
Modeling Complex Orthopedic
Trauma in Rodents: Bone, Muscle and
Nerve Injury and Healing
Huaishuang Shen1,2, Aysha M. Gardner1†, Juhee Vyas1†, Ryosuke Ishida1,3 and
Vivianne L. Tawfik1,4*

1Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States, 2Department
of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China, 3Department of Anesthesiology, Shimane
University, Shimane, Japan, 4Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States

Orthopedic injury can occur from a variety of causes including motor vehicle collision,
battlefield injuries or even falls from standing. Persistent limb pain is common after
orthopedic injury or surgery and presents a unique challenge, as the initiating event
may result in polytrauma to bone, muscle, and peripheral nerves. It is imperative that we
understand the tissue-specific and multicellular response to this unique type of injury in
order to best develop targeted treatments that improve healing and regeneration. In this
Mini Review we will first discuss current rodent models of orthopedic trauma/complex
orthotrauma. In the second section, we will focus on bone-specific outcomes including
imaging modalities, biomechanical testing and immunostaining for markers of bone
healing/turnover. In the third section, we will discuss muscle-related pathology
including outcome measures of fibrosis, muscle regeneration and tensile strength
measurements. In the fourth section, we will discuss nervous system-related pathology
including outcome measures of pain-like responses, both reflexive and non-reflexive. In all
sections we will consider parallels between preclinical outcome measures and the
functional and mechanistic findings of the human condition.
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INTRODUCTION

High energy trauma is a major public health concern as it is often associated with complex muscle,
bone, nerve and connective tissue damage. Military injuries to extremities, including those with
extensive soft tissue and bone destruction, are on the rise (Stojadinovic et al., 2006) with the most
frequent injury in the Iraq and Afghanistan wars being blast wounds (Belmont et al., 2016). In a
cohort study of battle injuries, combat-related extremity injuries required longer hospital stays and
were responsible for 65% of total inpatient resource utilization (Masini et al., 2009). These injuries
cause pain and long-lasting functional deterioration which demand intensive medical intervention
and physical therapy. The lifetime medical cost of non-fatal crash injuries, for example, was
estimated to be $18.4 billion in 2012 (Bergen et al., 2014). It is therefore imperative that we
develop better treatments to alleviate acute and chronic trauma-related pain and functional deficits
to facilitate patient rehabilitation. Here, we review preclinical rodent orthopedic trauma/injury
models, including discussion of clinical relevance and face validity of these models with respect to the
human condition. We further discuss outcomes to evaluate bone, muscle and nerve healing that go
beyond simple reflexive measures of nociception. While a substantial number of studies have
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demonstrated benefits of analgesic drugs in preclinical pain
models, failure to translate these findings into clinically
successful medications has resulted in shuttering analgesic
drug development programs at several major companies
(Percie du Sert and Rice, 2014). The reasons for these
translational failures have been extensively reviewed elsewhere
(Woolf, 2010; Barrett, 2015; Clark, 2016) and include poor animal
models, poor pain measures and poor reporting practices. We
therefore encourage investigators to consider clinically-informed
models and outcomes as a means to bridge the gap between
preclinical and clinical research efforts, particularly in the search
for novel analgesics.

PRECLINICAL MODELS OF ORTHOPEDIC
TRAUMA

Preclinical animal research is key to uncovering mechanisms
underlying traumatic injury. Although the small size of rodents
makes standardized orthopedic injury models and outcome
measurements quite challenging, the possibility of genetic
manipulation renders rodent models, especially mice, the ideal
species for many studies, but ultimately depends on the exact
questions being asked (Jacenko and Olsen, 1995; Houdebine,
2007).

One of the first models of orthopedic trauma was developed by
Bonnarens and Einhorn and involved closed femur fracture with
intramedullary (IM) pinning in the rat (Bonnarens and Einhorn,
1984). Subsequently, Manigrasso and O’Connor (2004) described
a mouse model for further molecular and genetic analysis. To
more closely approximate human bone fixation, modifications
have been reported by Holstein et al. (2007), with the use of a
locking nail or compression screw (Holstein et al., 2009) to fix
rotational and axial movement of the IM pin to avoid secondary
injury from micromotion of the pin within the marrow space. In
order to develop a model with better reproducibility and less
tissue damage, closed tibial fracture models were also established
(Hiltunen et al., 1993; Otto et al., 1995; Handool et al., 2018).
External fixation was also utilized in rats byMark et al. (2003) and
further enhanced using customized fixators for studies focused on
implanted osteoconductive materials (Kaspar et al., 2007).
Additionally, different non-union rodent models were
developed to study delayed healing or non-unions (Garcia
et al., 2013). For example, atrophic non-union models that
result from periosteal injury (Garcia et al., 2008) or segmental
defect (Garcia et al., 2011), critical size defect models that cause
reliable non-unions with proper fixation (Zwingenberger et al.,
2013), and osteosynthesis-associated infections models (Wong
et al., 2020) have all been adopted for mechanistic investigations.

When animal models accurately mimic the human condition,
conclusions derived from their use have the potential to be
effectively translated to clinical care. Orthopedic trauma is not
only limited to bone injury, but also results in destruction of
muscle, soft tissue and peripheral nerve damage that contribute to
healing complications (Haffner-Luntzer et al., 2019). As a result,
we developed a complex orthopedic trauma mouse model
(Tawfik et al., 2020b), consisting of open tibial fracture with

pin fixation andmuscle injury, to reflect nociceptive sensitization,
muscle fibrosis, and muscle fiber loss, as well as bone injury.
Other examples of models that seek to more closely emulate the
human condition include trauma-hemorrhage mouse models
combining external femur fixator with pressure-controlled
hemorrhagic shock on femoral arteries. Such models
demonstrate that hemorrhagic shock can cause delayed
fracture healing with decreased callus strength (Gascho et al.,
1989; Neunaber et al., 2013; Bundkirchen et al., 2017). Similarly,
femoral artery resection (Lu et al., 2007; Kalogeris et al., 2012) and
diabetic ischemia (Follak et al., 2004; Kayal et al., 2009) have been
combined with fracture models to mimic bleeding and ischemia
in trauma patients (Miclau et al., 2017). Finally, the effects of
osteoporosis have been mimicked in fracture models using
ovariectomized female (Yousefzadeh et al., 2020), aged (Meyer
et al., 2006) or transgenic mice with decreased bone density
(Watanabe and Hishiya, 2005) to match clinical scenarios of
postmenopausal and age-related osteoporosis, respectively.

PRE-CLINICAL MEASUREMENTS IN
ORTHOPEDIC TRAUMA: CONNECTION
TO THE CLINIC
Most important to the success of such models is the use of
appropriate and translationally-relevant outcome measures with
face validity with respect to the human condition. We describe
the most widely used paradigms for evaluating bone and muscle
healing as well as pain-like behaviors in rodent models of trauma
with discussion of the clinical correlates that we believe enhance
the likelihood of translation (Figure 1).

Measurement of Bone Healing
Structural Analysis
Plain radiography (x-ray) is the most straightforward way to
confirm bone bridge formation and post-operative displacement
of implants or fixed bones (Schindeler et al., 2008; Manigrasso
and O’Connor, 2010). However, detection of proper alignment
alone without quantitative determination, does not provide full
information about healing. In contrast to x-rays, micro-computed
tomography (CT) is the most established imaging technique in
rodent studies to examine bone structure, density, as well as
fracture non-union (Schmidhammer et al., 2006). CT can be used
to longitudinally monitor fracture healing at high resolution in
living mice (Jiang et al., 2000). Using this highly accurate and
consistent technique, researchers have reported differing
geometric characteristics of long bones between sexes, strains,
and ages of mice (Halloran et al., 2002; Ferguson et al., 2003;
Willinghamm et al., 2010).

Although newly generated callus is a heterogeneous and three-
dimensional structure, longitudinal or transverse bone sections
are commonly stained with various dyes, including hematoxylin
and eosin, safranin O/fast green and Masson’s trichrome stain
etc., to differentiate cartilage, collagen and bone from smooth
muscle (Miller et al., 2007; Hu et al., 2020). Besides qualitative
evaluation, standardized histomorphometry can be used to assess
bone healing quantitatively (Gerstenfeld et al., 2005).
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Additionally, immunohistochemistry can be used to detect
changes of osteoblasts and osteoclasts, by alkaline phosphatase
(ALP) and tartrate resistant acid phosphatase (TRAP) staining,
respectively. Bone proteins, such as osteocalcin, bone
morphogenetic proteins (BMPs), osteoprotegerin and vascular
endothelial growth factor (VEGF), can be followed during the
healing process from callus formation to bone resorption
(Fedchenko and Reifenrath, 2014; Li et al., 2019; Li and
Helms, 2021).

Physicians also rely heavily on imaging studies, including
x-ray, CT, ultrasonography, and MRI (Lichtor et al., 1991;
Cunningham et al., 2017), to evaluate anatomic bone healing.
Specialized techniques, including radiostereometric analysis
(RSA), further allow for precise radiographic measurement of
fracture micromotion or deformation (Solomon et al., 2010).

Mechanical Properties
Most rodent studies use bending and torsion on long bones to
mimic the typical loading modes in patients (Fritton et al., 2000).
Monotonic bending is a major whole-bone measurement of bone
ductility and can be performed in three-point or four-point
bending (Liodaki et al., 2017; Zhang et al., 2017; Mumtaz
et al., 2020; Zhang et al., 2020). While torsion tests are often
used to evaluate fracture healing, fracture toughness tests
(Poundarik et al., 2012), time-dependent tests (Lynch and
Silva, 2008) and viscoelastic tests (Maruyama et al., 2015) are

also common in fracture studies, as they are more sensitive to
bone matrix changes. To measure the local properties of bone,
nanoindentation is utilized to measure the moduli and hardness
in different regions of the leg among different strains (Pathak
et al., 2012; Pepe et al., 2020). Not only can this technique be
applied to measure small biomaterial or callus tissue in rodent
studies, but may also measure intrinsic properties of bone tissue
in clinical studies by means of trans-iliac biopsy specimens
(Vennin et al., 2017). Ultrasound waves can be used to non-
invasively detect precise changes in both material density and
structural integrity via velocity and attenuation in humans. For
example, Sakai et al. (2008) used an echo-tracking system to
evaluate patients’ bone strength under three-point bending tests.
Factors affecting long bone fractures including body size (Jepsen
et al., 2015), location (Schriefer et al., 2005), sex (Glatt et al.,
2007), age (Brodt and Silva, 2010), and strain (Fritton et al., 2000)
have been systematically summarized by Jepsen et al. (2015),
along with practical guidelines on establishing biomechanical
mechanisms in different situations.

Gait Analysis
Besides pain control and proper tissue healing, the ultimate
goal of treatment for orthopedic injury is to restore the
function of fractured limbs. For lower extremity injury,
gait analysis has been frequently used as a measure of
function in large animals (Muybridge, 1979; Seebeck et al.,

FIGURE 1 | Summary of measures to evaluate bone, muscle and pain-related outcomes in preclinical models and their relationship to clinical outcomes.
Abbrevations: CPP, conditioned pain preference; CT, computed tomography; IHC, immunohistochemistry; MRI, magnetic resonance imaging; PEAP, place escape/
avoidance paradigms; PROMIS, patient reported outcomes measurement information systems; RSA, radiostereometric analysis.
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2005), and in rodent models of nerve injury (Wang et al.,
2008) or osteoarthritis (Williams et al., 1993), and in our own
studies using the fracture-pin model of orthopedic trauma
(Tawfik et al., 2020a).

Gait analysis using a treadmill can evaluate both static and
dynamic gait patterns in mice by placing the rodent on a treadmill
with a camera recording from below. This can be conducted with
DigiGait or CatWalk (Kappos et al., 2017) analysis systems as
described previously (Deuis et al., 2017). Based on Chen’s
modified systematic method (Chen et al., 2017), Hofman et al.
(2020) evaluated five gait parameters including intensity, print
area, swing speed, stand duration, duty cycle after intramedullary
stabilized femoral fracture at multiple time points. Gait analysis
can also be measured via a simple footprint test with paws
covered in non-toxic paint and the pattern evaluated (Deuis
et al., 2017).

As for clinical outcomes, gait analysis is an essential
aspect of rehabilitation, especially for patients with lower
extremity fractures (Rosenbaum et al., 2014). Macri et al.
(Macri et al., 2012) proposed a standardized gait pattern
score system in tibial fracture patients treated with an
intramedullary nail that enables the classification stages of
fracture consolidation. In the clinical setting, physicians and

physical therapists can observe patients walking on the floor
or on a treadmill to monitor gait, favoring of one limb over
the other, or any changes in foot placement or asymmetry
(Higginson, 2009).

Cellular Mechanisms of Bone Regeneration and
Repair
The mechanisms of bone healing have been widely studied and
recently comprehensively reviewed by Loi et al. (2016). It is
important to highlight that inflammatory cells and their
mediators both contribute to bone healing in the early stages
but can also delay fracture union if inflammation becomes
persistent (Figure 2). In particular, macrophages participate in
bone fracture healing immediately after injury when theM1 “pro-
inflammatory” subtype predominates and encourages greater
mineralization through interactions with osteoprogenitors and
mesenchymal stem cells (MSCs, Figure 2) (Loi et al., 2016). Yet
persistent macrophage activation and proinflammatory cytokine
expression is detrimental to proper bone healing by inhibiting the
differentiation of MSCs to osteoblasts (Lin et al., 2017), and can
be a trigger for peripheral neuron sensitization (Shepherd et al.,
2018). Polarization of M1 macrophages to the M2 “anti-
inflammatory” phenotype using IL-4 infusion or MSC

FIGURE 2 |Molecular and cellular mechanisms of complex orthopedic trauma and recovery. Initial trauma results in inflammatory cell migration to the site of injury
as a result of cytokine and chemokine release from injured cells. DAMPs released from injured muscle bind TLRs on immune cells which leads to NLRP3 inflammasome-
mediated release of inflammatory cytokines such as NGF, TNF-α and IL-6. ATP released from immune cells and injured nerves themselves can activate P2X receptors on
sensory nerve terminals. In addition, release of NGF from inflammatory cells stimulates TrkA receptors on Aδ and C fibers which can maintain hyperexcitability.
NGF-TrkA complexes are transferred to the DRGwhere primary afferent cell bodies reside, and these complexes can further maintain pain. Macrophages interfacing with
bone are polarized to the M1 phenotype by DAMPs and pro-inflammatory cytokines to clean necrotic tissue and any pathogens. The transition from M1 to M2 would
encourage activation of MSCs and differentiation of osteoblasts to promote osteogenesis. The balance between osteoblastic and osteoclastic activity plays a key role in
the bone remodeling that results in fracture healing. Abbreviations: DAMPs, damage-associated molecular patterns; IFN-γ, interferon-gamma; IL, interleukin; M-CSF,
monocyte-colony stimulating factor; MSC, muscle stem cells; NGF, nerve growth factor; Osx, osterix; RANKL, receptor activator of nuclear factor kappa-B ligand; TLR,
toll-like receptor; TNF-α, tumor necrosis factor alpha.
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injection in the subacute period favors bone regeneration and
presents an attractive approach to enhance fracture healing (Lin
et al., 2018; Lin et al., 2019). In addition, osteocytes have
important roles in every phase of fracture healing as they can
sense both physical and biochemical signals to regulate bone
metabolism regeneration and remodeling (Bonewald, 2011). For
an in-depth review of the important role of osteocytes in bone
healing see Choy et al. (2020). Bone healing occurs in the context
of revascularization and reinnervation which are integral to the
process. For example, with implants containing spatiotemporally
released angiogenic factors, (Freeman et al. 2020) accelerated
bone healing in a large bone defect mouse model. Moreover, Li
et al. (2019) demonstrated that the neuronal NGF receptor, TrkA,
is a key upstreammediator in ulnar stress fracture healing, clearly
connecting neuronal responses with bone repair (also see
Molecular Mechanisms of Pain After Orthopedic Trauma section).

Measurement of Muscle Healing
Muscle Force
Measurement of muscle force is important to determine the
extent of strength regained after injury. Viscoelastic force
relaxation, twitch dynamics, and max tetanic force
measurements are performed by exposing the sciatic nerve
and tibialis anterior (TA) and attaching them to a force
transducer (Quarta et al., 2018). Ex-vivo measurements of
muscle dynamics are performed by removing the TA muscle
and attaching it to a force transducer lever and the testing
apparatus (Quarta et al., 2017). The contraction of the TA is
electrically induced through immersion in a culture bath,
while force production was measured (Quarta et al., 2017).
In the same way, isokinetic muscle functioning testing can
record the forces applied by muscle groups in humans
(Osternig, 1986).

Muscle Innervation/Electrical Conduction
In both mouse models and human injuries, electromyography
(EMG) is used to diagnose and evaluate the prognosis of
myopathy (Daube and Rubin, 2009) while also examining
muscle innervation. Researchers surgically put the EMG
electrodes within the muscle of interest in mice, then
electrically stimulate the treated muscle and record the
induced peak-to-peak voltage response (Sicari et al., 2014).
Similarly, clinicians place needle electrodes in the belly of
injured muscle and motor nerve conduction amplitude pre-
and post-treatment can be recorded (Dziki et al., 2016).

Muscle Strength/Function
Several testing paradigms have been developed to evaluate muscle
strength and function in rodents with clear clinical correlates. The
forelimb grip test evaluates a mouse’s forelimb and/or hindlimb
skeletal muscle strength (Bonetto et al., 2015). These compare to
the 1–5 scale from the British Medical Research Council for
muscle strength testing in humans (Compston, 2010). Physical
therapists also use a goniometer to collect range of motion
measurements on the injured limb (Grogan et al., 2011).
Lastly, photos and videos of injured and surrounding muscles
are used for mice models and humans to evaluate functional

movements and to record the wounds and atrophy of the muscle
(Grogan et al., 2011).

Exercise with either wheel or treadmill access is an additional
way to measure motor function and provide rehabilitation after
injury in mice. Shi et al. (2018) demonstrated that 4 weeks of
exercise resolved allodynia, warmth, swelling, and unweighting
compared to unexercized mice in a fracture-casting model. Our
laboratory has also shown the effectiveness of delaying exercise.
In the tibial fracture-pin model of orthopedic trauma, mice that
had access to a running wheel immediately after injury had worse
muscle fibrosis compared to non-exercized mice, however, mice
with delayed access to exercise had improved muscle, bone and
pain outcomes (Tawfik et al., 2020b). Routine exercise can prove
to be extremely beneficial for patients by improving function and
decreasing pain (Merkle et al., 2020).

Monitoring mice throughout their daily activity using
systems such as HomeCageScan which utilize automated
video can give a better sense of spontaneous pain behaviors
and movement (Deuis et al., 2017). Similarly, tracking daily
movement using a body-fixed sensor can facilitate monitoring
of activities of daily living (ADL) and post-op rehabilitation in
patients (Brandes et al., 2011; Benzinger et al., 2014). Luna
et al. (2019) used actigraphy-based assessments to evaluate
early postoperative physical function. They correlated
intensity of activity to individual recovery trajectories and
found that early stratified physiotherapy interventions are
needed for patients with reduced activity.

Cellular Mechanisms of Muscle Regeneration and
Repair
After a muscle injury, the skeletal muscle regenerates via
activation, proliferation, migration, and differentiation of
muscle stem cells in a conducive microenvironment (Sicari
et al., 2014). It has also been shown that perivascular stem
cells, CD146+ endothelial cells, and NG2+ (neurogenin 2-
positive) polydendrocytes, and M1 and M2 macrophages have
a crucial role in muscle regeneration (Sicari et al., 2014; Hurtgen
et al., 2016). Without correct muscle repair, volumetric muscle
loss (VML) can ensure with associated chronic muscle pain,
therefore there is a need to develop new therapies to ensure
proper muscle regeneration (Figure 2).

Quarta et al. (2017) used bioconstructs of muscle stem cells
and other muscle resident cells to restore structure and
function after an acute VML. To further support muscle
regeneration, Sicari et al. (2014) implanted a porcine
urinary bladder extracellular matrix (ECM) into VML
injured muscle to create a supportive microenvironmental
niche. Moreover, they performed successful proof-of-concept
studies in five patients with VML injury (Sicari et al., 2014)
and a subsequent trial with thirteen patients (Dziki et al.,
2016) also showed strength increase, de novo muscle
formation, and muscle innervation. Clear limitations
include the small number of participants, possible placebo
effect, lack of a control group, and not being able to correlate
de novo muscle formation to functional improvement,
however, these are steps toward the clinical use of such
bioconstructs and ECM transplantation for VML.
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Measurement of Pain-like Behaviors
Reflexive Behaviors
Reflexive stimulus-evoked measures with varying modalities (touch,
temperature, pressure) are commonly used approaches to assess
pain-like behaviors in preclinical models. Tests used for
mechanically evoked pain-like behaviors include manual or
electronic von Frey test, and Randall-Selitto test (Deuis et al.,
2017). Tests used to evaluate heat responses include the hot-plate,
Hargreaves, and thermal probe tests (Deuis et al., 2017). In humans,
mechanical allodynia and hyperalgesia can be assessed using a
pinprick or monofilament, or through the application of pressure
while heat sensitivity can be assessed by placing ametal probe on the
skin (Deuis et al., 2017). Quantitative Sensory Testing (QST),
dynamic or static, can be used to evaluate stimulus-evoked pain.
Dynamic QST assesses response to multiple stimuli and allows for
examination of central processing of nociception, whereas static QST
assesses the response to a single stimulus (Mackey et al., 2017).
Dynamic QST includes temporal summation (TS) and conditioned
pain modulation (CPM). In TS, continual probing by noxious
stimuli causes increased perception of pain, whereas in CPM the
perception of pain caused by a noxious stimulus can be decreased
with the presence of a second noxious stimulus (Mackey et al., 2017).

Non-Reflexive Behaviors
Methods used to assess non-reflexive pain-related behaviors
include gait analysis (see above), and place escape/avoidance
paradigms (PEAP) and conditioned place preference (CPP)
(Navratilova and Porreca, 2014). PEAP assesses the affective
and sensory components of pain while CPP facilitates
understanding of reward and aversion behavior motivated
by pain-relief, or pain avoidance (Navratilova and Porreca,
2014; Kuhn et al., 2019). For example, a change in escape
latency in the Mechanical Conflict Avoidance test (MCA)–a
voluntary, non-reflexive behavioral assay–could indicate
spontaneous pain after spared nerve injury or Complete
Freund’s adjuvant injection (Shepherd and Mohapatra,
2018). The mouse grimace scale (MGS) is another measure
of spontaneous pain. The MGS scores the movements of
individual facial muscles on a three-point rating scale. It
accounts for orbital tightening, cheek bulge, nose bulge,
whisker position, and ear position (Mogil et al., 2020).

The Numerical Rating Scale (NRS) is frequently used to assess
pain in humans but does not provide much depth of information.
It allows patients to rate pain on a scale of 0–10 (or 0–100), with
the lower limit indicating no pain and the higher limit denoting
the worst pain (Krebs et al., 2007). Other more detailed
evaluations were subsequently developed to more fully
evaluate patients presenting with chronic pain. The McGill
Pain Questionnaire, for example, is a multidimensional
framework that measures the sensory, affective, cognitive, and
behavioral aspects that comprise pain by evaluating pain location,
intensity, quality, and pattern (Ngamkham et al., 2012). More
recently, several pain clinics including our own (Bhandari et al.,
2016), have integrated patient-reported outcome (PROMIS)
measures that evaluate physical, psychological and social
functioning, fatigue and sleep, among other parameters
(Sturgeon et al., 2015a; Sturgeon et al., 2015b).

Molecular Mechanisms of Pain After Orthopedic
Trauma
The bone periosteum, made up of outer fibrous and inner cambium
layers, appears to have the densest sensory and sympathetic
innervation (Mantyh, 2014). Pain following bone fracture is
attributed to the nerve fibers in the periosteum, including A-delta
and C-fibers which get sensitized after injury (Mantyh, 2014). Initial
activation of neuronal P2X receptors by ATP released from injured
keratinocytes and infiltrating inflammatory cells facilitates the
transmission of nociceptive information through membrane
depolarization and calcium entry (Bernier et al., 2018). The
inflammatory response to injury further results in the release of
nerve growth factor (NGF) by immune and Schwann cells, which
binds to TrkA (Mantyh et al., 2011). NGF-TrkA form a complex
which is internalized and transported to cell bodies in the DRG
where feedforward hypersensitivity of neurons triggers pain
(Mantyh et al., 2011). Since the NGF-TrkA complex can generate
and maintain pain, the use of anti-NGF, which prevents the binding
of NGF to TrkA, can reduce pain-related behaviors in a fracture
model without negatively affecting bone healing (Jimenez-Andrade
et al., 2007; Koewler et al., 2007). In clinical trials, the administration
of tanezumab, a monoclonal antibody directed against NGF, was
reported to exhibit efficacy in low back pain (Chang et al., 2016).

When a peripheral injury occurs, endogenous danger-
associated molecular patterns (DAMPs) are released from
damaged muscle fibers to facilitate repair (Hurtgen et al., 2016;
Kelley et al., 2019). DAMPs trigger an innate immune response to
injury by binding to pattern recognition receptors, such as toll-like
receptors (TLRs) (Bianchi, 2007) with downstream activation of
the NLRP3 inflammasome and production of inflammatory
mediators such as TNF-alpha and IL-6, among others (Bianchi,
2007) (Figure 2). TNF-alpha and IL-6 have both been shown to
cause hyperalgesia when intramuscularly injected into rodents
likely through induction of additional sensitizing mediators such
as PGE2, NGF, and CGRP (Schafers et al., 2003; Manjavachi et al.,
2010). Importantly, commonly used clinical medications such as
dexamethasone and morphine can prevent the IL-6-induced
reduction in pain threshold (Manjavachi et al., 2010). While
these drugs can provide some relief for post-injury pain, there
is still a need to identify better treatment options (Manjavachi et al.,
2010).

Imaging Pain Generators
One way to identify pain generators is through the use of positron
emission tomography (PET), a noninvasive imaging tool that allows
spatiotemporal visualization of cellular responses to injury. PET
ligands that specifically target different cell types and varying cellular
activation states can be utilized to monitor disease progression or
measure treatment success (Jain et al., 2020). We previously used
longitudinal 18F-TSPO-PET imaging in the tibial fracture mouse
model to track the activation of peripheral and central myeloid cells
during the acute-to-chronic pain transition (Cropper et al., 2019). In
patients, we have also used PET/MRI imaging with the novel
radiotracer 18F-FTC-146 to image the sigma-1 receptor, a pro-
nociceptive receptor which is upregulated in inflamed tissue.
Imaging identified a previously unappreciated mass with high
focal uptake of 18F-FTC-146 in the intercondylar notch, removal
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of which resulted in resolution of the patient’s knee pain (Cipriano
et al., 2018).

CONCLUSIONS AND FUTUREDIRECTIONS

Mouse models of orthopedic trauma that mimic multi-tissue injury,
including bone, muscle and nerve, are most representative of human
complex extremity trauma. Using such models combined with
outcome measures that have clear human correlates, will improve
translation of basic science findings to clinically useful treatments.
We encourage all preclinical researchers to consider these
approaches in designing their studies.
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