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Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved
in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth
factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we
developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine
kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP) and UniProtKB, filtered them by removing sequence
redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is
based on support vectormachines (SVMs), andwe evaluated several input features suitable for tyrosine kinase formachine learning
and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences
as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that
obtained from general protein-protein interaction pair predictions.

1. Introduction

Tyrosine kinases are enzymes that phosphorylate, particu-
larly tyrosine residues, in proteins.These enzymes are present
only in multicellular organisms and play an important role
in signal transduction required for cellular differentiation,
proliferation, and immune response [1, 2]. Receptor tyrosine
kinases are enzymes that are activated by the binding of
growth factors and consist of three domains: a transmem-
brane domain, a ligand-binding extracellular domain, and
an intracellular domain that has tyrosine kinase activity
[3]. Upon binding of a ligand to the extracellular domain,
the receptor tyrosine kinases dimerize and tyrosine kinase
domains in the intracellular regions mutually phosphory-
late certain tyrosine residues present on each other [3].
This autophosphorylation activates tyrosine kinase and the
enzyme gains the capacity to phosphorylate other protein
substrates [3].

Receptor tyrosine kinases are essential proteins involved
in cellular differentiation and proliferation in vivo and

are heavily involved in allergic diseases, diabetes, and
onset/proliferation of cancerous cells [4]. Identifying the
interacting partner of this protein, a growth factor lig-
and, will improve our understanding of cellular prolifera-
tion/differentiation and other cell processes. It may also allow
predicting inhibitors of signal transduction, further leading
to their practical application in drug design processes, such
as the synthesis of an inhibitor that hinders cellular activity
[5].

In this study, we developed a new bioinformatics tool to
predict the interacting pairs of a receptor tyrosine kinase from
amino acid sequences using a machine learning approach
based on support vector machine (SVM) [6]. SVM is a super-
vised machine learning algorithm for solving classification
and regression analyses and is known to have high gener-
alization performance. Input data consisted of protein pairs
classified into two classes, a binding class and a nonbinding
class, which were used for learning and evaluation of the
prediction performance of SVM. In SVM prediction, protein
information must be extracted as feature values and must be
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Figure 1: Flow of dataset generation. Data from the Database of Interacting Proteins (DIP) were filtered by selecting only pairs with a protein
in the search result of UniProtKB [10] using a keyword and EC number search (“tyrosine kinase” AND EC:2.7.10.1 AND reviewed: yes). To
exclude redundancy, clustering was performed against the 174 hits obtained from the interacting pairs of receptor tyrosine kinases and ligands
using BLASTclust and one protein was extracted from each cluster. An identity of 80% or above within the 100% region of the amino acid
sequence was set as the criteria for BLASTclust. As a result of clustering, 34 receptor tyrosine kinases and 67 ligand proteins were extracted.
On the basis of these procedures, 95 pairs were obtained as the final positive data for protein-protein interaction. Negative data (2183) were
artificially prepared by excluding the 95 positive data hits from all the combinations of the retrieved receptor tyrosine kinases and their above
ligands.

further converted to numerical vectors. The method used for
this feature extraction is very important for achieving high
prediction accuracy.

Although there are many general protein-protein inter-
action prediction tools, their performance can be further
improved by considering the properties specific to tyrosine
kinases. To the best of our knowledge, there have been no
such specific prediction tools.

In this study, amino acid sequence pattern information
and domain information extracted from sequences were
used as feature values. For the sequence pattern informa-
tion, we used the 𝑘-mer frequency to convert amino acid
sequences into numerical vectors. The 𝑘-mer frequency [7]
is widely used in protein function prediction and consid-
ers the appearance frequency of 𝑘 continuous characters
within an amino acid sequence as the feature vector. Protein
domain is closely related to function and considered to
offer effective characteristics for the prediction of protein
interaction. For the domain information, both superfamily-
and domain-level feature extractions were performed. These
features were expected to represent protein function, namely,
tyrosine kinase binding facility. We constructed a prediction
model based on a single feature, that is, feature using 𝑘-
mer frequency or feature using domain information, and in
addition, we attempted to increase prediction accuracy by
combining techniques.This paper proposes two combination
techniques: combining features of both sequence and domain
information to be an input to SVMand combining prediction
results obtained by sequence- and domain-based prediction
models. We employed C-SVM in LIBSVM library [8] for
experiments with SVM.

2. Materials and Methods

2.1. Dataset. Figure 1 shows the flow of generating our
dataset. We collected data from the Database of Interacting

Proteins (DIP) [9] in which pairs of interacting proteins are
deposited.Theywere filtered by selecting only the pairs with a
protein in the search results of UniProtKB [10] with keyword
and EC number search (“tyrosine kinase” AND EC:2.7.10.1
AND reviewed: yes). Furthermore, to exclude redundancy,
clustering was performed against the 174 hits obtained from
the interacting pairs of receptor tyrosine kinases and ligands
using BLASTclust [11] and one protein was extracted from
each cluster. An identity of 80% or above within the 100%
region of the amino acid sequence was set as the criteria for
BLASTclust. As a result of clustering, 34 receptor tyrosine
kinases and 67 ligand proteins were extracted. On the basis
of the above procedures, 95 pairs were obtained as the final
positive data for protein-protein interaction. Negative data
(2183) were artificially prepared by excluding the 95 positive
data hits from all the combinations of the obtained receptor
tyrosine kinases and their abovementioned ligands (34×67−
95 = 2183). Thus, as the sizes of positive data and negative
data are imbalanced, we assigned the weights proportional to
the sizes using the LIBSVM facilities.

2.2. Feature Extraction. We extracted features that were
considered to be useful for predicting protein-ligand pairs
based on amino acid sequences and domains.

2.2.1. Feature Extraction Based on Amino Acid Sequence.
Amino acid sequence is the most basic protein information
in terms of functional analysis. For this reason, we performed
prediction using amino acid sequence from UniProtKB. We
used 1- and 2-mer frequency methods, meaning that 20
dimensions and 20 × 20 = 400 dimensions of feature vectors
are acquired, respectively, for each protein. Because we used
pairs of proteins as an input, the dimensions of feature vectors
given to SVM resulted in 20 × 2 = 40 dimensions and 20 ×
20 × 2 = 800 dimensions, respectively.
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2.2.2. Feature Extraction Based on Domain Information.
Domain information was acquired from the Conserved
Domains Database (CDD) [12].The𝐸-value cutoff parameter
for the search was set as 1.0 × 10−8. Regarding the receptors,
80 types of domains were extracted by the CDD search and
26 types of superfamilies to which the domains belonged
were extracted; in the same way, 98 types of domains and
68 types of superfamilies were extracted for ligands. On the
basis of domain and superfamily information, two kinds of
feature vectors were generated for numerical representation
of receptor-ligand pairs: domain-level and superfamily-level
feature vectors. Figure 2 shows the scheme of the domain and
superfamily encoding. In domain-level feature vectors, each
vector element corresponds to a domain type. The value of
the vector element is 1 or 0 corresponding to whether or not
each domain type is present in the protein. The number of
dimensions is equal to the number of domain types and the
number of dimensions is 178 (= 80 + 98). In superfamily-
level feature vectors, each vector element corresponds to a
superfamily type towhich the domain type belongs.The value
of the vector element is 1 or 0 corresponding to whether or
not each superfamily is present in the protein.The number of
dimensions is equal to the number of superfamily types and
the number of dimensions is 94 (= 26 + 68).

2.3. Integration of Prediction Methods

2.3.1. Combining Feature Vectors. One form of combination
applied in our research is to use the combined feature vector,
which is created by concatenating each feature vector. This
operation was performed so that data characteristics not fully
represented by single-feature values could be further detected
with other feature values to improve prediction accuracy.The
dimension of the combined feature vectors was the sum of
the dimensions of the original vectors. The combined feature
vectors will hereafter be called “composite vectors.”

2.3.2. Combining Prediction Results. Combining prediction
results involves taking a mean value of output values (deci-
sion values) from two SVM results using the discriminant
function presented in (1). This method is expected not only
to improve the prediction accuracy but also to stabilize the
accuracy index [13]. Letting the discriminant functions of the
prediction models 𝐴 and 𝐵 for data 𝑥 be 𝑓

𝐴
(𝑥) and 𝑓

𝐵
(𝑥),

respectively, the weighted average 𝑓comp(𝑥) is given by

𝑓comp (𝑥) =
𝑎𝑓
𝐴
(𝑥) + 𝑏𝑓

𝐵
(𝑥)

𝑎 + 𝑏
. (1)

Here, the weight factors 𝑎 and 𝑏were given by subtracting 0.5
from area under the receiver operating characteristic curve
(AUC) values obtained from predictionmodels𝐴 and 𝐵, that
is, the degrees of improvement of accuracy of the predictions
over random prediction.The above 𝑓comp(𝑥)will hereafter be
called “combined results.”

3. Results and Discussion

Prediction results were evaluated by 5-fold cross validation.
Prediction was performed after determining optimal param-
eters for SVM. The cross validation was repeated five times,
and their average results are shown as the performance.

Table 1 shows the prediction results. We have values of
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) and performance indexes were calculated
by these values: precision𝑝 is calculated as𝑝 = TP/(TP+FP),
recall 𝑟 is calculated as 𝑟 = TP/(TP + FN), and 𝐹-measure
is calculated as 2𝑝𝑟/(𝑝 + 𝑟). Figure 3 shows the receiver
operating characteristic (ROC) curve of each prediction
method, andAUC is defined as the area under theROCcurve.
As shown in the table and the figure, the 2-mer frequency
outperformed the 1-mer frequency. The reason is that the 1-
mer frequency represents only the amino acid composition
and the 2-mer frequency can extract more sequence features
than the 1-mer frequency. Prediction methods based on
domain information showed higher prediction accuracy than
those based on 𝑘-mer frequencies. Domains are closely
related to functions, whereas the 𝑘-mer frequency can express
only the frequencies of 𝑘-mers of amino acids resulting in
rough similarity between two sequences and moreover lacks
information about the orders of 𝑘-mers and binding sites.The
prediction method based on the superfamily-level domain
achieved the highest prediction accuracy, with precision =
100%, recall = 67.4%, and AUC = 0.974 among the single-
feature-based predictionmethods.The superfamily-level out-
performed the domain-level method because some proteins
contain domains not associated with tyrosine kinase speci-
ficities. In contrast, superfamily-level information directly
represents tyrosine kinase activities without exceptions.

The highest prediction performance was seen when
the feature vectors from the 2-mer frequency method and
from superfamily-level domains were combined (composite
vector), resulting in precision = 98.4%, recall = 69.4%, and
AUC = 0.996. Although precision was slightly decreased,
recall and AUC were higher than those for the superfamily-
level domain. This result indicates the validity of combining
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Table 1: Prediction results of each method.

Method Precision Recall 𝐹-measure AUC TP FP TN FN
1-mer frequency — — — 0.638 0 0 2183 95
2-mer frequency 0.178 0.442 0.253 0.713 42 191 1992 53
Domain level 0.387 0.337 0.357 0.801 32 48 2135 63
Superfamily level 1.0 0.674 0.802 0.974 64 0 2183 31
Composite vector (2-mer
frequency + superfamily level) 0.984 0.694 0.812 0.996 66 1 2182 29

Combined results (2-mer
frequency + superfamily level) 0.868 0.611 0.712 0.906 58 10 2173 37

Each column in the table describes a single method. “Composite vector” describes the prediction based on the combination of feature vectors from 2-
mer frequency method and domain, and “combined results” denotes the combination of the predicted results from 2-mer frequency method and domain
(superfamily). TP, FP, TN, and FN: true positive, false positive, true negative, and false negative, respectively.
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Figure 3: ROC curve of each method. (a) Prediction based on single features. (b) Prediction based on combining methods.

the feature vectors obtained from amino acid sequences and
domains in the process of predicting receptor tyrosine kinase
binding pairs.This result suggests that the two feature vectors
complemented each other and led to effective learning.

When the results from the 2-mer frequency method
and superfamily-level domain were combined (combined
results), the AUC was 0.906, lower by 0.068 than the AUC
of the domain before combining. Moreover, precision and
recall values decreased. The 0.132 decrease in precision was
largely because of a high number of false negative (FP) in the
2-mer frequency method, suggesting that the combination of
prediction results ismore susceptible to failed prediction than
the combination of feature vectors.

For the composite vectors method, we performed an
independent test as follows: twenty percent of the positive
data (19 pairs) and twenty percent of the negative data (436

pairs) were reserved for testing and the remaining data
were used for training. Using only the training data, 5-fold
cross validationwas performed and optimal SVMparameters
were determined based on the average AUC values. With
these optimized parameters, independent evaluation was
performed for the test data. We repeated the above tests three
times and the average performance is as follows: precision =
78.7%, recall = 57.9%, and AUC = 0.858. These results show
the practical utility of the composite vectors method.

We also applied our test dataset to a general protein-
protein interaction prediction tool, Struct2Net [14], which
performs structure-based computational prediction of
protein-protein interactions. It successfully predicted 7 of
the 95 positive pairs and wrongly predicted 57 of the 2183
negative pairs. This result shows that it is not easy to achieve
high accuracy with general protein-protein interaction tools.
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We have developed a Web server (http://utprot.net/) for
data download.

4. Conclusions

In this study, we constructed a tool for predicting inter-
acting pairs of receptor tyrosine kinases and their intra-
and extracellular ligands. This tool was intended to provide
information to support laboratory experiments. Asmore data
from high-throughput proteomics studies become available
andmore knowledge is acquired, the reliability of our system’s
predictions should be improved because SVM performance
depends on the features extracted and the quality of the
training dataset.We evaluated several input features for SVM,
and in particular, by combining domain information and
feature vectors of amino acid sequences, we succeeded in
obtaining 0.996 of the AUC. We can also use other input
features; for example, spatial features may contribute to
the improvement of accuracy when the protein structure is
known or a highly accurate model is available. Although our
domain information is obtained from amino acid sequences,
it seems to contain some spatial features andour tool achieved
good performance. Moreover, functional information, such
as GO terms, gene expression, and metabolic pathways, will
further improve the performance. Although it is difficult
to select effective features, some prediction tools use novel
feature selection methods [15–17]. Our tool may incorporate
such feature selection methods in the future. Our method
can be applied to other types of protein-protein interactions.
Domain- or superfamily-based features and their combina-
tion with sequence pattern information will be useful for
prediction of specific types of interactions or functions. We
are also developing a SVM-based prediction tool for binding
affinity of tyrosine kinase ligand-receptor pairs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

Thiswork was supported by the Platform for DrugDiscovery,
Informatics, and Structural Life Science from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan.

References

[1] A. Ullrich and J. Schlessinger, “Signal transduction by receptors
with tyrosine kinase activity,” Cell, vol. 61, no. 2, pp. 203–212,
1990.

[2] C. J. Marshall, “Specificity of receptor tyrosine kinase signaling:
transient versus sustained extracellular signal-regulated kinase
activation,” Cell, vol. 80, no. 2, pp. 179–185, 1995.

[3] M. A. Lemmon and J. Schlessinger, “Cell signaling by receptor
tyrosine kinases,” Cell, vol. 141, no. 7, pp. 1117–1134, 2010.

[4] I. Rebay, “Keeping the receptor tyrosine kinase signaling path-
way in check: lessons from Drosophila,” Developmental Biology,
vol. 251, no. 1, pp. 1–17, 2002.

[5] M. E. M. Noble, J. A. Endicott, and L. N. Johnson, “Protein
kinase inhibitors: insights into drug design from structure,”
Science, vol. 303, no. 5665, pp. 1800–1805, 2004.

[6] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[7] C. Leslie, E. Eskin, and W. S. Noble, “The spectrum kernel: a
string kernel for SVM protein classification,” Pacific Symposium
on Biocomputing, pp. 564–575, 2002.

[8] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[9] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie,
and D. Eisenberg, “The database of interacting proteins: 2004
update,” Nucleic Acids Research, vol. 32, pp. D449–D451, 2004.

[10] UniProt Consortium, “Activities at the universal protein
resource (UniProt),” Nucleic Acids Research, vol. 42, pp. D191–
D198, 2014.

[11] S. F. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman,
“Basic local alignment search tool,” Journal ofMolecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[12] A.Marchler-Bauer, C. Zheng, F. Chitsaz et al., “CDD: conserved
domains and protein three-dimensional structure,” Nucleic
Acids Research, vol. 41, no. 1, pp. D348–D352, 2013.

[13] E. Iacucci, F. Ojeda, B. de Moor, and Y. Moreau, “Predicting
receptor-ligand pairs through kernel learning,” BMC Bioinfor-
matics, vol. 12, article 336, 2011.

[14] R. Singh, D. Park, J. Xu, R. Hosur, and B. Berger, “Struct2Net:
a web service to predict protein-protein interactions using a
structure-based approach,” Nucleic Acids Research, vol. 38, no.
2, Article ID gkq481, pp. W508–W515, 2010.

[15] X. Xu, A. Li, L. Zou, Y. Shen, W. Fan, and M. Wang,
“Improving the performance of protein kinase identification
via high dimensional protein-protein interactions and substrate
structure data,”Molecular BioSystems, vol. 10, no. 3, pp. 694–702,
2014.

[16] T. Li, P. Du, and N. Xu, “Identifying human kinase-specific
protein phosphorylation sites by integrating heterogeneous
information from various sources,” PLoS ONE, vol. 5, no. 11,
Article ID e15411, 2010.

[17] W. Fan, X. Xu, Y. Shen,H. Feng, A. Li, andM.Wang, “Prediction
of protein kinase-specific phosphorylation sites in hierarchical
structure using functional information and random forest,”
Amino Acids, vol. 46, no. 4, pp. 1069–1078, 2014.


