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Abstract
Obstructive sleep apnea (OSA) is a common disorder which can cause periodic fluctuations in heart 
rate. To diagnose sleep apnea, some studies analyze electrocardiogram (ECG) signals by adopting 
chaos‑based analysis. This research is going to specifically focus on whether it is possible to use 
chaos‑based analysis of heart rate variability (HRV) signals rather than using chaotic analysis of 
ECG signals to diagnose OSA. While conventional studies mostly use chaos‑based analysis of ECG 
signals to detect OSA, here, we apply correlation dimension (CD) as a chaotic index to analyze HRV 
data in OSA patients. For this purpose, 17 patients with OSA and 9 healthy individuals referred to 
a sleep clinic in Isfahan/Iran are studied, and their HRV time series were extracted from 1‑h ECG 
signals recorded overnight. The preliminary step to calculate CD is phase‑space reconstruction of 
the system based on HRV time series. Corresponding parameters, including embedding dimension 
and lag time, are estimated optimally using enhanced related methods, and then CD is calculated 
using Grassberger–Procaccia algorithm. Moreover, to evaluate our results, detrended fluctuation 
analysis (DFA), one of the well‑known nonlinear methods in HRV analysis to detect OSA, is also 
applied to our data and the result is compared with those obtained from CD analysis of HRV. CD 
index with P < 0.005 indicates a significant difference in nonlinear dynamics of HRV signals detected 
from OSA patients and healthy individuals.
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Introduction
Sleep apnea or pauses in breathing for more 
than 10 s followed by awakening, is one of 
the common sleep disorders. Sleep apnea 
is divided into three categories: obstructive 
sleep apnea (OSA), central sleep apnea, 
and mixed (complex) sleep apnea. OSA, 
the most common one, is caused by a local 
blockage or obstruction of the upper airway 
and is usually accompanied by exhale and 
deep inhale at the end of blockage. Obesity, 
aging, narrowed airways, smoking, and 
alcohol consumption are considered as the 
certain risk factors of OSA, and men are 
more likely to have sleep apnea.[1] Sleep 
apnea reduces the quality of life since it 
may cause depression, irritation, and lack 
of sleep. Investigations reveal that OSA 
is the reason of many car accidents and 
work events;[2,3] furthermore, according to 
the prevalence of cardiovascular diseases 

among those suffering from sleep apnea, 
many studies have been done to explore 
the relation of hypertension and heart 
diseases to sleep apnea. Studies have 
shown that untreated OSA can lead to high 
blood pressure, cardiac arrhythmias, heart 
failure, and brain stroke as well.[4‑6] Studies 
on OSA reveal that apnea is accompanied 
by periodic variations in heart rate.[7] 
Irregular heartbeats appear in the form 
of bradycardia (decrease in heart rate 
to <60 times/min) during apnea, and in the 
form of tachycardia (increase in heart rate 
to more than 100 times/min) after that; 
moreover, according to the research done 
on sympathetic neural activity, sympathetic 
activation increases during apnea.[8] In 
patients with OSA, sympathetic activation 
continues during the day that can increase 
the risk of getting cardiovascular diseases.[9] 
There have always been many interests in 
finding simple and accurate methods for the 
study of or detection of OSA; accordingly, 
some research on detection of sleep 
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apnea has been already done using different biological 
signals such as electroencephalography signal[10] and 
electrocardiogram (ECG) signal with or without respiratory 
signal.[11,12] Furthermore, blood oxygen measurements[13] 
and feature assessments of acoustic signal produced 
by snoring[14] have been already used for sleep apnea 
detection. According to the studies,[7] heart rate variability 
(HRV), variation in the time intervals between successive 
heartbeats, has been also used efficiently to detect sleep 
apnea. HRV has become a conventional marker to detect 
different failures in autonomous nervous and cardiovascular 
system.[15] HRV signals are typically extracted from 
ECG signals by measuring the R–R intervals. Like other 
physiological signals, HRV can be analyzed using time/
frequency‑domain, nonlinear, and chaotic methods. 
Time‑domain methods calculate the statistical features 
of R–R intervals. They can only provide the simplest 
insight into the cardiovascular system. Frequency‑domain 
indexes, which are mostly based on spectral bands, can 
reveal the autonomic nervous system activities. However, 
nonlinear methods can describe hidden dynamics and some 
nonstationary conditions of the cardiovascular system.
[16] The human heart acts like a nonlinear oscillator, 
and HRV is one observed variable from a complex 
system (cardiovascular system); therefore, complexities in 
the cardiovascular system can be revealed using nonlinear 
analysis of HRV.[17,18] Based on the study done by Voss et al.
[19] due to nonlinear nature of biological signals, nonlinear 
techniques can be efficiently used for the analysis of these 
signals; moreover, in biological signal analysis, nonlinear 
methods can provide complementary information along 
with linear methods (time/frequency‑domain methods). The 
conventional nonlinear methods used to analyze HRV in 
sleep studies include detrended fluctuation analysis (DFA), 
approximate entropy (ApEn), and sample entropy (SampEn) 
as well as chaotic methods such as recurrence quantification 
analysis (RQA), correlation dimension (CD), and Lyapunov 
exponent (LE). Some sleep studies focused on comparing 
the use of nonlinear methods with linear techniques 
for analysis of HRV in sleep apnea patients. In a study 
performed by Penzel et al.,[20] frequency‑domain analysis 
and DFA were used to investigate the effect of sleep apnea 
on HRV. Their results suggest that in comparison with 
spectral analysis, DFA as a nonlinear method can better 
depict fluctuations caused by sleep apnea in HRV signal. 
In another study, Al‑Angari and Sahakian[21] have applied 
SampEn as a nonlinear method to assess the complexity 
of HRV behavior due to OSA. According to their results, 
in healthy individuals, HRV pattern is considerably more 
complex than in patients with OSA. They also compared 
the results of the spectral analysis as a linear method with 
those obtained from SampEn. They claimed that although 
both methods are accurate, SampEn calculations are 
simpler in comparison with spectral methods.

Some noticeable nonlinear methods in sleep research are 
chaos‑based analysis. CD is a well‑known chaotic index 

used in some sleep apnea studies. In a study, Miyata 
et al.[22] used CD to investigate nonlinear features and 
chaotic behavior of respiratory movement and breath 
to breath fluctuations in patients with OSA/hypopnea 
syndrome during wakefulness with eyes closed. They 
claimed that applying CD to respiratory movement can 
be used to efficiently identify patients with this syndrome 
during wakefulness. In their previous study,[23] they also 
showed using chaotic analysis of respiratory movement 
cannot be useful to detect OSA/hypopnea syndrome during 
apneic sleep. In a recent work, Moeynoi and Kitjaidure[24] 
explored RQA, CD, and DFA to extract nonlinear features 
from HRV signals and ECG derived respiratory signals 
to detect sleep apnea. However, their main focus of this 
work is on introducing canonical correlation analysis as a 
method for dimensional reduction of sleep apnea features 
extracted from ECG for better classification. In such works, 
discrimination abilities of chaotic methods have been rarely 
investigated in a specific way. These methods have been 
only used for classification purposes. In one study focused 
on chaotic analysis, Acharya et al.[25] applied nonlinear 
parameters including ApEn, fractal dimension, CD, largest 
LE, and Hurst exponent to ECG signals to distinguish sleep 
apnea patients. Nevertheless, in this study, phase‑space 
reconstruction which is the primary step to calculate 
CD was performed using ECG signals as time series. In 
another study, Jafari[26] used nonlinear methods consisting 
of DFA, CD, large LE, and spectral entropy to detect 
OSA. He found that detrended fluctuation and CD are 
more significant for OSA detection among other methods 
he applied, but like the work done by Acharya et al.,[25] he 
used ECG signals for phase‑space reconstruction. LE is 
another well‑known chaotic index with the ability to detect 
chaotic behavior of biological signals. Jafari showed large 
LE is also a significant index for OSA detection. However, 
Zapanta et al.[27] introduced a new method called numerical 
titration technique instead of LE to detect chaos in HRV 
of children with OSA. They claimed that numerical 
titration technique could provide robust support for the 
presence of chaotic behavior in HRV. In spite of such 
studies worked on chaotic analysis in sleep research, up 
to our knowledge, sleep apnea studies have rarely focused 
on calculation chaotic indexes using HRV time series. As 
above mentioned, in the study by Jafari,[26] ECG signals are 
used as time series for the phase‑space reconstruction as 
well as estimation of embedding dimension and lag time 
parameters, which are necessary parameters to calculate 
chaotic indexes; hence, this question arises that whether it is 
possible to use HRV of OSA patients rather than their ECG 
signals as time series to calculate chaotic indexes or not. 
Thus, the main aim of this study is specific concentration 
on the investigation of CD calculation using HRV as time 
series. In fact, while conventional studies such as the study 
by Acharya et al.[25] or by Jafari,[26] mostly use chaos‑based 
analysis of ECG signals to study OSA, in this research, we 
concentrate to calculate CD using HRV signals instead of 
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using ECG signals. We are going to find out whether there 
is a significant difference in nonlinear dynamics of HRV 
signals between OSA patients and healthy individuals. We 
are also going to compare our results of CD calculated by 
HRV data as time series with the results obtained from 
DFA, which is one of the most commonly used nonlinear 
methods in sleep apnea studies.[20]

Materials and Methods
Data

In this research, the exploited data set is obtained from 
a cross‑sectional study[28] on patients suffering from 
OSA. This data set contains both patients and normal 
individuals. The patient group consisted of individuals 
with untreated OSA who were referred to the Bamdad 
Sleep Clinic in Isfahan, Iran, and were diagnosed as 
mild‑to‑severe OSA, based on Apnea‑Hypopnea Index 
(≥5 events/h), and the age‑ and sex‑matched control 
group consisted of healthy individuals without any sleep 
or cardiac complaints. All patients and normal individuals 
were visited and examined by a cardiologist, and those 
with a history or clinical evidence of heart failure, 
ischemic heart disease, cardiomyopathy, valvular heart 
disease, arrhythmia, persistent atrial fibrillation, bundle 
branch block, pericarditis, electrolyte abnormalities, 
renal failure, pulmonary disease, thyroid dysfunction, 
hypertension, diabetes, and use of medications affecting 
the electrocardiographic parameters, were not included into 
the study. The study protocol was approved by the Ethics 
Committee of the Isfahan University of Medical Sciences 
(Grant # 392101), and informed consent was provided by 
all patients and normal individuals. Patients had undergone 
an overnight polysomnographic study at the sleep clinic 
while all of them had effective sleep.

In this study, a 24‑h electrocardiography was performed 
for patients and normal individuals by using a digital 
Holter recorder (H200 recorder, Kavoshgaran Teb 
Kharazmi Co, Iran), with six channels (three analogs I, II, 
and III and three digital, aVR, aVL, and aVF channels). 
Software was developed by the Biomedical Engineering 
Department of the University of Isfahan to measure ECG 
parameters. This software detects Q, R, S, P, and T points 
using gradient‑based methods; then calculates important 
time intervals in ECG signal. RR intervals of ECGs 
achieved by H200 recorder for both patient and normal 
groups were used as an HRV data set in this research. The 
HRV time series extracted from 1‑h ECG signals (recorded 
during the night) related to 17 patients with OSA and 9 
healthy controls are analyzed.[7]

Preprocessing

To analyze HRV related to sleep apnea, Penzel 
et al.[20] have selected an experimental feature for automated 
preprocessing of HRV time series or RR intervals. The 
feature is as follows:

0.33 s<each RR interval <1.5 s.

The interval between two successive RR intervals is just 
0.66 s.

If >1% of RR time intervals of a signal do not meet the 
above conditions, the signal cannot be used for future 
analysis. Of course, those HRV samples that exceed the 
above limit have to be discarded from the accepted signals.

Since the resulted signals were too noisy, after the 
evaluation of the above conditions, a median filter was 
applied to the signal to preserve the latent dynamics in 
noisy data.

Correlation dimension

CD is a measure of the complexity of the system that 
shows variability and irregularity of the process. For 
calculation of CD as a chaotic index, reconstruction of 
a phase‑space equivalent to the original phase space in 
topological aspects is the first important step. Takens’ 
theory is often used for phase‑space reconstruction,[29] that 
is called as the method of delays. In this method, for a 
time series derived from a deterministic dynamical system, 
the delay coordinates are used to form an m‑dimensional 
vector space as follows:

x t f x t x t x t m( ) ( ( ), ( ),......, ( ( ) ))= − − − −τ τ τ2 1  (1)

Where scalar m called embedding dimension and scalar 
t called time delay.

This theory only explains the possibility of phase‑space 
reconstruction with two parameters, embedding dimension 
and time delay, but it does not provide any information 
about the way of acquiring these parameters. Time delay 
or t expresses the distance between components of the 
delay vector and embedding dimension or m expresses the 
components in each delay vector.

The success of CD analysis depends on suitable 
reconstruction of phase space that is based on the 
calculation of embedding dimension and lag time. There 
are several ways to obtain these parameters. In this study, 
the mutual information method is selected to achieve the 
optimized value for time delay;[30] Indeed, the mutual 
information (M (t)) is obtained for different t values 
from (2).

M p
p
p pij

ij
ij

i j

( )τ = − ∑ ln  (2)

Where Pi is the probability of finding a data point in the 
distance subscripted by i and Pij is the joint probability 
of an observation in the distance subscripted by i while 
the next observation lies in the distance subscripted by 
j after the time delay t. The first minimum of the M (t) 
is considered as the optimum time delay for phase‑space 
reconstruction. Figure 1 shows M (t) calculated for several 
t values for the HRV signal of a patient with OSA.
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For determination of the optimized embedding dimension, 
the false nearest neighbor method is exploited which is one 
of the most precise methods for the selection of optimum 
embedding dimension in reconstructing a low‑dimension 
phase space.[31] In this method, optimum embedding 
dimension is selected as the first dimension for which the 
amount on nearest neighbors equals or approaches to zero.

After reconstruction of phase space, CD can be calculated 
using the Grassberger–Procaccia algorithm which in 
this regard is one of the well‑known and optimized 
approaches. Relation or correlation between delay vectors 
extracted from phase‑space reconstruction is measured with 
correlation integral. Correlation integral is an estimation of 
the probability of two delay vectors being at a distance less 
than r. Correlation integral is resulted from (3).

C r lim
r x x

N N
N

i j i

N

i j
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Where Θ shows Heaviside function, N is the number of 
points of the time series, and r is the distance under study; 
xi and xj refer to the points located on the trajectories of 
the reconstructed phase space. Heaviside function is shown 
in (4).
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Then, CD is calculated using (5).

CD = →∞lim
log ( )

log
r

C r
r

 (5)

When log C(r) is plotted as a function of log r, three 
distinct regions appear: Null region, the region in which we 
could not find two points, located at a distance less than r; 
Saturation region, the region in which C(r) does not grow 

by increasing r; and Scaling region, the region between 
null and saturation regions. CD equals to the slope of this 
curve in the third region.[32,33] Figure 2 shows log C (r) as a 
function of log r extracted from the HRV signal related to 
a patient with OSA.

Detrended fluctuation analysis

DFA is used to determine the self‑similarity and fractal 
structure in a time‑series. In DFA, root mean square (RMS) 
fluctuation resulted from a detrended and integrated time 
series is measured using different frames. These values are 
plotted as a function of applied frames in a log‑log plot. 
First, the time series y(k) with the total length of N, is 
integrated with the length of K ∈ N depicted in (6).

Y k y i y
i

k

m( ) [ ( ) ]= −
=
∑
1

 (6)

Where y(i) is data point number i from y(k) time series 
and ym is the mean value of the time series. The integration 
process reveals that the main signal is nonstationary. After 
integration, the integrated time series is equally divided into 
subsets; each subset with length L. Then, a line obtained 
using the least square error method fits to data of each section 
and shows the trend of that section. After that, local trends 
related to each section are removed from the integrated time 
series Y (k). For higher‑order trend removal, a higher‑order 
polynomial should fit to the time series. At last, RMS of the 
final time series is calculated as in (7) and (8).
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Where Yv(k) shows lines fitted to each section (with length 
L) of the time series Y(k), NL shows the number of sections 

Figure 1: Mutual information diagram for a heart rate variability signal from 
a patient with obstructive sleep apnea

Figure 2: The diagram of log C (r) as a function of log r for a heart rate 
variability signal from a patient with obstructive sleep
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after division of time series into sections with length 
L. The above calculations should be continued until a 
meaningful relevance between F(L) and L is defined. F(L) 
typically grows in proportion with L. Slope of log F(L) as 
a function of log L achieves the self‑similarity parameter 
called α, which is the measurable parameter in DFA.[34] α 
is calculated using (9).

α =
∂
∂
F L
L
( )  (9)

Results
The primary step toward calculations of CD is 
phase‑space reconstruction of the system based on HRV 
time series. Two corresponding important parameters, 
including embedding dimension and lag time, are 
estimated optimally using enhanced related methods. 
The time delay is acquired through mutual information 
method. The first minimum of the mutual information 
diagram is considered as the optimum time delay for the 
phase‑space reconstruction. M (t) is calculated for several 
t values for the HRV signal of a patient with OSA and is 
shown in Figure 1. Time delay for all the HRV signals 
are calculated and the dominant value (t = 20) is selected 
for the phase‑space reconstruction. Then, embedding 
dimension is achieved using the nearest neighbor 
method. The first dimension, for which the number of 
nearest neighbors approaches to 0, is selected as the 
embedding dimension. After the evaluation of embedding 
dimensions obtained from all HRV signals, the dominant 
value (m = 5) is used for the phase‑space reconstruction; 
therefore, CD is calculated using t = 20 as the time delay 
and m = 5 as the embedding dimension. Table 1 shows 
CDs calculated for HRV signals recorded from both 
patients with OSA and healthy individuals. The results 
of t‑test analysis performed on CD values are statistically 
significant.[35] The CD with P < 0.005 indicates that there 
is significant difference in nonlinear dynamics of HRV 
signals related to OSA patients and healthy individuals; 
indeed, our result indicates the possibility of using HRV 
data in sleep apnea as time series to calculate chaotic 
indexes.

To evaluate our results with another method, we also apply 
DFA to our data. In DFA, RMS should be repeatedly 
calculated for at least 30 frames. In this study, according 
to the work done by Penzel et al.,[20] 60 frames between 
L = 4 and L = 1000 are taken into account. Table 1 shows 
α values obtained from DFA on HRV signals for patients 

with OSA and healthy controls. As mentioned above, α is 
the measurable parameter resulted from DFA. The results 
of t‑test analysis performed on α values are statistically 
significant. Our obtained results shown in Table 1 indicate 
that in comparison with DFA, CD as a chaotic method 
which is calculated using HRV time series can better 
quantify HRV changes.

Discussion and Conclusion
Chaos‑based methods can assist to realize hidden dynamical 
features of biological time series, so they can be used to 
detect serious disease such as sleep apnea. In most chaotic 
analysis methods such as CD, phase‑space reconstruction 
is the first step. Currently, most of the sleep apnea studies 
calculating CD exploit ECG signals as time series for 
phase‑space reconstruction. Up to our knowledge, studies 
on sleep apnea disorder rarely focused on independent 
investigation of the use of HRV as time series to perform 
phase‑space reconstruction and to calculate CD. To this end, 
we attempted to use HRV data as time series to calculate 
CD. Statistical tests such as t‑test typically are necessary to 
evaluate the discrimination ability of every feature extracted 
from time series analysis. Our results of using t‑test on CD 
obtained from HRV time series with P = 0.003 show a 
significant difference in nonlinear dynamics of HRV signals 
detected from OSA patients and healthy individuals, so this 
method has a very significant ability to distinguish OSA 
patients from normal people. A few studies on OSA using 
chaotic analysis can obtain practically significant results; 
for instance, Miyata et al.[22] obtained results with P < 0.01 
by applying CD to respiratory movement for diagnosis of 
OSA/hypopnea syndrome during wakefulness, or Zapanta 
et al.[27] got results with P < 0.05 to detect chaos in HRV 
of children with OSA. Faust et al.[36] in their study claim 
that from research experience, features with low P value 
are more practical to discriminate patients from healthy 
people. Based on their claim, having features with low 
P value is necessary to design an automatic diagnosis 
system. Therefore, our statistical results with practical 
significance prove that the CD obtained from HRV time 
series can be used to explain an appropriate classifier for 
automatic detection of OSA. Design of a classifier based 
on distinguish ability of our method is another work that 
we already aim to propose. Moreover, we also used DFA (a 
commonly used method for OSA detection) to examine 
our HRV data. Comparing our obtained results from CD 
method with our results from DFA also indicates that HRV 
changes of sleep apnea patients can be efficiently quantified 
using CD. As shown in Table 1, our findings indicate more 
discrimination ability for CD than DFA. In conclusion, we 
attempted to specifically investigate HRV as time series to 
perform the phase‑space reconstruction and to calculate 
CD as well, and our results as discussed above can be 
efficiently useful in study of OSA.

Table 1: Results
Features Mean±SD P

Normal OSA
CD 2.696±0.194 2.933±0.184 0.003
α 1.159±0.11 1.063±0.132 0.044
OSA – Obstructive sleep apnea; CD – Correlation dimension
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