates resource consumption, and the third

term indicates the secretion of metabolic byproducts. For simplicity, it was assumed that only

one resource was supplied to the communities and other resources were produced by meta-

bolic activity. Ha ¼
Ia� Ra
ta

, in which τα represents the transfer rate, denotes the supply resource.

Di
αβ depicts the stoichiometric matrix from resource β to α. Microorganisms in the model can

be considered groups of microbial species, defined as a “guild” in ecology [8], with each group

exploiting resources and interacting with other groups in a similar way.

Numerical calculation of microbial community assembly

For numerical calculation using the above mathematical model, the Monte Carlo method was

used. As a testbed, it was assumed that one of 10 resources was continuously supplied, and the

resources were uptaken and secreted as metabolic byproducts by microorganisms. The spe-

cies-specific resource α consuming rate Ciα was decided with a rule that each species special-

ized for a resource fi as in J. E. Goldford et al. [7]. We first sampled Ci,α = f as:

Ci;a¼fi
� Normalðm; s2Þ, where Normal(μ, σ2) represents a normal distribution of mean μ and

standard deviation σ. Ci,α = fi was set between 0–1. Next, we sampled C’i,α6¼fi by uniform distri-

bution, C’i,α6¼fi ~Uniform(0, 1). Ci,α6¼fi was set as Ci;a6¼fi
¼ 1 � Ci;a¼fi

� � C0i;a6¼fiP
g6¼fi

C0i;g
. For all calcula-

tions, we selected μ = 0.4 and σ = 0.01.

To examine changes in the supplying resource concentration, two communities were

assumed; each adapted to a high or low resource concentration, respectively (S1 Fig). We

chose the adapted resource concentration as Li = 100 for the high concentration and Li = 1 for

the low concentration (S2 Fig). For simplicity, it was assumed that only species group S special-

ized for a supplied resource fs had Gi2S;a¼fs
¼

Ia
LiþIa

Li
LiþIa

for the supplied resource and that for

other resources or other species, Gi2S;a6¼fs
¼ 1 and Gi=2S,α = 1. The community adapted to a high

resource concentration consisted of 45 and five species adapted to a high and low resource

concentration, respectively, for a supplied resource, and 10 species specialized for each of the

other resources. The effect of essential-symbionts Fi sið Þ ¼
si

Kiþsi
was required for stochasticity.

The number of essential-symbionts for each microorganism was 10, which were randomly

selected among species specialized for other resources. As a supply resource concentration Iα,

Iα = 100 was examined as supply of a high resource concentration and Iα = 1 as supply of a low

resource concentration (S2 Fig for other concentrations). Other parameters were Ki = 0.01, mi

= 0.05, and τα = 1. Each numerical calculation was performed 10 times by changing the initial

biomass, which were randomly selected between 0.01 and 1. Renkonen similarity was calcu-

lated for each of the 10 replicates using the final microbial compositions. The repeated calcula-

tion was further assessed 100 times by rechoosing the resource consuming rate Ciα,

stoichiometric matrix Di
αβ, and essential symbionts (S3 Fig).

To examine changes in the number of species comprising the community, the model was

the same as the abovementioned for the examination of changes in the supplying resource con-

centration, but the adaptation to a specific resource concentration was not added, with Gi,α = 1

in Eqs (1) and (2). When the number of species comprising the community changed, each

number of species specialized for one of 10 resources equalized. Source codes for these numer-

ical calculations are available at https://github.com/Nishida12/Stochastic_community_

assembly.
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Sample site and sample collection

The Tama River is a major flowing border between the Tokyo and Kanagawa prefectures. The

river spans 138 km in length and flows through both natural and urban areas. In such a river

where the environment changes drastically, river water was collected once every two months

at eight sites for a year (S4 Fig). The drastic change occurred by contamination of treated

wastewater from two wastewater treatment plants between site 4 to 5 and four plants between

site 5 to 6 [9]. The sampling period was from August 31, 2018 to July 21, 2019. The sampling

days and the day before were not rainy. A prewashed bucket tied with string was thrown into

the river 5 m away from the shore to collect river water. Water (300 mL) was collected into pre-

washed polypropylene bottles (AS ONE, Osaka, Japan) for DNA isolation and into sterilized

centrifuge tubes (20 mL water, AGC, Tokyo, Japan) after the water was filtered using a

0.22 μm filter (Merck, Darmstadt, Germany) for ion chromatography and total organic carbon

(TOC) measurements. Water samples (300 mL) were stored on ice and DNA was isolated

within 10 h. River temperature, dissolved oxygen, and pH were measured in situ using a

DO200A for temperature and dissolved oxygen (Xylem, Rye Brook, NY, USA) and a PH-6600

for pH (CUSTOM, Tokyo, Japan) (S2 and S3 Tables).

DNA isolation, polymerase chain reaction (PCR) amplification,

sequencing, and data availability

Genomic DNA in river water was isolated using the DNeasy PowerWater Sterivex DNA Isola-

tion kit (Qiagen, Hilden, Germany). The liquid feed pump was prewashed with 50 mL of river

water, and 250 mL was used for DNA isolation. Genomic DNA from ex situ cultures was iso-

lated using the NucleoSpin Microbial DNA kit (Macherey-Nagel, Düren, Germany). 16S

rRNA gene amounts were quantified by real time-PCR using PowerUp SYBR Green Master

Mix (Thermo Fisher Scientific, Waltham, MA, USA) and U16SRT primers [10]. The PCR

amplification methods for the 16S rRNA gene V3 and V4 variable regions and MiSeq sequenc-

ing (Illumina, San Diego, CA, USA) using the MiSeq Reagent Kit v3 (600 Cycles) (Illumina,

San Diego, CA, USA) have been previously described [11]. Sequencing data were deposited to

the National Center for Biotechnology Information (Accession: PRJNA649941).

Taxonomic classification based on 16S rRNA gene sequences, biodiversity

analysis, and estimation of the functional gene profile

The QIIME2 docker software (qiime2-2019.10) was used to analyze the 16S rRNA gene

sequences [12]. In situ and ex situ 300 nucleotide (nt) paired-end reads were trimmed using

the qiime dada2 denoise-paired command (20–296 nt for forward and 20–250 nt for reverse).

The reads were taxonomically classified with 99% amplicon sequence variant (ASV) data using

SILVA 132 [13] and the qiime feature-classifier extract-reads command (CTACGGGGGGCAG-
CAG for forward and GGACTACCGGGGTATCT for reverse). The ASV tables of in situ and ex
situ experiment are shown in S1 and S2 Datasets, respectively. α-diversity was calculated by

QIIME2 with a sampling depth of 10,000 for in situ and 180,000 for ex situ reads. Metagenome

prediction based on 16S rRNA sequence was conducted using PICRUSt2 (2.1.4-b) in QIIME2

[14]. Pathway abundance data from PICRUSt2 were converted to relative abundances and

principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity was conducted using

R stats package (version 4.0.3) [15]. The difference of PICRUSt2 data between upstream (site

1–4) and downstream (site 5–8) were tested by permutational multivariate analysis of variance

(PERMANOVA) based on Bray-Curtis dissimilarity using R vegan package (version 2.5.7)

[16].
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Ion chromatography and dissolved organic carbon (DOC) analysis of river

water

Water samples for carbon isotope analysis of DOC were collected using 50 mL syringes and fil-

tered with membrane syringe filters with a pore size of 0.20 μm (DISMIC–25AS; Advantec

Toyo Kaisha, Tokyo, Japan). Filtered water (5 mL) was subsampled and 0.2 vol % HCl was

added to remove the dissolved inorganic carbon. DOC concentrations of acidified water sam-

ples were then measured in triplicate using a TOC analyzer (TOC-5000; Shimadzu, Kyoto,

Japan).

Anion concentrations were measured via ion chromatography on a Shimadzu Ion Chro-

matograph (Shimadzu, Kyoto, Japan) equipped with a Shodex SI-90 4E anion column (Showa

Denko, Tokyo, Japan). A Shim-pack IC-C4 (Shimadzu, Kyoto, Japan) was used without a sup-

pressor for cations.

Ex situ cultivation of the bacterial community

Bacterial communities (in 300 mL of water) were sampled from site 2 (upstream) and site 8

(downstream) on September 7, 2019. Water temperature was 22.4˚C at site 2 and 27.9˚C at site

8. These samples were stored on ice for 5 h, and 150 μL was diluted into 3 mL M9 medium,

which was prepared according to the protocol by A. Geerlof [17], while the final glucose con-

centration as a carbon source was changed to 0.4%, 0.04%, and 0.004%. Each glucose condition

had five replicates. Polypropylene cultivation tubes (14 mL, Corning, Corning, NY, USA) were

shaken at 180 rpm. According to J. E. Goldford et al. [7], cultures grew 48 h at 25˚C, and then

150 μL of each culture was diluted into 3 mL fresh M9 medium. Cultures were passaged 12

times. In the first and second cultures, 200 μg/mL cycloheximide was added to inhibit eukary-

otic growth. Cell density was measured immediately before culture dilution using a CO8000

cell density meter (Harvard Bioscience, Holliston, MA, USA) at a 600 nm wavelength. Finally,

2.5 mL of each culture was used for genomic DNA isolation.

Quantification of stochastic assembly

To quantify the stochasticity of community assembly, Renkonen similarity was used as mea-

sure of beta diversity between communities, as previously reported to quantify the stochastic

assembly of bacterial communities on leaves at each taxon level [7]. Renkonen similarity is the

opposite index but shares the same mechanism as that of Bray-Curtis dissimilarity for compar-

ing relative abundances, as determined by D x; yð Þ ¼ 1 � 1

2

P
ijxi � yij, where xi and yi are the

relative abundances of microbial species i in the compared communities. For comparison of in
situ or ex situ communities, genus level taxa were used. Renkonen similarity calculates the sim-

ilarity between two samples and shows a value between 0–1. Calculating the similarity of all

replicate pairs, the stochastic assembly of communities under a condition was quantified. A

larger similarity indicated that the community assembly was relatively deterministic, and the

converse indicated stochastic assembly.

Results

Stochastic assembly occurred by adapted species richness in silico
To comprehensively understand how stochastic assembly of microbial communities occurred,

a numerical calculation with a mathematical model was useful. However, past mathematical

models of microbial communities, in which particular ecological traits of microbial species for

nutrient intake and interspecies interactions are hypothesized, cannot generate a stochastic

assembly even if the initial abundance of each bacterial species is randomly chosen [7].
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Therefore, we supposed the existence of essential-microbial species for each microbial species

that generated stochasticity of microbial community assembly based on the different initial

microbial abundances (Fig 3A). With regard to essential species, each microbial species had

some essential species required to live and too little of all essential species was supposed to

repress the growth of the species itself (Materials and methods: Mathematical model of micro-

bial community). If all species did not require the existence of any essential species, the com-

munity assembly became deterministic (mean of similarity 0.98 among duplicates with

varying initial microbial abundances). If all species were essential species for each species, sug-

gesting loss of specific microbial essentiality, the community assembly also became determin-

istic (similarity 0.98). However, if a certain number of species became essential species,

stochastic assembly occurred; namely in this experiment, if the number of essential species for

each microbial species was 5, 10, and 20 in 100 species communities, the similarities were 0.55,

0.52, or 0.50, respectively.

Fig 3. Stochasticity of in silico microbial community assembly. A. The number of essential-microbial species for each species varied in the community

consisting of 10 resources and 100 microbial species, where each resource was specialized in 10 microbial species. B. Microbial communities adapted to a high/

low concentration resource were supplied with a high/low concentration resource. Horizontal lines in the violin plot represent the maximum, minimum, and

median values of similarity. C. The number of microbial species specializing in each resource varied. The number of resources is 10; therefore, for example,

species number 2 means the community consists of 20 microbial species. Dots in boxes represent the mean of similarity.

https://doi.org/10.1371/journal.pone.0260591.g003

PLOS ONE Deterministic assembly by environmental change

PLOS ONE | https://doi.org/10.1371/journal.pone.0260591 December 2, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0260591.g003
https://doi.org/10.1371/journal.pone.0260591


As the stochastic assembly caused by the existence of essential species was confirmed, we

next prepared microbial communities adapted to high or low resource concentrations in silico
and examined the effects of changes in environmental resource concentration on stochastic

assembly (Fig 3B). The communities adapted to high/low resource concentration consisted of

a large number of species adapted to high/low resource concentrations and a small number of

species adapted to low/high resource concentrations. If each community adapted to high/low

resource concentration was supplied a resource of a corresponding high/low concentration

respectively, similarities were 0.37 and 0.26. However, the disagreement between the adapta-

tion concentration and the supplied concentration of a resource suggested drastic environ-

mental change made the community assembly relatively deterministic, with 0.66 and 0.72 of

adaptation to high/low concentration (p< 0.001, U = 2044 for adaptation to high concentra-

tion, U = 835 for adaptation to low concentration, agreement vs. disagreement, Mann-Whit-

ney U two-sided test). One difference of the agreement and disagreement between the

adaptation and the supplied concentration was the number of surviving bacterial species;

namely, the agreement communities had more surviving microbial species than the disagree-

ment communities. Therefore, to better understand what changed the degree of the stochasti-

city, we changed the number of community species (Fig 3C). When each of all 10 resources

had two microbial species specialized for the resource, i.e. the community consisted of 20

microbial species, the community assembly was closely deterministic (similarity 0.95).

Increases in the species number made the communities stochastic, and the stochasticity pro-

gressed until the number of species per a resource reached 10, i.e. 100 community species, in

our simulation using a simple model (similarity 0.52 ± 0.24). These results suggested that spe-

cies richness made the community assembly stochastic.

Environmental change made microbial communities deterministic in situ
Since drastic environmental change was confirmed in the in silico experiment that limited

community species richness and made microbial communities deterministic, the rule of sto-

chasticity in nature was examined. For the in situ experiment, the Tama River, flowing through

both natural and urban areas, was targeted because a drastic change occurred with contamina-

tion of treated wastewater from wastewater treatment plants between sites 4 to 6 (Fig 4A). The

results of ion chromatography and DOC analysis showed that ionic compounds and DOC

increased: especially NO2
−, PO4

3−, and SO4
2− (S5 and S6 Figs). NO2

−, PO4
3−, and SO4

2− drasti-

cally increased between sites 4 and 5 (NO2
−, 13.2 ± 3.5 standard deviation (SD) to

206.0 ± 106.2 SD [mg/L]; PO4
3−, 5.1 ± 1.6 SD to 27.5 ± 12.0 SD [mg/L]; SO4

2−, 10.8 ± 2.3 SD to

27.7 ± 10.4 SD [mg/L]). DOC increased between sites 3 and 5 (site 3, 2.91 ± 0.43 SD; site 4,

3.46 ± 0.97 SD; site 5, 3.63 ± 0.55 SD), but decreased between sites 7 and 8 (site 7, 3.63 ± 0.72

SD; site 8, 3.10 ± 0.47 SD). Amounts of partial genomic DNA from bacteria also increased in

the river downstream (p< 0.001, W = 17, site 1–4 vs. 5–8, Wilcoxon signed-rank two-sided

test; 12.2 ± 19.1 SD vs. 49.2 ± 52.1 SD [pg/μL]) (S7 Fig). These results suggested that treated

wastewater contamination made the river eutrophic, and bacteria increased in the downstream

environment. It was also possible that DNA contamination from dead microorganisms in ster-

ilized treated wastewater increased after site 4, but observed operational taxonomic units

(OTUs) at site 5 (1,783 ± 392 SD) moderately increased compared to that at site 4 (1,292 ± 580

SD) (p = 0.17, U = 9, Mann-Whitney U two-sided test) and observed OTUs at site 8 (993 ± 366

SD) did not differ significantly to those at sites 1–4 (p = 0.45, U = 87, Mann-Whitney U two-

sided test) (S8 Fig).

In a river where the environment changed drastically, bacterial composition at six time

points was measured (S9 Fig, S2 Table). At the genus level, for example, relative abundances of
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Limnohabitans (site 1, 0.017 ± 0.007 SD; site 8, 0.138 ± 0.070 SD), Fluviicola (site 1,

0.007 ± 0.003 SD; site 8, 0.061 ± 0.058 SD), and Pseudarcicella (site 1, 0.010 ± 0.008 SD; site 8,

0.053 ± 0.044 SD) were increased along the river (S10 Fig). Using the bacterial composition at

six time points and eight places, we calculated similarities among bacterial compositions at

each place to quantify the in situ stochasticity (Fig 4B). Upstream similarities in sites 1–4

(0.49 ± 0.13 SD) were less than downstream similarities in sites 5–8 (0.54 ± 0.12 SD)

(p = 0.056, U = 1436, site 1–4 vs. 5–8, Mann-Whitney U two-sided test), which suggested the

assembly of the downstream bacterial community was relatively deterministic compared to

that of the upstream community. PCoA biplot based on Bray-Curtis dissimilarity of microbial

composition suggested that pH, organic, and inorganic substances were related with the

Fig 4. Stochasticity of microbial community assembly in a river. A. Microbial communities have been sampled six times at eight sites in the Tama River from natural

and urban areas. The map is based on the Digital Map published by Geospatial Information Authority of Japan (2021). B. Similarity of bacterial compositions at each site

was calculated as assembly stochasticity and compared between before and after contamination of treated wastewater (p = 0.028) with box and jitter plot. C. Community

functional data were analyzed by principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity. Each number indicates sampling site.

https://doi.org/10.1371/journal.pone.0260591.g004
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change in microbial composition before and after contamination of treated wastewater (S11

Fig). Community functions predicted by PICRUSt2 showed that the upstream and down-

stream communities were functionally different, according to the PCoA results based on Bray-

Curtis dissimilarity (p< 0.001, F = 11.72, R2 = 0.20, PERMANOVA) (Fig 4C). It is therefore

possible that the metabolic pathways of ecosystems were different between upstream and

downstream. The in situ experiment suggested the possibility that the drastic environmental

change caused by treated wastewater contamination activated bacterial growth, including Lim-
nohabitans, Fluviicola, and Pseudarcicella, and made bacterial community assembly

deterministic.

Microbial community assembly became deterministic in environments that

differed from original environments

In the river experiment, in which upstream and downstream environments were quite differ-

ent due to contamination of treated wastewater, downstream bacterial communities appeared

to be more deterministic than upstream communities, but the influence of seasonal fluctua-

tions may be included. Therefore, although the cultivation condition was quite different from

the natural condition, the stochasticity of bacterial community assembly was examined by lab-

oratory experiments that could control the environment. In this ex situ experiment, the envi-

ronmental nutrient concentration changed for upstream and downstream bacterial

communities to examine the causality between environment and stochasticity (Fig 5A). Since

the results of community functional analysis suggested a difference between upstream and

downstream bacterial communities (Fig 4C), and the fact that increased 16S rRNA gene

amounts in the downstream community suggested a large biomass downstream (S7 Fig),

downstream bacteria were presumed to be good at processing high-concentration organic

matter and their metabolites. Thus, the carbon source concentration was varied in this ex situ
experiment. In the upstream community, the community assembly was relatively deterministic

in the high-concentration medium (similarity in 0.4% medium, 0.90 ± 0.06 SD among

Fig 5. Stochasticity of bacterial community assembly in artificial conditions. A. Five replicates of the upstream bacterial community from site 2 and the

downstream bacterial community from site 8 were cultivated in each glucose concentration: 0.4%, 0.04%, and 0.004%. B. Similarities of upstream/downstream

bacterial compositions among replicates in each glucose condition are shown with box and jitter plot. Blue and orange boxes indicate upstream and

downstream communities, respectively.

https://doi.org/10.1371/journal.pone.0260591.g005
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replicates) compared to that in the low concentration medium (0.004% medium, 0.31 ± 0.40

SD) (p = 0.009, U = 15, Mann-Whitney U two-sided test), and in the downstream community,

these results were reversed (0.4% medium, 0.54 ± 0.21 SD; 0.004% medium, 0.83 ± 0.08 SD)

(p = 0.005, U = 88, Mann-Whitney U two-sided test) (Fig 5B). The cell density of both

upstream and downstream communities in 0.004% glucose medium was close to the limit of

the device measurement (S12 Fig). In the medium containing 0.4% glucose, the genus Pseudo-
monas was dominant in all test tubes of upstream community (S13 Fig), while in 0.004% glu-

cose, the genera Aeromonas and Pantoea, members of the family Enterobacteriaceae, and the

phyla Patescibacteria were stochastically dominant. In the downstream community, the genera

Aeromonas and Klebsiella, and a member of the family Enterobacteriaceae were mutually

exclusively dominant in 0.4% glucose, while Aeromonas was dominant in all 0.004% glucose

test tubes.

Discussion

We investigated the possible factors controlling stochasticity of microbial community assem-

bly with an in silico experiment that enabled the regulation of simple virtual microbial commu-

nities for comprehensive understanding, an in situ experiment observing original bacterial

communities at various sites, and an ex situ experiment comparing bacterial communities

assembled in artificial environments.

The in silico experiment showed that the assembly of bacterial communities was determin-

istic in a drastically changed environment with only a limited number of specialized microbial

species. Stochastic assembly among replicates was confirmed with a mathematical model by

adding the concept of essential bacteria, even if the nutrient intake trait differed among micro-

bial species and was the same between replicates. Essential bacteria are required for the growth

of each species. It has been estimated that only 1% of all archaea and bacteria can be cultivated

in vitro [18–20], and the existence of essential bacteria has been mentioned as one of the rea-

sons [21]. The exchange of essential metabolites and removal of inhibiting factors among bac-

teria have been examined in vitro, and have enabled the culturing of uncultured bacteria [22–

24]. The exchange of metabolites, such as amino acids and sugars, in natural communities has

also been systematically surveyed by using a metabolic modeling approach with over 800

microbial communities [25]. Although the in silico experiment assumed that traits differed

among microbial species, neutral models assume identical traits for all species, and suggest

that the limited species richness of the source metacommunity made the local community

assembly more stochastic [26]. When considering only dispersion from a source community

to a local community, the species richness of the source community will affect stochasticity of

which species dominates.

The in situ experiment suggested that bacterial community assembly becomes deterministic

with a large change in the river environment, due to the contamination of the treated wastewa-

ter between the natural upstream area and the urban downstream area. In the ex situ experi-

ment with glucose as the only carbon source, the bacterial community from the relatively

nutrient poor upstream area assembled deterministically with a high glucose concentration,

and the bacterial community from the relatively nutrient rich downstream area assembled sto-

chastically with a low glucose concentration.

A common finding in the in silico and in situ experiments was that the assembly of bacterial

communities became deterministic when in a different environment. This phenomenon was

also observed in other river communities. When two distinct upstream sites in the Chicago

metropolitan region were compared, one of which was a highly urbanized river receiving efflu-

ent from a large wastewater treatment plant and the other was a suburban river receiving
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effluent from a much smaller wastewater treatment plant, it was discovered that they differed

significantly in chemical characteristics and in the composition of their sediment bacterial

communities [27]. However, downstream sites contaminated by treated wastewater became

almost indistinguishable, where inorganic nutrients significantly increased, and biodiversity of

sediment bacterial communities significantly decreased. In Brazil, two rivers also showed a

decrease in biodiversity after being contaminated. The waters of the Sinos River, polluted

downstream of Brazilian industrial centers, had a decreased Chao1 diversity for the microbial

community, but further downstream (around 80 km from the pollution), the diversity recov-

ered [28]. In our study, in the Tama River, we did not collect samples more than 25 km down-

stream from the treated wastewater contamination, therefore, the microbial community might

have not yet adapted to the environmental change. The Chao1 diversity of water microbial

community in the Jaboatão River in Brazil also decreased after being exposed to untreated

wastewater [29]. The diversity did not recover further downstream, which may be because the

most downstream samples were collected 20 km from the source of the pollution. On the other

hand, the recovery of the sediment microbial community diversity at the most downstream

site indicates that the microbial community adapts to the wastewater environmental pollution,

because the sediment microbial community is less susceptible to river flow.

The phenomenon that environmental change results in a deterministic community assem-

bly was observed not only in river communities, but also in communities of the groundwater-

surface water mixing zone (the hyporheic zone) and gut. The hyporheic zone is dominated by

river water microorganisms and low organic carbon concentrations at a high stage, and

ground water microorganisms and high organic carbon concentration at a low stage; both

communities are governed by a stochastic ecological process [30]. A rise in the river stage

caused mixing of the groundwater and river water in the hyporheic zone and resulted in het-

erotrophic respiration. As a result, microbial taxa with particular ecological traits were selected

and the community was governed by deterministic ecological processes. For human gut

microbiota, a plant-based diet did not cause a change in the microbiota when compared with a

standard diet, but the animal-based diet reproducibly caused a change in one day when com-

pared with a standard diet [31]. The animal-based diet increased bile-tolerant microorganisms

(the genera Alistipes, Bilophila, and Bacteroides) and decreased those that metabolize dietary

plant polysaccharides (the genera Roseburia, Eubacterium rectale, and Ruminococcus bromii
from the phylum Firmicutes). A meta-analysis of 27 dietary studies including 1,101 samples

from rodents and humans also showed that a high-fat diet reproducibly changes the gut micro-

biota [32]. In particular, Lactococcus species increased with a high-fat diet and became one of

the dominant bacteria. The number of bacterial species that adapt to a high-fat diet may be

limited in the gut, which may make the assembly of bacterial communities deterministic. In

support of this hypothesis, when microbiota in feces of omnivorous and herbivorous cattle

were compared, the variation in characteristics between PC1 (24%) and PC2 (15%) in PCA

was larger in herbivores, suggesting that gut microbiota adapted to herbivores become deter-

ministic with an omnivorous diet [33].

The in silico and ex situ experiments showed the convergence of microbial component pat-

terns. Limited species richness was the key to converge microbial community assembly in the

in silico experiment. The microbial composition was called a pattern if, when the initial

amounts of microorganisms randomly chosen with the same parameter set and the calculation

was performed 10 times in silico, a similar microbial community appeared more than once

(Renkonen similarity� 0.9). The probability of pattern occurrence was 83.0% with species

richness due to the supply of resource concentration adapted by the microbial communities in

our ex situ experiment. However, the probability of pattern occurrence was 97.5% when there
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was a poor species richness due to disagreement between the community adapted and supplied

concentration.

As patterns were more likely to occur in an environment where microbial community

assemblies were reproducible among replicates in silico, emergent patterns of microbial com-

ponents were also observed ex situ. In the ex situ experiment with five replicates, three patterns

of microbial community appeared: (i) Pseudomonas dominant, (ii) Aeromonas and Acineto-
bacter dominant, and (iii) Klebsiella and Acinetobacter dominant (S4 Table). When cultivating

the upstream-river microbial community, pattern (i) appeared all five times with a 0.4% glu-

cose medium, pattern (ii) appeared three times and pattern (iii) appeared one time with a

0.04% glucose medium, and pattern (ii) appeared three times with a 0.004% glucose medium.

When cultivating the downstream-river microbial community, pattern (ii) appeared two times

and pattern (iii) appeared two times with a 0.4% glucose medium, pattern (ii) appeared three

times and pattern (iii) appeared two times with a 0.04% glucose medium, and pattern (ii)

appeared all five times with 0.004% glucose medium. The dominant bacteria Pseudomonas,
Aeromonas, Acinetobacter, and Klebsiella spp. can utilize a wide range of carbon sources [34–

37]. Aeromonas and Acinetobacter dominant in pattern (ii) were observed to be dominant in

inflow water to wastewater treatment plants and were adapted to the sewer infrastructure envi-

ronment [38]. As Aeromonas and Acinetobacter dominated even in our 0.004% glucose

medium, regarded as a low carbon concentration in our experiment, the ex situ experiment

was limited by the fact that various organic and inorganic substances were different between

the natural and cultivation environments. However, even under this limitation, patterns were

more probable when the upstream microbial community was in high carbon concentration

cultures, and the downstream microbial community was in low carbon concentration cultures.

Similarly, a previous study, in which microbial communities were cultivated in glucose limited

M9 medium (70 mM glucose concentration close to our 0.4%� 20 mM glucose medium),

observed functional self-organization by cross-feeding between a functional guild metaboliz-

ing glucose and secreting acetate, lactate, and succinate, as primary byproducts, and another

guild metabolizing the same secretions [39]. The former guild possessed the phylogenetic fam-

ilies Pseudomonadaceae and Moraxellaceae, and the later guild possessed Enterobacteriaceae

and Aeromonadaceae. As Aeromonas dominating in pattern (ii) and Klebsiella dominating in

pattern (iii) belong to Aeromonadaceae, and Acinetobacter dominating in both patterns

belongs to Moraxellaceae, the same functional self-organization would occur in our ex situ
experiment. Although Pseudomonas belongs to Pseudomonadaceae, it was speculated that

Pseudomonas was also superior in glucose utilization in our experiment. The reason why

microbial community assembly became deterministic in a drastically changed environment

may be that the number of microbial species adapted to the new environment and the possible

patterns of microbial composition were limited.

Herein, we propose that the initial species richness make the community assembly stochas-

tic, as demonstrated by in silico experiments. In addition, initial species evenness can influence

the community assembly, which previously reported that initial community evenness can pre-

serve the functional stability of a community [40]. The stability of the community denitrifica-

tion upon environmental stress can be strongly influenced by the initial evenness of the

microbial community in which many microorganisms have similar functions as alternatives.

This functional stability and stochastic assembly influenced by species richness herein reported

may be closely related.

In the present study, the in situ experiment revealed the phenomenon that drastic environ-

mental change caused the deterministic assembly of the microbial community, which was fur-

ther confirmed by the in silico experiment. As the mathematical model interpretation of the in
situ experiment results, the in silico experiment proposed a mechanism of the phenomenon in
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which the number of microbial species adapted to the environment after drastic change is lim-

ited and makes the community assembly deterministic. Nevertheless, it remains unknown

how many microbial species adapted to the environment after drastic change in in situ and ex
situ experiments, since the functions of the microorganisms were not measured in this study.

Therefore, it is still necessary to measure transcripts and metabolites for analyzing the func-

tional aspects of this phenomenon. For the microbial growth in in silico experiment, not only

resource availability but also resource quality should be considered in the mathematical

model. It has been reported that the quality of resources, such as what metabolic by-products

are produced from a resource and the combination of resources, influences the assembly of

microbial communities [39, 41]. For the mathematical model, the phenomenon was repro-

duced with many parameter sets in this study, but it is also important to identify the parame-

ters of the mathematical model from in situ data by larger field sampling in the future.

In summary, drastic environmental change caused the deterministic assembly of the micro-

bial community in silico, in situ, and ex situ. This rule appears to be used in microbial commu-

nities in the river, the gut, and the hyporheic zone between groundwater and surface water,

but it is also necessary to show whether the bacterial communities in other environments are

also governed by this rule. This proposed rule of microbial community assembly will help us

to understand the mechanism of stochastic processes and control the systems where microor-

ganisms are utilized.

Supporting information

S1 Fig. Microbial communities adapted to supplied resource concentration. A. The com-

munity adapted to a high resource concentration consisted of a large number of species

adapted to high supplied resource concentration and a small number of species adapted to low

supplied resource concentration. Arrows from resources to microbial species indicate resource

uptake and opposite arrows indicate secretion of metabolic byproducts. All resources are asso-

ciated with specialized microbial species, as indicated by thick arrows. Blue and orange thick

arrows indicate supplied resource uptake of high and low resource concentration adapted

microbial species, respectively. Gray thick arrows indicate other resource uptake of microbial

species specialized for the resource. Gray thin arrows indicate resource uptake of microbial

species non-specialized for the resource and secretion of metabolic byproducts. B. The com-

munity adapted to a low resource concentration have the opposite composition.

(TIF)

S2 Fig. Specialization for a supplied resource concentration and in silico experiment for

some conditions of a supply resource concentration. A. Microbial species specialized for a

supplied resource are activated by the specific supplied resource concentration as

Gia ¼ 4
Ia

LiþIa
Li

LiþIa
, in which Iα is the supply concentration of the resource α in the medium and

Li represent a value similar to the Michaelis constant. Blue line indicates metabolic activity of

microbial species adapted to low concentration Iα = 1, where Li = 1. Orange line indicates met-

abolic activity of microbial species adapted to high concentration Iα = 100, where Li = 100. B.

As the supplied resource concentration, 0.5, 1, 10, 100, and 200, as indicated by dashed lines in

the panel A, were examined for communities adapted to high and low resource concentration,

respectively. Orange boxes indicate the similarity of community adapted to high resource con-

centration consisted of 45 and five species adapted to a high and low resource concentration,

respectively, for a supplied resource, and 10 species specialized for each of the other resources.

Blue boxes indicate that of community adapted to low resource concentration.

(TIF)
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S3 Fig. Flow for numerical calculation and Renkonen similarity in in silico experiments.

After setting the parameters for species-specific resource consuming rate Ciα, stoichiometric

matrix of resources Di
αβ, and target as essential symbionts, each numerical calculation was per-

formed 10 times by changing the initial biomass, which was randomly selected between 0.01

and 1. Renkonen similarity was calculated for each of the 10 replicates using the final microbial

compositions. The calculations were repeated 100 times.

(TIF)

S4 Fig. Sampling sites in the Tama River. Treated wastewater from several wastewater treat-

ment plants contaminates the river between sites 4 and 6. The map is based on the Digital Map

published by Geospatial Information Authority of Japan (2021).

(TIF)

S5 Fig. The result of ion chromatography in the Tama River. Concentrations of NO2
-,

PO4
3-, SO4

2-, Na+, K+, Mg2+, and Ca2+ at eight sites from August 31, 2018 to July 21, 2019.

(TIF)

S6 Fig. The result of dissolved organic carbon in the Tama River. Concentrations of dis-

solved organic carbon at eight sites from August 31, 2018 to July 21, 2019.

(TIF)

S7 Fig. 16S rDNA amounts quantified by real time-PCR. 16S rDNA amounts per mL at

eight sites from August 31, 2018 to July 21, 2019. The black line indicates the median among

six time points.

(TIF)

S8 Fig. Observed operational taxonomic units (OTUs) at sampling sites before (blue) and

after (orange) treated wastewater contamination. 16S rRNA analysis data from eight sites

between August 31, 2018 to July 21, 2019 was used for the count of OTUs.

(TIF)

S9 Fig. Bacterial composition at each taxonomic level in the Tama River at six time points

from August 31, 2018 to July 21, 2019. The Tama River samples collected from eight sites at

each time point. The most abundant eight taxa at each taxonomic level are listed.

(TIF)

S10 Fig. Relative abundances of Limnohabitans, Fluviicola, and Pseudarcicella along the

Tama River. Solid lines indicate means of relative abundance and shadows represent the

respective 95% confidence intervals. Blue, orange, and green lines correspond to Limnohabi-
tans, Fluviicola, and Pseudarcicella, respectively.

(TIF)

S11 Fig. Principal coordinate analysis (PCoA) biplot based on Bray-Curtis dissimilarity of

microbial composition in the Tama River. For the biplot, environmental factors (tempera-

ture, pH, dissolved organic carbon [DOC], NO2-, PO4
3-, SO4

2-, Na+, K+, Mg2+, Ca2+) were

used and shown (p< 0.05). The numbers indicate the site in the Tama River.

(TIF)

S12 Fig. The optical density of both upstream and downstream communities in 0.4%,

0.04%, and 0.004% glucose measured every 2 days. Each graph includes five lines indicating

five replicates.

(TIF)
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S13 Fig. Upstream and downstream bacterial composition at each taxonomic level culti-

vated in 0.4%, 0.04%, and 0.004% glucose. Five replicates for each condition. Up and Down

indicate bacterial composition sourced from upstream and downstream in the Tama River on

September 7, 2019, respectively. The most abundant eight taxa at each taxonomic level are

listed.

(TIF)

S1 Table. Variables and parameters included in the mathematical model.

(XLSX)

S2 Table. Water temperature [˚C] in the Tama River at six time points. Temperature at

eight sites from August 31, 2018 to July 21, 2019.

(XLSX)

S3 Table. pH in the Tama River at six time points. pH at eight sites from August 31, 2018 to

July 21, 2019.

(XLSX)

S4 Table. Community patterns in the ex situ experiment with five replicates. The number

of emergent community patterns is shown. Three patterns of microbial community appeared:

(i) Pseudomonas dominant, (ii) Aeromonas and Acinetobacter dominant, and (iii) Klebsiella
and Acinetobacter dominant.

(XLSX)

S1 Dataset. The amplicon sequence variant table of in situ experiment. The number of

reads of each amplicon sequence variant for in situ experiment is shown.

(CSV)

S2 Dataset. The amplicon sequence variant table of ex situ experiment. The number of

reads of each amplicon sequence variant for ex situ experiment is shown.

(CSV)
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