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ABSTRACT: Recent years have witnessed promising artificial intelligence (AI) applications in
many disciplines, including optics, engineering, medicine, economics, and education. In
particular, the synergy of AI and meta-optics has greatly benefited both fields. Meta-optics are
advanced flat optics with novel functions and light-manipulation abilities. The optical
properties can be engineered with a unique design to meet various optical demands. This
review offers comprehensive coverage of meta-optics and artificial intelligence in synergy. After
providing an overview of AI and meta-optics, we categorize and discuss the recent
developments integrated by these two topics, namely AI for meta-optics and meta-optics for
AI. The former describes how to apply AI to the research of meta-optics for design, simulation,
optical information analysis, and application. The latter reports the development of the optical
Al system and computation via meta-optics. This review will also provide an in-depth
discussion of the challenges of this interdisciplinary field and indicate future directions. We
expect that this review will inspire researchers in these fields and benefit the next generation of
intelligent optical device design.
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1. INTRODUCTION
Since the invention of computers, an intriguing question to
study has been how to let machines mimic human intelligence,
which is broadly defined as artificial intelligence (AI). The
ambitious goal of allowing machines to achieve the intellectual
capability of humans, such as abstract thinking, decision making,
adapting to new environments, creativity, and social skills, is
usually called general AI. Although this goal has not yet been
achieved, the application of AI to tackle specific tasks has
achieved great success. Narrow AI-based solutions that target
specific tasks can be found in our daily life, such as photo tagging,
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chatbot-based customer service, product recommendations, etc.
More applications of AI in automatic and precise diagnosis, drug
design, and early detection of cancer are on the way. The fast
development of AI primarily benefits from the acceleration of
computational power, including both storage size and processor
speed. In particular, the computing power of the graphics
processing unit (GPU) has been enhanced to emancipate the
capabilities of AI in learning from big data. This hardware
support greatly helps bridge the gap between AI theory and
application.

It is an excellent time to make AI technology in synergy with
interdisciplinary, especially optics-related, fields. Meta-optics is
an optical technology that has emerged in recent years.
Metasurfaces are advanced flat optical devices that can
manipulate light or electromagnetic waves. The metasurface is
composed of a specially arranged array of meta-atoms. The
artificial meta-atoms are designed and computed to control the
phase, amplitude, and polarization of the incident electro-
magnetic (EM) waves. The new wavefront can be reconstructed
by the metasurface. The novel function of the meta-devices can

Figure 1. Overview of artificial intelligence in meta-optics.

Figure 2. Development trend of AI and meta-optics. The number of publications per year was collected from a Web of Science search.
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be implemented through several steps such as material selection,
meta-atom design, phase distribution design, layout config-
uration, fabrication, characterization, and application demon-
stration. These steps have been sorted out and introduced in
detail in literature reviews. These reviews all described incisive
views on meta-optics, which are fabrication methods1,2

developed from principle to applications3−10 for quantum
optics11 and cutting-edge optical devices.12,13

This review first offers an overview of meta-optics and AI
cooperation, as shown in Figure 1. The recent development via
these two topics in synergy is discussed. Section 2 introduces the
fundamental concepts of meta-optics and AI technology. We
describe two categories: AI works for meta-optics and meta-
optics works for AI. Section 3, “AI for Meta-optics”, describes
how to apply AI to the research of meta-optics from design to
application. Section 4, “Meta-optics for AI”, describes how to use
meta-optics to realize optical AI operations and AI systems.
Section 5 concludes this review by providing an in-depth
discussion of the challenges and future directions of the
interdisciplinary field.
Figure 2 shows the development trend of AI and meta-optics.

Coincidentally, both areas started to grow rapidly in about 2012.
An orders-of-magnitude speed-up in deep learning algorithms
enabled by GPUs significantly accelerated the development of
AI.14 The historical event of AlexNet winning the ImageNet
competition in 2012marked a new era of AI.15 A little earlier, the
innovative concept of metasurface design was proposed in
October 2011.16 This is the starting point of using a 2D
structured device to control light in meta-optics. Each meta-
atom of the metasurface can be individually designed to provide
a special optical modulation. The new wavefront can be
engineered by phase profile tailoring. From this point in time,
both communities witnessed a series of major breakthroughs in
computational models or applications. In 2014, DeepFace
achieved over 97% accuracy for facial recognition.17 Later, in
February 2015, meta-holograms reached 80% efficiency.18 As a
fundamental component in optics, imaging technology was
greatly advanced by the development of a meta-lens for a single
wavelength in 2016.19 Traditional optical imaging components
are bulky and suffer from material limitations and complex
configurations. A thin and flat meta-lens is far more preeminent
than a traditional bulky optical lens. Further, a broadband
achromatic meta-lens was proposed for practical applications in
2017.20 Two years later, the meta-lens array demonstrated a
fascinating light field application.21 Meanwhile, AlphaGo
defeated the world Go champion in 2016, which attracted the
world’s attention.22 This AI’s victory over mankind in specific
tasks is of epoch-making significance in the history of AI. In
2017, AlphaGo Zero won 100−0 against AlphaGo through self-
teaching.23 Since then, reinforcement learning has also launched
a renaissance.24

2. META-OPTICS AND ARTIFICIAL INTELLIGENCE

2.1. Meta-optics

2.1.1. Fundamental Principle. In ideal classical optics, the
propagation of light in two media is related to the speed of light
in the media and the optical properties of the two media, such as
light refraction and reflection. The emergence of metasurfaces
has changed this optical behavior. The metasurface is an
ultrathin and flat optical device so that the optical characteristics
change when light passes through this interface. The generalized

Snell’s law of refraction and reflection can be derived from
Fermat’s principle,16 as shown below
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where ni is the refractive index of the input media; nt is the
refractive index of the medium when light is refracted; θi is the
angle of incidence; θt and θr are the angles of refraction and
reflection, respectively; λ0 is the wavelength of the incident light;
and dΦ/dx is the phase gradient. Themetasurface contributes to
providing a phase gradient to achieve a full 2π phasemodulation.
The method of designing the metasurface to realize light
manipulation and wavefront control has been researched and
developed. Specifically, the metasurface contains an array of
nanostructures, also called meta-atoms, each of which is
regarded as a secondary point light source. When the incident
light meets this interface, the nanostructure changes the optical
properties of the incident light and reradiates new electro-
magnetic waves. By effectively controlling the phase distribution
of the metasurface, the wavefront of the incident light can be
reconstructed with unique properties and new functions.
2.1.2. Design and Fabrication. Meta-optics has been

demonstrated from a principle investigation to various optical
function developments. These novel optical properties are
realized through the careful design of the geometry and
configuration of meta-atoms. The selection of the material is
closely related to the method of the optical dispersion design.
The permittivity (ε) and permeability (μ) of the materials are
utilized to calculate the electromagnetic (EM) spectrum
behavior of the meta-atoms. The transmittance, reflectance,
absorption spectrum, polarization state, and phase delay of the
interest structure are simulated and investigated by EM field
solvers. The function of the metasurface is to manipulate the
wavefront of incident light by tailoring the phase profile of the
given working wavelength. The method of achieving complete
full 2π phase modulation is the key for providing complete
wavefront control. According to the materials used, meta-
surfaces can be divided into plasmonic (metallic) and dielectric
metasurfaces. The plasmonic metasurfaces work due to the
oscillation of the surface free electrons of the metal structure.
Based on the resonance excitation and EM field enhancement,
the 2π phase modulation approaches for designing the meta-
atoms include multiresonance16 and gap-plasmon,25 among
others. The gap plasmon metasurface is comprised of a three-
layer structure, including a metal antenna layer, a dielectric
isolation layer, and a bottom metal reflective layer. This metal−
insulator−metal (MIM) building block presents the strong
mode confinement and the high-quality factor. The strong near-
field coupling in the thin dielectric isolation layer is supported by
the dipoles of the antenna layer and the mirror layer. The gap
plasmon resonator can be described as the equation of the
Fabry−Perot resonator26

=w n m
2

G (3)

where w is the length of the antenna structure parallel to the
direction of the electric field, λ is the wavelength of the incident
light, nG is the real part of the gap plasmon resonator’s effective
refractive index, and φ is the phase shift at the end of the
antenna. The 2π phase modulation is achieved by the standing
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wave resonance of the gap plasmon resonator along the
propagating axis. The natural shortcomings of metallic
metasurfaces are the high ohmic losses. Sun et al. demonstrated
a gap plasmon metasurface with a high operation efficiency for
anomalous reflection.25 The conversion efficiency reached 80%
due to the fully controlled intrinsic and radiative losses.
However, it is usually used as a reflective meta-device due to
the sandwich structure.
Dielectric metasurfaces have been promoted to satisfy the

more practical need for flat lenses for optical imaging and optical
property conversion devices because of the dielectric material’s
low-loss and high refractive index in the visible light region. The
dielectric meta-atoms support various local resonances of strong
electric and magnetic scattering, which are described via theMie
theory.27 When the frequency of the incident light is below or
near the bandgap frequency of the dielectric material, the electric
dipole and magnetic dipole resonances are excited. The
dielectric Mie resonator contains various electric and magnetic
components that allow the engineering of EM waves. Huygen’s
metasurface is able to generate equal-strength and overlapping
electric and magnetic dipole moments for 2π phase modulation
using nanoparticles or nanodisks. The low intrinsic losses of
dielectric meta-atoms enable the internal generation of circular
displacement currents to produce a strong magnetic dipole
resonance. The geometric parameters of the dielectric meta-
atoms are tuned to maintain the high transmission and the 2π
phase modulation simultaneously.
In addition, there is a phase modulation method that can be

used universally for most metal and dielectric materials. The
Pancharatnam−Berry (PB) phase,28,29 also called the geometry
phase, is a material-independent metasurface design method.
This method can be applied to any material and is the simplest
phase modulation method. The phase is tuned by varying the
orientation angle of the same meta-atoms with the anisotropic
geometry.30 The Jones matrix can describe the concept of the PB
phase. For the rotated meta-atom, the Jones matrix can be
written as31
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where θ is the rotation angle of the meta-atom. The rotation
angle is set relative to the x-axis. R(θ) is the rotation matrix.Mxx
is the reflection coefficient, and Myy is the transmission
coefficient. The output light can be written as
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where Ei± and Ei∓ are the incident light with circular polarization
(+, left-handed; −, right-handed). The output light is generated
with two circular polarizations. One is the same as the incident
light, which is the unmodulated light. The other is the PB phase-
modulated light with the opposite helicity. In short, the rotation
angle of the meta-atom is set from 0 to π, which is divided into
several equal levels. The incident circular polarization light, the
2θ phase shift from 0 to 2π, is arranged for the light with the
opposite handedness.
Fabricating meta-optics is the direct way to connect

theoretical designs and practical applications. The database of
meta-atoms with phase, polarization, and dispersion functions
was built for layout generation. The phase profile of the target
optical function is satisfied by the careful configuration of the
meta-atom array. The fabrication technologies have been well-
developed and selected for different purposes, such as
subwavelength-scale, structure carving, large area, high aspect
ratio, high throughput, etc. This section reviews and introduces
the fabrication technologies of optical meta-devices. The most
commonly used fabrication methods are photolithography,
electron beam lithography (EBL), focused ion beam (FIB)
lithography, nanoimprinting, laser direct writing, and 3D
printing. Photolithography is an important fabrication technol-
ogy for mass production in the semiconductor manufacturing
industry. Photolithography uses a photomask and an exposure
light to transfer the pattern to the photoresistor.32 The solubility
of the exposed photoresistor layer changes to enable pattern

Figure 3. Diagram of fabrication methods for metasurfaces.
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generation after the developing process. The lift-off and etching
processes can further sculpt the feature of the target material
using the patterned photoresistor layer. EBL is a maskless
lithography process. A focused electron beam is utilized to
directly write the pattern on the photoresistor layer. This
technology is widely used for meta-optics research because of its
customizable design and quick verification. The medium used is
a photoresist whether a photomask or electron beam is used to
transfer the pattern. Combined with the choice of a positive or
negative photoresist, etching and lift-off processes can transform
positive and negative structure pattern generation. A high-
aspect-ratio nanostructure can be fabricated with the hard mask
etching process.20,33 A FIB is an ion beam generated by the ion
source and focused on the sample’s surface. FIB lithography is a
straightforward fabrication method in which the patterning and
etching processes happen simultaneously.34 The accelerated ion
beam strips the surface atoms of the sample. FIB with a scanning
electron microscope becomes a dual-beam system, which can
realize visualization during the ion-beam writing. Nanoimprint-
ing is mechanical lithography method that uses a mold to
imprint onto a UV- or thermal-curable resist. The nano-or
microstructures are formed through mechanical deformation.
The mold can be used repeatedly to make the same pattern with
a low cost and a high throughput. Laser direct writing uses a
focused laser beam to cause localized damage on the material’s
surface.35 The pattern can be directly written, similar to the FIB
method. The damage is controlled by tuning the laser power.
Developed in recent years,36 3D printing technology is a rapid
prototyping manufacturing technology also known as additive
manufacturing. It is a technology that builds structures on the
basis of a digital model and uses bondable materials such as
powdered metal or plastic to print layer by layer. 3D printing
opens one more manufacturing freedom in the vertical axis.37

Meta-atoms of different heights can be considered as design
parameters for the design. Nanoimprinting is a promising
method for the mass production of meta-devices. A mother
stamp or mold can be used repeatedly. The soft photocured
resist is patterned via the mold with mechanically imprinted
micro- or nanostructures.38,39 Through these advanced
fabrication methods, meta-devices can be implemented for
applications.
Meta-devices with novel and special optical functions have

been generated to meet the optical demand. The great
advantages of meta-devices are their new properties, compact
size, lighter weight, high efficiency, better performance,
broadband operation, lower energy consumption, data volume
reduction, and CMOS compatibility for mass production.
Optical meta-devices have been well-developed for beam
shaping,40,41 anomalous deflection and reflection,25,42,43 polar-
ization control and analysis,44−46 holographic images,47−52

nonlinear effects,49,53−57 lasing,58,59 tunability,60−62 color dis-
play,63−65 light focusing,66−69 imaging,21,33,70−74 image process-
ing,75 beam shaping,76 multiplex color routing,77 sensing,21,78−81

encryption,82,83 spectrometry,84 optical characterization,85,86

communication,87,88 augmented reality,89,90 and quantum
technology.91,92

2.2. Artificial Intelligence

2.2.1. Brief History. Alan Turing discussed the mathemat-
ical possibility of realizing AI in his 1950 paper named
“Computing machinery and intelligence”. However, the limited
capacity and the high cost of computers prevented the
implementation of the concept. Six years later, a program

named “Logic Theorist” by Newell, Shaw, and Simon was
presented at a workshop at Dartmouth College.93 “Logic
Theorist” was widely regarded as the first proof-of-concept
implementation of an AI program that could mimic the
problem-solving skills of humans. One of the workshop hosts,
John McCarthy, coined the term artificial intelligence to
distinguish it from cybernetics as an independent science.94

Arthur Samuel coined a new word, machine learning, in 1959.95

He defined machine learning as a scientific field that makes the
computer itself capable of learning. In 1997, Tom Mitchell gave
a more detailed explanation as a computer program with
experience E, tasks T, and performance P.96 Taking digit
recognition as an example, the accuracy is the measurement
criteria (P). Under the instruction of the accuracy rate (P), the
computer performs better on the digit recognition task (T) as it
sees more training data (E). From the 1960s to the beginning of
the 21st century, the development of AI fluctuated.93,97 With the
investment and withdrawal of research funds, AI has repeatedly
experienced renaissances and cold winters. At the beginning of
the 21st century, AI gradually recovered from its disrepute
thanks to promising solutions to specific problems.93 The real
turning point in history was 2012, a huge victory for deep
learning. In October 2012, Alex Krizhevsky used the convolu-
tional neural network (CNN) to defeat the shallow machine
learning method with a significant advantage in the ImageNet
competition.15 This network later became known as AlexNet.
The victory of this competition marked the beginning of the
deep learning revolution in the AI industry. Many deeper neural
networks were proposed with increased capabilities.
2.2.2. Classification and Approaches. AI today has

become an interdisciplinary field that draws on knowledge,
methods, and models from multiple areas such as computer
science, neuroscience, statistics, physics, and mathematics. The
coverage of AI technology is very broad, including expert
systems, machine learning, robotics, recommender systems, data
mining, fussy logic, rough set, and so on. Generally speaking,
machine learning is considered to have evolved from pattern
recognition in artificial intelligence.98 Pattern recognition was
popular in the 1970s and 1980s and was dedicated to the
automated recognition of patterns and regularities in data.
Pattern recognition often categorizes similar but not identical
things or phenomena according to a certain purpose. Pattern
recognition is based on prior experience and the algorithm
design of professionals. In the 1990s, people realized that data-
driven algorithms could bring better performance and higher
economic benefits than expert designs. The core of machine
learning is to collect data and let the machines learn with
experience (data). Machine learning gradually developed into a
major research direction in AI from then on. It has achieved
great success for problems that lack analytic solutions or
domains for which humans only have a poor understanding.
There are different paradigms in machine learning. Machine

learning algorithms can be broadly divided into supervised,
unsupervised, semi-supervised, and reinforcement learning
depending on whether the data has known labels. Supervised
learning, a major paradigm in machine learning, trains
classification or regression models using labeled training data.
In classification problems, each training sample has a label, and
supervised learning aims to achieve a high accuracy in the
prediction of labels for test samples. It is one of the most widely
studied and utilized learning paradigms. Many techniques have
been developed for supervised learning, such as decision trees,
the naiv̈e Bayes classifier, the perceptron model, the support
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vector machine (SVM), k-nearest neighbor (kNN), the artificial
neural network (ANN), deep learning, and ensemble models
including random forest. Unlike supervised learning, unsuper-
vised learning aims to identify the implicit structures of the input
data. It does not require labels for the data. Clustering is a major
application of unsupervised learning, with the goal of dividing
the data samples into multiple groups so that the samples inside
the same group are more similar than samples in different
groups. Thus, clustering requires carefully designed distance
functions for different types of data and corresponding
clustering algorithms. Commonly used clustering algorithms
include k-means, agglomerative clustering, DBSCAN, spectral
clustering, the Gaussian mixture model, and other graph-based
clustering algorithms. When there is a small set of labeled data
and a large amount of unlabeled data, semi-supervised learning
can be applied to take advantage of both types of data for model
training. Reinforcement learning can be best applied when the
input data contains the grade for the input and thus is commonly
used to let computers learn to play a game.
Deep learning is a powerful machine learning technology.

Deep learning generally refers to a neural network with multiple
layers.With a large amount of data as the input, multiple layers in
the neural network are expected to learn more abstract or
implicit features that cannot be obtained using a shallow
network. Because the deep learning model has more parameters
to optimize, it is best used in domains where large amounts of
data are available.

We can use supervised learning to explain the major
components of learning. Given input training data D = (x,y),
which are a set of training samples with x∈ χ and their labels y∈
Y, the goal of learning is to search for an optimal mapping
formula f:χ → Y so that f(x) is consistent with the known labels
of x as much as possible (i.e., fit the data). When Y only contains
two labels, this is a binary classification problem. When Y has a
finite set of labels, this is a multiclassification problem.When Y is
a set of unbounded values or a probability, this is a regression
problem. The formula’s space is usually called the hypothesis
space, which defines the model’s complexity. For example, the
hypothesis spaces of linear models contain lines in 2D space or
hyperplanes in high-dimensional space. Once the hypothesis
space is defined, machine learning needs an optimization
algorithm to search for the best hypothesis to fit the given data
(i.e., D). For example, the optimization algorithm for a linear
model searches for a linear function to separate the observed
data. If the observed data are not linearly separable, more flexible
and expressive hypotheses and corresponding optimization
algorithms are needed to fit the data better. If the training dataD
can represent χ and Y, the learning algorithm designed for the
observed data D can be generalized to unseen data with
controlled prediction error rates according to the theories of
learning feasibility.
In the remaining part of this section, we will briefly describe

some popular learning models, with a focus on supervised
learningmodels because of their close relevance to current meta-
optics research.

Figure 4. Diagrams of common neural networks. (a) Perceptron. (b) Deep neural network (DNN). (c) Convolutional neural network (CNN). (d)
Encoder−decoder framework. (e) Variational autoencoder (VAE). (f) Generative adversarial network (GAN) in an example of the generation of
handwritten digits.
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2.2.3. Basic Principle of Neural Networks. The develop-
ment of neural networks originates from perceptron. Frank
Rosenblatt originally proposed perceptron in 1958,99 with the
name inspired by neurons in the brain and nerve system.
Neurons in the brain collect bioelectrical signals through
numerous dendrites and transmit signals between the cells.
When the processed signal reaches the threshold, the neuron is
activated to generate an output signal. Perceptron builds an
imitative structure of a neuron, as shown in Figure 4a. One
perceptron has multiple inputs and one output. The processing
procedure contains a linear operation and an activation function.
The linear operation performed on the inputs is

= · +z bw x (6)

where w is a vector of real-valued weights, x is a vector of inputs,
w·x is a dot product ∑i = 1

m wixi where m is the number of the
inputs, b is the bias, and z is the output of this linear function.
The sign of z is used to assign the label (−1 or 1) for the input x,
as shown below.

=
<lmo

no
z

z
z

sign( )
1 0

1 0 (7)

A single perceptron model applies to a binary classification
problem where the number of labels is two, such as yes and no,
cats and dogs, sunny and rainy, and so on. If the entire training
data set χ(x) ∈ χ can be linearly separated, the perceptron
learning algorithm (PLA) can be applied to find a hyperplane to
fit χ. Perceptron cannot recognize multiple categories, nor can it
learn nonlinearity.
Although perceptron has a limited learning capacity, it lays the

foundation for more flexible learning models. Using perceptron
as a building unit, an artificial neural network (ANN) simulates
the human brain’s neural network. ANN is usually shortened as
neural networks. Unlike perceptron, a neural network introduces
one or more hidden layers, as shown in Figure 4b. Each hidden
layer has multiple perceptrons. Among the hidden layers, the
output from the previous layer will be used as the input of the
next layer. The neural network is composed ofmany perceptrons
with a network-like structure. Neural networks can be used for
binary classification ormulticlassification. Additionally, there are
more choices of activation functions in the neural network than
in perceeptron, such as hyperbolic tangent (tanh), sigmoid,100

rectified linear unit (ReLU),15 and parametric rectified linear
unit (PReLU).101 The activation functions enable the neural
network to learn nonlinear functions, increasing its utility for
more complex learning tasks. Without the activation function,
no matter how many layers the neural network has, it is just
matrix multiplication.
Deep neural networks (DNN) are the foundation of deep

learning. A DNN has one input layer, one output layer, and
multiple hidden layers. Figure 4b illustrates a typical DNN. A
DNN is also called a fully connected neural network and
sometimes a multi-layer perceptron (MLP).
Once the network structure of a neural network is designed,

the weight matrix, which describes the weight vectors of each
layer, needs to be learned using the training data. The same as a
typical supervised learning problem, the goal of the training is to
let the model fit the observed data. The most commonly used
neural network training method is backpropagation. The
backpropagation algorithm has two elements, the loss function
calculated in the forward direction and the gradient descent
derived in the reverse direction. There are some commonly used
loss functions for specific learning tasks, such as absolute error,

mean squared error (MSE), and KL-divergence. Training is used
to minimize the defined loss function. The backpropagation
algorithm updates the neural network’s weights using a gradient
descent controlled by the learning rate.
The inputs to the DNN are numerical vectors containing

human-extracted features or raw features from the inputs, such
as each pixel of an image. When using raw features of high
dimensions, the computation load of the DNN is huge.
Compared with a DNN, a convolutional neural network
(CNN, or ConvNet) demonstrated superiority in processing
data with a grid-like topology, such as images and videos. The
CNN showed dazzling performance in Computer Vision (CV)
in recent years. As demonstrated in Figure 4c, the basic CNN
structure includes the convolutional layer, the pooling layer, and
the fully connected layer. Designers could arrange these
functional layers using empirical experiment results and general
guidelines.
The convolutional layer performs the convolution, the key

operation of CNN, on inputs. In DNN, the output of each
neuron is affected by all previous data. The neuron in CNN
could only “see” the data of a certain area. This area, called the
reception field, is usually square-shaped. A shared convolution
kernel is adopted to execute the dot product with the data in the
reception field. The convolution layer uses the same convolution
kernel to traverse all inputs. The role of convolution is to acquire
high-dimensional features. However, these features are redun-
dant. As an efficient sampling method, the pooling layer is used
to filter redundant information. The pooling layer has two
common types, max and average. The feature map from the
previous convolution is divided into disjointed regions in the
pooling layer. Each region is a custom-sized square. These
regions’ maximum (or average) features are used to represent
the convolution feature after the pooling layer. Dimensionality
reduction leads to a low computation complexity. The fully
connected layer is the same as that in the DNN and is often
arranged at the end of the CNN. The extracted feature map has
been significantly reduced in size after the repetition of
convolution and pooling. A fully connected layer could perform
the final mapping from feature to label with minimum
computation consumption.
Based on the CNN, many variations of CNN have been

developed. For example, to transfer from an image-level
classification to a pixel-level semantic segmentation, the
encoder−decoder framework is the fundamental architecture.
As shown in Figure 4d, an encoder and a decoder are
sequentially arranged in the data flow. Typically, the encoder
extracts the original data’s low-resolution or low-dimensional
features of interest. The decoder is adapted to recover the
dimensions of the data. As a general framework, encoder−
decoder is widely used in various algorithms for communication,
image processing, and computer vision.
For pixel-level applications, the dimensions of the output

should be similar to those of input. In 2015, using the encoder−
decoder framework, a fully convolutional network (FCN)
introduced a deconvolution layer for upsampling and skip
architecture and removed the fully connected layer.102 Similar to
the FCN, U-Net adopted a U-shaped symmetrical architecture
in the same year.103 Additionally, U-Net correspondingly
connects the feature between down-sampling layers and up-
sampling layers. Later, SegNet was further proposed to pass the
pooling indices from the encoder to the decoder to reduce
redundancy.104
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In the development of deep networks, gradient vanishing
(gradient becomes zero) and gradient exploding (gradient
becomes too large) prohibit weight updates while training. For
very deep networking, a residual neural network (ResNet) with a
residual block was proposed.105 The core idea of the residual
block is to introduce an identity shortcut connection, which
directly skips one or more layers. In the process of gradient
backpropagation, the residual module realizes the cross-layer
propagation of the gradient, which is simple but efficient.
Residual blocks are frequently used in today’s CNNs to solve the
problems of gradient vanishing and gradient exploding.
Two families are particularly famous in the large family of

generative models, namely variational autoencoder (VAE) and
the generative adversarial network (GAN). VAE106 was
developed from autoencoder (AE). The AE follows the
encoder−decoder architecture, as shown in Figure 4d. The
generative model can be regarded as a database that records data
information. A low-dimensional key, normally a vector, can
unlock high-dimensional data stored in the model. Such a
reconstruction process can be realized by a decoder architecture.
To improve the efficiency, the encoder is introduced to
automatically encode vectors to represent high-dimensional
data in a large quantity. In the AE, the encoder compresses the
data like an image into a low-dimensional vector representation,
which is regarded as the latent vector of variables. Then, the
decoder decodes this latent vector to obtain reconstructed data.
By minimizing the error function that compares the
reconstructed image and the original image for training, the
information on the training image is retained in the parameters
of the network. However, AE was accused of simply memorizing
data, with a poor ability to generate new data. For example, given
a vector of the digit “1” image or the digit “7” image, AE can
produce (decode) a corresponding digit “1” image or a digit “7”
image. With a vector of median value between “1” and “7”, the
output of a successful generator should resemble both “1” and
“7”. However, AE fails to do this. The cognitive performance of
AE heavily depends on the training data.
In VAE, the latent vector is one point in the latent space. The

information that a point provides is limited. To completely
leverage the latent space, VAE adds constraints to the encoder,
as shown in Figure 4e, forcing the encoder to produce latent
vectors that obey the Gaussian unit distribution. Therefore, we
can randomly sample from the Gaussian distribution space of a
latent vector as the input of the decoder to generate new data.
The new data is similar to but different from the training data
and may be data that has never been seen before.
GAN107 uses the two modules in the framework, a generator

and a discriminator, as shown in Figure 4f. The two modules
learn from each other in a zero-sum game where one’s gain is the
other’s loss. Given an image that may be either a real image from
the training set or a fake image generated by the generator, the
discriminator should determine whether the image is real or
fake. On the contrary, the generator tries to generate a fake
image that can fool the discriminator. In training, two modules
all become stronger and stronger. Finally, the GAN can generate
data that belong to the same category. Figure 4f shows an
example of handwritten digit image generation. After training,
the generator masters the distribution of real data so that the
generator can generate an unseen image of the digit. Compared
with the GAN, the VAE directly compares the difference
between the reconstructed picture and the original picture,
indicating the direction of optimization in training. However,

since no confrontation network is used, the VAE tends to
produce fuzzy results.

3. AI FOR META-OPTICS
We will discuss how AI can empower the resolution of forward
and reverse problems in meta-optics, data analysis for a
metasurface-based system, and an intelligent programmable
meta-device. In the forward problem, AI can be used as either a
high-speed search engine or a surrogate physical computing
model. Unlike traditional simulation software that solves
Maxwell’s equations, neural networks establish a shortcut for
mapping between the structure geometry and optical responses.
Neural networks demonstrate faster computation speeds than
traditional simulation tools. In the reverse problem, AI can
reverse-design the parameters and configurations of the meta-
device based on the performance goals. One way to view this is
that AI finds an approximate solution for the equation that does
not have an analytic solution or finds an optimal solution for the
equation with countless solutions. Most importantly, these
solutions normally cannot be found by humans due to the huge
computational load. In optical-based detection or monitoring
systems, EM data are usually accompanied by strong noise of
unknown significance. Moreover, it is difficult for designers and
users to directly establish a semantic understanding of the
collected signals. AI, especially convolutional neural networks,
has demonstrated powerful feature extraction and semantic
recognition capabilities for two-dimensional (2D) or three-
dimensional (3D) optical data. Additionally, with the support of
high-computing-power platforms, AI can perform high-speed
information processing. In programmable metasurface-based
systems that have high requirements for real-time performance,
AI can process continuous input information in a timely manner
and predict the trend of target development and change. In this
way, intelligent meta-devices empowered by AI can respond in
real time to emergencies and provide countermeasures.
Before talking about AI applied inmeta-optics, the concepts of

the discriminative model and the generative model should be
discussed. In models, the observable variable is X, and the target
variable is Y. The discriminative model establishes the decision
boundary for distinction using learning data. The generative
model learns the statistical model of the joint probability
distribution on X× Y and generates new data using the obtained
probability model. The discriminative model and the generative
model have inverse conditions. Given an observation x, the
discriminative model is a conditional probability model P(Y|X =
x). Given a target y, the generative model is a conditional
probability model P(X|Y = y). The discriminative model is
usually used to perform classification or regression tasks on
given data. As a complementary method, generative models can
generate new data similar to existing data.
There are many subsets of generative models and

discriminative models. They are not classified according to the
network structure used. For example, CNNs can be found in
both the discriminative model and the generative model.
Generally, however, in AI applications for meta-optics,
discriminative models are widely used in surrogate modeling,
inverse design, and data processing. VAE and GAN are two
typical generative models that are common in the inverse design
application of meta-optics.
3.1. Surrogate Modeling

3.1.1. Modeling of Optical Properties. Conventionally,
the interactions between light and meta-atoms are derived by
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solving Maxwell’s equations.108 Many analysis methods and
commercial tools have been developed for computer-based
simulations. The full-wave Maxwell solvers such as finite
difference time domain technique (FDTD),109 finite element
method (FEM),110 and rigorous coupled-wave analysis
(RCWA)111 are all widely used. These numerical simulations
tend to be time-consuming for complicated electromagnetic
systems. High time complexity has always been an obstacle to
electromagnetic design. AI, especially deep learning, provides a
groundbreaking shortcut for optical simulations that is direct
and time-saving. In recent years, surrogate modeling with AI
demonstrated many competitive achievements.

In surrogate modeling, ANNs are adopted as approximate
predictors for the optical responses of meta-atoms. The
prediction may deviate from the correct answer to a certain
extent or only be accurate within a certain range. Surrogate
models cannot completely surpass traditional Maxwell’s solvers.
ANNs for surrogate modeling are superior choices in specific
design tasks.112,113

Meta-optics is famous for its manipulation of light−matter
interactions with subwavelength meta-atoms. The most
common simulation in meta-optics is modeling the interaction
of light and the meta-atom with a specific three-dimensional
geometry. The meta-atom is the foundation of the metasurface,
which is generally an array of meta-atoms. In wavefront-shaping

Figure 5. Overview of surrogate modeling for meta-atom characterization. (a) Amplitude and phase prediction for a cylinder-shaped meta-atom.114

Reprinted with permission from ref 114. Copyright 2019 American Chemical Society. (b) Amplitude and phase prediction for a free-form all-dielectric
meta-atom.115 Reprinted with permission from ref 115. Copyright 2020 Optical Society of America. (c) Scattering cross-section prediction for
alternate-material-shell nanoparticles.116 Reprinted with permission from ref 116. Copyright 2018 American Association for the Advancement of
Science. (d) Prediction of diffraction efficiencies for a 16-side polygon-shaped meta-atom.117 Reprinted with permission from ref 117. Copyright 2018
American Institute of Physics. (e) Absorption spectra prediction for a free-form meta-atom via a DNN118. Reprinted with permission from ref 118.
Copyright 2021 American Chemical Society. (f) Absorption spectra prediction for a free-form meta-atom via a CNN and a RNN.119 Reprinted with
permission from ref 119. Copyright 2019 Springer Nature.
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applications, phase and amplitude are the most common optical
responses. In 2019, An et al. proposed a DNN called Predicting
NN to model amplitude and phase responses of all-dielectric
meta-atoms over a wide range from 30 to 60 THz.114 As shown
in Figure 5a, the inputs of the Predicting NN are the geometric
parameters, and the outputs are the real or imaginary parts of the
transmission coefficients. An et al. developed two DNNs for the
separate prediction of the real part and the imaginary part,. The
demanding amplitude and phase responses were further
calculated using the transmission coefficients. This indirect
operation is because the amplitude and the phase response of a
typical meta-atom change abruptly around resonant frequencies.
The prediction performance of the neural network will degrade
greatly at the resonances because of the hard regression of sharp
nonlinearity. Therefore, the authors innovatively used the varied
continuous real and imaginary parts of transmission coefficients
as the prediction targets. The prediction accuracy of cylinder-
shaped and “H”-shaped meta-atoms reached over 99% at speed
on a millisecond scale, which was 600× faster than a
conventional simulation. In the following year, An et al.
presented a new approach with a CNN to characterize the

amplitude and the phase from a meta-atom in the same working
bands.115 Differently, the modeling objects are freeform
structures with varied material properties instead of simple
structures, as shown in Figure 5b. The design freedom includes
the 2D pattern image, the lattice size, the structure’s thickness,
and the material’s refractive index. The head of the CNN is
divided into two input branches. One processes the 2D pattern
image, and the other deals with the vector of different properties.
With down-sampling and up-sampling procedures, the two
branches are recombined with feature maps of matching
dimensions. The outputs still employ the format of real and
imaginary parts of the transmission coefficient. Compared with
previous work, this approach uses more training data but
provides more efficacy for free-form design. Additionally, under
the same hardware condition, the prediction speed is 9000×
faster than that of a conventional simulation, which also greatly
surpasses previous work.
In 2018, Peurifoy et al. proposed a DNN to approximate the

scattering cross-section of light from the nanoparticle.116 The
modeled nanoparticle was composed of eight shells of
alternating SiO2 and TiO2, as shown in Figure 5c. The inputs

Figure 6.Overview of the surrogate modeling of various objects. (a) Transmission spectrum prediction from a single-layer meta-atom geometry with a
CNN.112 Reprinted with permission from ref 112. Copyright 2018 American Chemical Society. (b) Plasmonic color prediction from the geometry of a
nanoparticle with a DNN.121 Reprinted with permission from ref 121. Copyright 2019 Springer Nature. (c) 3D electric field distribution inside the
structure via a CNN.122 Reprinted with permission from ref 122. Copyright 2019 American Chemical Society. (d) Electric field distribution prediction
from the investigation of nine meta-atoms. A DNN was adopted with SVD in this work.123 Reprinted with permission from ref 123. Copyright 2021
American Chemical Society.
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of the proposed DNN are the thicknesses of the eight shells,
ranging from 30 to 70 nm. Outputs are the 200 sampling points
for scattering cross-sections between 400 and 800 nm. The
proposed DNN is a simple fully connected neural network with
four layers. It was trained with only 50 000 examples. The
performance in the unknown setting of this surrogate model
coincides with the results of commercial simulation tools. For
nanoparticles of different shell numbers, the prediction
accuracies all reach above 98%. Essentially, the fewer layers a
nanoparticle has, the higher the accuracy would be. This
powerful performance originates from the discriminative
model’s accurate grasp of the relationship between unknown
data and known data. As a discriminativemodel, the DNN in this
work established a probability distribution between the inputs
and the outputs. The probability distribution gradually
approaches the actual relationship in reality under a certain
amount of training. That is why a simple DNN could predict the
accurate response to unknown data. Without intermediate
variables, the direct modeling between inputs and outputs
occurs at times orders of magnitude faster than conventional
solvers.
Inampudi et al. developed a DNN to predict the diffraction

efficiency distribution from the meta-atom shape of a meta-
grating as an accelerated simulation strategy in 2018.117 The
modeled meta-atom was a 16-side polygon (see Figure 5d). In a
polar coordinate system, the vertexes are uniformly distributed
in polar angles, but the radii of each vertex vary freely. Given the
16 radii, the proposedDNNoutputs diffraction efficiencies of 13
diffraction orders. Although this work has not reached the free
form, the 16 structural parameters have provided sufficient
complexity.
The design of meta-atoms is concerned with not only the

diffraction efficiency but also the absorption, which is an
important observation. Microwave-absorbing materials have
attracted wide attention in recent decades. Metasurfaces have
been reported to be able to broaden the absorption bandwidth
when placed on traditional absorbers.120 In the design of a meta-
atom for such a metasurface, Zhang et al. found it could take
months or years to traverse all possibilities via conventional
simulation software.118 They proposed a DNN (Figure 5e) to
predict the reflection loss from the pattern of a metal-material-
covered meta-atom, which was about four orders of magnitude
faster than the conventional simulator. The reflection loss was
further calculated to derive the absorption performance. The
DNN can only handle vectors. The free-form structure pattern
should be converted to binary arrays before being sent to a
DNN. Since the architecture of a DNN will grow rapidly with a
giant computation load as the number of elements in the input
vector increases, the pattern gridding of the DNN-based
freeform design cannot be very fine. The pattern in this work
is only discretized as 8 × 8. Sajedian used a more direct method
to retrieve absorption responses, as shown in Figure 5f.119 The
developed surrogate model is a combination of a CNN and a
recurrent neural network (RNN). Specifically, this CNN is a
ResNet with residual blocks for the training of a very deep
network architecture. Compared with a DNN, a CNN is better
at freeform pattern image processing. The pattern gridding in
this work reached 100 × 100. The CNN extracts low-
dimensional semantic features about the spatial information
from the structure pattern image. Additionally, the RNN is
responsible for mapping the relationship between the shape’s
extracted features and its optical response features.

Single-layered metal nanostructures are common modeling
objects due to their low modeling complexity. In 2018, Liu et al.
also took the pattern of a metal material covering as the
modeling object (see the top panel of Figure 6a).112 Besides the
finer discrete grid of the pattern, 2D images were used as the
model input instead of binary vectors. The modeling input is the
pattern of Au covering the meta-atom. The output is four
transmission spectra for different polarization directions of
incidence and detection. Additionally, a CNNwas developed for
this specific task. Figure 6a shows the CNN, which uses
convolutional layers to extract pattern features from the 2D
image. After the dimension reduction, the fully connected layer
achieves the mapping between the geometry information and
the transmission spectra. Covering a wide wavelength range
from 500 to 1800 nm, this CNN can achieve an average absolute
prediction error of less than 0.01. The transmission spectrum is
an important index for design. Transmission spectrummodeling
with a high accuracy is of vital importance.124

Extending from the common spectrum, plasmonic colors can
also be treated as modellable responses. Plasmonic colors are
generated from plasmonic resonances in metallic nanoparticles
activated by a picosecond laser pulse. Baxter et al. developed a
DNN with fully connected layers to directly predict colors from
the geometric parameters of the Ag meta-atom.121 As
demonstrated by the validation results in the right panel of
Figure 6b, the output of the numerical simulation and the DNN
prediction are highly consistent. The training data of the
proposedDNN are from both a simulation and real experiments,
with the aim of reaching a high prediction accuracy in real
industrial applications.
In 2019, Wiecha and Muskens presented a three-dimensional

CNN to provide nano-optical models for nanostructures of
arbitrary shape.122 As illustrated in the left panel of Figure 6c, the
design volume was discretized into voxels. A three-dimensional
matrix containing geometry voxels was fed to the CNN as the
input. The output is the electric field inside the nanostructure in
a voxel-level correspondence manner. Given the electric field,
various physical quantities could be calculated, such as
polarization, amplitude, near-field response, far-field response,
Poynting vector, and nonlinearity. The demonstrated 3D CNN
follows the encoder−decoder framework to achieve the voxel-
level output. Additionally, the whole network architecture was
modified from U-Net and introduced residual blocks. The
authors demonstrated attempts on both plasmonic and
dielectric structures. The plasmonic one is comprised of planar
gold nanostructures of random polygonal shapes, and the
dielectric one is comprised of silicon pillar structures. The
prediction of various physical quantities matches well with the
ground truth in both plasmonic and dielectric experiments. In
terms of the field intensity distribution, the median value of
cross-correlation between the CNN prediction and the ground
truth is above 0.9, with about less than 10% outliers. The rates of
failed prediction for the scattering cross-section and the
polarization were all kept below 10%. On the GPU test, the
prediction speed reaches 3 and 6 ms for Au and Si structures,
respectively. Even when compared fairly with conventional
software on a CPU, the neural network is still 3−5 orders of
magnitude faster.
In 2021, Zhelyeznyakov et al. also developed a DNN to

perform the forward prediction of the electrical field of a meta-
atom with the support of singular value decomposition
(SVD).123 Their work focused on the planar field distribution
λ/2 from the scatters. Meta-atoms in this work are nanopillars of
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different radii. Given the radii of each nanopillar and its eight
nearest neighbors, as shown in Figure 6d, the proposed
surrogate model can provide the electrical field over the square
area that contains the nine input nanopillars. SVD is an
important dimensionality reduction algorithm in machine
learning. The authors first use SVD to decompose the field
matrix into the multiplication of low-dimensional matrices, a
reduced left singular vector, and a weight matrix. The input of
the DNN is nine radii, and the output is the weight matrix in

separated real and imaginary parts. The prediction speed is four
orders of magnitude faster than the numerical simulation.
Besides the DNN model, the authors also developed a linear
regression model via SVD, demonstrating that surrogate
modeling is not restricted to neural networks. Most importantly,
this model is not at the meta-atom level. Such non-atom-level
works include the characterization of the supercell,125 single
metasurfaces,126,127 and multiple metasurfaces.128 This model
takes the intercoupling between meta-atoms into consideration.

Figure 7. Validation of the surrogate model. (a) The absorption spectrum of the free-form structure.119 Reprinted with permission from ref 119.
Copyright 2019 Springer Nature. (b) Amplitude and phase responses of an “H”-shaped meta-atom.114 Reprinted with permission from ref 114.
Copyright 2019 American Chemical Society. (c) Forward and backward scattering from a nanorod under TE and TM modes, with a diagram of the
internal electric field distribution (top).122 Reprinted with permission from ref 122. Copyright 2019 American Chemical Society. (d) Reflection
spectra and corresponding CD spectra.129 Reprinted with permission from ref 129. Copyright 2018 American Chemical Society. (e) Validation of the
transmission spectrum with the measurement of the actually fabricated design.113 Reprinted with permission from ref 113. Copyright 2018 Springer
Nature. (f) A computation time comparison between the numerical simulation and the deep learning-based surrogate model.119 Reprinted with
permission from ref 119. Copyright 2019 Springer Nature.
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However, the electrical field prediction of the nine-pillar cell is
not very accurate because the adopted training data lack
sufficient diversity. The train set of this work is very large, but
data were generated from configuration maps of 10 lenses in
which the field distributions were too specific. Although this
model is not very accurate, it demonstrates another direction of a
surrogate Maxwell’s solver.
3.1.2. Performance Evaluation.Neural networks are data-

driven, and the internal logical function relationships in hidden
layers are hard to interpret. Thus, the capabilities of surrogate
models will naturally be questioned. Besides the unlearned
interpolation data, researchers also used boundary cases such as
the parameter limit129 and a blank model113 to examine the
surrogate models’ generalization ability, which measures
whether the learning model can be effectively applied to unseen
samples. These experiments demonstrated the feasibility of
learning by the surrogate models. With this, the prediction of the
model is not limitedly coupled in the given data, but the
probability distribution relationship between the variables is
really learned.
To evaluate the effectiveness of a surrogatemodel, its accuracy

is often compared with a conventional simulation tool that
solves Maxwell’s equation. Generally, most surrogate models
exhibit high fidelities in various optical properties. Regardless of
the free-form structure in Figure 7a or meta-atoms with
predefined characteristics in Figure 7b, the corresponding
optical responses from the surrogate model all nearly coincide
with results from the commercial simulation tool. Extending
from the spectrum to the 3D electric field distribution in Figure
7c, the prediction from ANN closely resembles the simulation
result. As for the chirality characterization in Figure 7d, the
prediction is almost consistent with simulation. To further test
the practicality of the surrogate model, the measurements of
actually fabricated designs are included in the comparison, as
shown in Figure 7e. The transmission spectra from the
prediction, the simulation, and the measurement show good
qualitative agreement. In addition to the competent accuracy,
the surrogate model is orders of magnitude faster than the
conventional simulation (see Figure 7f).
To summarize surrogate modeling with neural networks,

Table 1 lists the information worthy of attention for direct
comparison and understanding. Modeling objects discussed in
Table 1 cover various shapes, including multilayer nanoparticles,
H-shaped structures, cylinder-shaped structured, symmetrical
structures, twisted SRRs, polygons, and free-form structures.
Each optical structure has a specific optical response. Therefore,
most adopted algorithms are discriminativemodels used to solve
the one-to-one mapping. The working band involved covers the
near-ultraviolet, visible light, infrared, and microwave regions,
wherein most attention is paid to the visible light and near mid-
infrared regions. However, these working bands are discretized
into sampling points. No matter how many, these sampling
densities are fixed, making them less flexible than conventional
numerical simulation tools. From plasmonic to dielectric meta-
atoms, the materials listed in Table 1 cover common metals and
dielectrics. Selected references in the table have different
modeling responses, proving that the current surrogate model
can learn almost all common optical properties from the meta-
atom structure geometry.
The input of the surrogate model is the description of the

modeling object. The modeling representations of the meta-
atom geometry are generally divided into two kinds. One is of
geometric parameters, and the other is of the pattern matrix.

Free-form structures are represented by a pattern matrix. Meta-
atoms described by geometric parameters have predefined shape
limits. The image of a meta-atom pattern can usually bring a
much higher design degree of freedom (DOF) than several
geometric parameters. However, directly comparing the DOFs
between the geometric parameter model and the geometry
image model is unfair. The data in the pattern matrix is binary,
while geometric parameters are usually continuous or vary in
fine increments over a wide range. Therefore, the DOF of
geometric parameters is not necessarily smaller than that of
geometric images. We prefer the choice between geometric
parameters and structural images to be the choice of two designs
for specific shapes and free shapes rather than a measure of
superiority. Both cases provide a high DOF, which is sufficient
for a specific target. Besides these two mainstream modeling
descriptions, the modeling object in ref 122 is described as a 3D
matrix. Geometric parameters are 1D data. The structure pattern
is a 2D data. 3D modeling additionally takes the height of the
meta-atom as the variable of consideration, in contrast to the 2D
pattern case, which has a fixed height or thickness. The
multidimensional description of the modeling object will
provide more practicability and flexibility. Surrogate modeling
is not limited to the meta-atom level. In ref 123, the electrical
field was predicted for a region containing nine meta-atoms.
Accuracy is themost commonly usedmetric for evaluating the

prediction performance of the surrogate model. Most neural
networks in Table 1 adoptmean-squared error (MSE) as the loss
function to train the model. Therefore, we also use this quantity
to indicate the accuracy for those works that did not clearly
provide the accuracy value or alternative metrics. The author in
ref 122 adopts normalized cross-correlation, which ranges from
0 to 1, as the evaluation metric. Cross-correlation represents the
relevance between two sequences, such as the optical response
over different wavelengths, electric field distributions, etc. A
cross-correlation of 0 means the sequences are completely
irrelevant. The greater the cross correlation, the greater the
relevance.When cross correlation reaches 1, the two comparison
objects are exactly the same. From the table, most surrogate
models can promise at least 90% accuracy.
Normally, more complex models need more training data to

increase the their generalization capability and robustness. The
generalization capability determines whether the model can
achieve accurate predictions for unseen structures. Robustness
represents the anti-interference ability. Especially for free-form
structure modeling, the diversity of the training data is very
important. All discussed works used over 10 000 data points as
the training set. We can use this quantity as a lower reference
cutoff for the preparation load of a surrogate model. The
prediction speed for meta-atom characterization is almost at the
millisecond level. Compared with a conventional numerical
simulation, the surrogate model is 2−5 orders of magnitude
faster.
As an approximate Maxwell’s equation solver, surrogate

modeling has threemajor shortcomings. The performance of the
surrogate model is limited by the construction of the training
data. Each model can only work at specific interests, such as
transmittance, reflection, polarization, etc., at specific working
wavelengths. The performances of some surrogate models will
degrade at the resonance frequencies. Additionally, the process
of generating the training data is a labor-intensive and tedious
task. However, surrogate modeling based on neural networks
has been proved many orders of magnitude faster than
conventional simulation tools. With a more complex network
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architecture or special attention to outliers, the surrogate model
can perform an accurate prediction even at resonate frequencies.
If the designer team shares the proposed surrogate model, the
computation and time consumption will be affordable. Apart
from the fast speed, surrogate modeling has another attraction.
In the inverse design of meta-optics, a real-time simulation
response is required. Compared with current commercial
software, surrogate models based on neural networks can be
integrated into the inverse design scheme easily and have more
design freedom. NN-based inverse design must propose a
surrogate model simultaneously or integrate the surrogate
model into the inverse design scheme. Only in this way can the
data in the neural network for inverse design be iterated in
training. Even for inverse design based on evolutionary
computation, the hybrid strategy leveraging the NN-based
surrogate model demonstrates better time efficiency.
3.2. Inverse Design

Artificial intelligence-assisted inverse design performs iterative
optimization according to the difference between the target and
the intermediate result, leading to an optimal final result that
matches the design requirements to the greatest extent.

Therefore, the resulting device is usually complex, random,
and nonintuitive free-form. In inverse design, the requirements
such as optical response are qualified as specific physical quantity
values. The intermediate value generated in the iterative process
of the algorithm and the target physical quantity value construct
the objective loss function together. Additionally, the value
difference indicates the optimization direction. Concrete device
design usually requires the careful consideration or the
simultaneous satisfaction of multispecification demands.
Through the cleverly design of variables, weights, and penalty
terms in the loss function, reverse design can easily handle multi-
objective problems. Even the designer can give preference to
certain observations and force the algorithm to satisfy certain
conditions first in the optimization process.
This section discusses two major paths for optimization

problems. One is gradient-based neural networks, and the other
is gradient-free evolutionary computation. Although gradient-
based neural networks efficiently find local optimal solutions for
convex problems, they have difficulty dealing with multiple
objectives and nondifferentiable functions. Gradient-free
methods have fewer constraints on the problems and thus can
be applied to these challenging cases. However, in the actual

Figure 8. Comparison of different design schemes for plasmonic meta-atoms. (a) General distribution of design feasibility versus spectral complexity
for various computational approaches. (b) Working flow of general evolutionary computation methods. (c) Working flow of general deep learning
methods.113 Reprinted with permission from ref 113. Copyright 2018 Springer Nature.
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applications, evolutionary computing universally faces troubles
such as a low solution speed and difficulty in convergence.
Therefore, for problems such as linear programming and convex
optimization, the gradient-based mathematical optimization
method is more promising.130 The inverse design of free-form
structures can take conventional simulation software months or
even years due to the great design freedom. For such cases,
designers usually design an additional forward optical response
prediction model (surrogate model) via deep learning to replace
the numerical simulation. However, even if there is a deep
learning-driven surrogate model for the optical response
prediction, inverse design can be based on either deep
learning112,129,131 or evolutionary computation.114,118

3.2.1. Gradient-Based Neural Networks (Deep Learn-
ing).Given an arbitrary spectrum, designers always want to find
the geometry of a single meta-atom that satisfies the target
spectrum. The inference difficulty of the corresponding
nanoscale geometry depends on the spectral complexity. Figure
8a shows a general understanding of the application positions of
various approaches.113 For a simple target spectrum, the
designer can guess the corresponding nanostructure directly
based on experience and physical intuition with only a few
attempts. As the complexity of the spectrum increases, designers
must use numerical methods, such as the FEM or FDTD
method. Stochastic algorithms like evolutionary algorithms can
further handle more complex systems but cannot address the
inverse problem efficiently. Deep-learning-assisted inverse
design provides both efficient and nonintuitive solutions. A
rough comparison between evolutionary algorithms and deep
learning algorithms is shown in Figure 8b and c. From the
perspective of the entire optimization process, the deep learning
method is more computationally efficient. Deep learning has
demonstrated much efficacy in accelerating meta-optic designs,
such as an auxetic metamaterial132 and a transmissive meta-
atom.133

Inverse design assisted by deep learning could be divided into
two parts according to the adopted model types. One is based on

the discriminative model, and the other is based on the
generative model. The inverse design method based on the
discriminative model can be further divided into two classes. In
the first class, design parameters are arranged at the input
position, and target responses as the output influence the design
parameters via backpropagation. Specifically, device parameters
generated by random or educated guesses are evaluated by the
proposed design scheme. Then, the error between the output
response and the expected response is calculated through the
loss function, and backpropagation is used to reduce it
iteratively. This class of design schemes is simple but time-
consuming as an iterative optimization method. The second
class is more straightforward and thus themainstream. Given the
expectation, NN outputs the prediction. For example, the
second class method sets the expected performance such as the
spectrum as the input, and the corresponding device parameters
such as the geometry can be retrieved directly. The second class
is usually more efficient than the first class. Therefore, the
adoption of the first class is relatively rare. Below we provide
examples of both classes.
Peurifoy et al.116 demonstrated examples of spherical

nanoparticles that have alternating shells of different materials,
as shown in the left panel of Figure 5c. In their work, they
developed a scattering model of nanoparticles based on a DNN.
Fed with the thickness of each shell, the DNN outputs
corresponding scattering cross sections overworking wave-
lengths. They used the same DNN to perform inverse design
rather than developing another model, which is a typical
example of the first class. With the weights in the hidden layers
fixed, the DNN is retrained by taking the input as new trainable
variables. Besides fitting a random spectrum, their inverse design
also succeeded in satisfying specific spectra with scattering peaks
at a single wavelength or over a broadband. The first class has
demonstrated success in the multiple-metasurface system,134

geometrical designs for high-efficiency meta-hologram,135 and
plasmonic colors.121

Figure 9. Inverse design example of the second class. (a) Target optical properties of S-parameters and the absorption rate. (b) Workflow of the
proposed design scheme. (c) The 3D diagram of the model under investigation, which can be described as a matrix.136 Reprinted with permission from
ref 136. Copyright 2019 Wiley-VCH.
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Figure 10. Inverse designs based on tandem neural network (TNN). (a−d) TNN for the design of invisibility metasurface cloak.128 Reprinted with
permission from ref 128. Copyright 2021 Optical Society of America. (a) Schematic of the transmitted metasurface cloak. Layer 1 and layer 2 are two
planar metasurfaces, and a cat is a hidden object. PEC indicates a perfect electric conductor. (b) The left panel and the right panel are the simulated
magnetic fields without and with the cloak, respectively. (c) The architecture of the proposed TNN. (d) Validation results of the proposed TNN. (e−
g) TNN for the design of theMIMmetasurface absorber.125 Reprinted with permission from ref 125. Copyright 2021Walter de Gruyter. (e) Diagram
of a multiplexed array of plasmonic resonators. (f) Test results for dual-band and triple-band absorber designs. (g) Data preparation and inverse design
schematic. (h) TNN for the on-demand transmission spectrum design of a thin-filmmeta-atom.138 Reprinted with permission from ref 138. Copyright
2018 American Chemical Society.
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Figure 11. Inverse design samples based on bidirectional neural networks under the tandem strategy. (a) Schematic of a bidirectional DNN. This
discriminative model designed the “H”-shaped freeform nanostructure (on the left panel) on the demand of spectrum. This DNN is composed of a
geometry-predicting network (GPN) for inverse design and a spectrum-predicting network (SPN) for surrogate modeling. Given the transmission
spectrum and a material’s property, the GPN predicts the geometry of a nanostructure that meets those needs. SPN is an approximate spectrum solver
for the given nanostructure’s geometry.113 Reprinted with permission from ref 113. Copyright 2018 SpringerNature. (b and c) Inverse design for meta-
filter.114 Reprinted with permission from ref 114. Copyright 2019 American Chemical Society. (b) The working flow of the cascaded model generator
and the spectrum prediction PNN. (c) Spectra of single-band (top) and dual-band (bottom) target and design results. (d−f) Two assembled neural
networks for both forward and inverse predictions between the structure and optical responses.129 Reprinted with permission from ref 129. Copyright
2018 American Chemical Society. (d) Designed unit cell with five design parameters. (e) Proposed neural networks and their data flow. (f) The optical
responses involved include reflection spectra (LCP-to-LCP, RCP-to-RCP, and cross-polarization reflection) and the CD spectrum.
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Qiu et al.136 proposed a deep learning-based method, named
REACTIVE, to achieve the automatic design of a metasurface
structure for a triple-band absorber application. The computa-
tion was 200× faster than a conventional parameter sweeping
optimization. Given target S parameters indicated in Figure 9a,
REACTIVE outputs the demanded metasurface structure with a
design process shown in Figure 9b. The direct access to structure
geometry from S parameters conforms to the second class. The
designed meta-atom is a fourfold MIM structure with Cu that is
described as a pattern matrix, as shown in Figure 9c. In the
design process, an autoencoder-based dimension reduction
method was employed to extract features. After that,
REACTIVE adopted a DNN (MLP) to map the metasurface
structure with the extracted feature. REACTIVE provides an
average accuracy of 76.5%, which far surpasses those of other
machine learning methods. Such direct derivation of design
parameters from demanded responses can also be found in the
graphene-based metamaterial.137

For the second class, designers usually develop the design
model with two modules, inverse design and forward prediction
(surrogate modeling). Regarding the structure of the meta-atom
and the target optical response as a one-to-one mapping as a
regression problem is inconsistent with physical intuition. The
optical response of ameta-atom is fixed, so the forwardmodeling
problem only has a unique solution. However, a specific optical
response may correspond to a variety of completely different
meta-atom structures, and this inverse design process is a
multisolution problem. Therefore, a direct inverse network is
difficult to converge. To solve this problem, tandem strategies
have been used to avoid unstable training losses generated from
a mismatch and force the inverse network to converge to a
possible solution. A tandem strategy refers to the cascade of an
inverse network for inverse design and a forward network for
forwarding modeling. The input of the inverse network is the
output of the forward network and vice versa. The forward
network that solves the one-to-one problem is easy to converge,
so the forward network is trained independently in advance. The
inverse network is trained with the trained forward network,
whose weights are fixed. In this way, the whole tandem neural
network can also achieve one-to-one convergence. Inverse
design schemes based on tandem neural networks (TNNs)
demonstrated fascinating outcomes in various tasks.
Being invisible has been a long-time dream for humans. In

recent years, the breakthrough of the metasurface has provided a
promising way to achieve this dream. In 2021, Zhen et al.
reported a transparent invisibility cloak with a transmitted
metasurface.128 Compared with previous metasurface cloaks
that operate in a reflective manner, the transmitted cloak has
wide application scenarios without the limit of ambient
reflection. As shown in Figure 10a, this transparent cloak is
composed of two planarmetasurfaces. A dielectric cat model was
set as the hidden object in this case. From the simulated
magnetic fields in Figure 10b, the field with a cloak (right panel)
remains flat, which proves the invisibility. The performance of
the cloak is characterized as the near-field distribution and the
far-field radar cross-section (RCS). The design scheme provides
a phase profile arrangement of the metasurface. One desired EM
response could relate to many candidates of the phase
arrangement. To solve the one-to-many problem, the authors
adopted the TNN that contained an inverse neural network
NN1 and a forward neural network NN2, as shown in Figure
10c. The output of NN1 is the input of NN2. The input and
output of TNN are both EM field distributions. The predicted

phase arrangement was obtained from the intermediate layer.
NN2 was first trained independently, and NN1 was trained with
fixed-weight NN2. Figure 10d demonstrates the consistency
among the target, the prediction, and the simulation. Therefore,
the proposed TNN is an accurate design scheme.
Periodic MIM metasurface absorbers naturally yield strong

resonances with highQ factors, and the resonance frequency can
be shifted by varying the geometry of the resonator.139 Yeung et
al. used a tandem neural network to design a MIM metasurface
absorber with multiple high Q-factor resonances and broadband
absorption under the mid- and long-wave infrared regimes.125

This case focuses on the supercell design, which is fourfold
symmetric. Figure 10e shows the paradigm of a MIM supercell
with Au and Al2O3. Each cross-shaped resonator has fixed widths
and varied lengths. Figure 10f demonstrates two examples of
dual- and triple-resonance designs whose performances are in
good agreement with the target. As shown in Figure 10g, the
resonator lengths are the design parameters. The mapping
between absorption spectra and design parameters is handled by
the proposed TNN. It is worth noting that the number of
sampling points of the spectrum is 800, which is much larger
than the tens quantity of this method’s counterparts. Addition-
ally, dense sampling also promises efficacy and accuracy.
Liu et al.138 also employed a typical TNN to deal with the data

inconsistency in training, as shown in Figure 10h. The
investigation object in this work was a thin all-dielectric
multilayer-film meta-atom composed of alternating SiO2 and
Si3N4, as shown in the left panel of Figure 10h. Given the target
transmission spectrum (see the right panel of Figure 10h),
designers can retrieve the corresponding design parameter
vector of the layer thickness.
The inverse design demonstrated in Figure 10 covers three

levels of the whole metasurface, supercell, and meta-atom.
Among them, meta-atoms have attracted more attention
because of their flexibility and basic status. Figure 11
demonstrates three inverse design examples of meta-atoms via
neural networks under the tandem strategy. As talked about
before, the tandem strategy brings the consistency of input−
output. Additionally, there is a significant benefit to training one
neural network that carries surrogate modeling and inverse
design simultaneously rather than developing both sepa-
rately.113 Therefore, many inverse design methods take
advantage of the tandem strategy but do not strictly follow the
completely symmetrical structure of a TNN.
In the broadband from 600 to 1600 nm, Malkiel et al. proved

that the geometry of a single nanoparticle could be found for
arbitrary multiple resonances in the transmission spectrum
under dual polarization.113 A bidirectional DNN for an “H”-
shaped nanostructure design is shown in Figure 11a. The outer
edges of the “H”-shaped structure can either vary in length and
angle or be omitted during the design. The bidirectional DNN
consists of a geometry-predicting network (GPN) for inverse
design and a spectrum-predicting network (SPN) for surrogate
modeling. Cascading the GPN and the SPN in a tandem
structure provides better performance. Taking theMSE between
the target and the prediction as the standard, the MSE of the
bidirectional DNN is 0.21 lower than the MSE (0.37) of the
separately trained GPN and SPN. Given the parameters of the
nanoparticle geometry, SPN outputs the corresponding trans-
mission spectrum under dual polarization. To evaluate the
performance, the authors demonstrated a nanometer-scale
geometry design that could address various resonances for
chemical sensing applications. The designed nanostructures
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were used to enhance the light−matter interactions with various
chemicals and biomolecules. Additionally, the deep learning
prediction was also verified by the fabrication of the inferred
structure with gold on an indium tin oxide (ITO) layer cover
glass. Measurements on the fabricated metasurface conform to
the design requirements.
In addition to arbitrary transmission spectra, the on-demand

meta-atom design can also be used for the specific distribution
transmission spectra of meta-filter applications. Compared with
the design of the “H”-shaped meta-atoms, An et al. used more

simple cylinder-shaped nanopillars over a broader range from 5
to 10 μm.114 As demonstrated in Figure 11b, the authors first
developed a DNN called PNN that predicted the transmission
coefficient from geometric parameters to save time during the
simulation. The authors cascaded another DNN, a meta-filter
generator, before the fully trained PNNwith fixed weights under
the tandem strategy. The meta-filter generator employs the
target spectrum as the input and outputs geometric parameters.
The geometric parameters are further delivered to the PNN to
retrieve the corresponding transmission spectrum. The loss

Figure 12.Meta-atom design via tandem-structured neural networks. (a−f) MIMmeta-grating design for the target reflection spectrum.142 Reprinted
with permission from ref 142. Copyright 2021 Optical Society of America. (a) 3D Diagram of the concerned meta-grating with design parameters. (b)
Adopted network architecture. (c) Example of the reflection spectrum. The yellow dots indicate the resonant wavelengths. (d) Scanning electron
microscope (SEM) image of one design. (e) Verification result with the actual fabrication experiment. (f) Target spectra and corresponding designed
responses for the single-resonant experiment. (g and h)Multilayer nanoparticle design for target extinction spectra.143 Reprinted with permission from
ref 143. Copyright 2019 American Chemical Society. (g) 3D diagram of concerned nanoparticles with design parameters. (h) Concerned optical
responses and the proposed DNN architecture.
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function in training is the Euclidean distance between the input
and output spectra. In this cascaded network, both the input and
the output are transmission spectra, which guarantees
convergence. This design scheme achieved nearly 90% accuracy
for on-demand Gaussian-shaped single-band spectra. Addtion-
ally, Figure 11c demonstrates two examples of a meta-filter for
single-band and dual-band targets. The result is in agreement
with the target’s spectrum to a certain extent.
Chirality is another attractive design topic. Three-dimen-

sional chiral metamaterials can also be automatically modeled
and optimized via AI.129 Figure 14d−f demonstrates a machine
learning scheme that contains two bidirectional neural networks
under the tandem strategy aiming to solve surrogate modeling
and the inverse design of a chiral meta-mirror simultaneously. As
shown in Figure 11d, the chiral meta-atoms are modeled as two
twisted Au split-ring resonators (SRRs) separated by two
dielectric layers, with an Au reflector at the bottom of the
structure. The five geometric parameters denoted in Figure 11d
determine the degree of freedom of structural variation. Each
network in Figure 11e has both a forward path for surrogate
modeling and an inverse path for inverse design. Two networks
were assembled by two combiners. Three reflection spectra
(LCP-to-LCP, RCP-to-RCP, and LCP-to-RCP) and a circular
dichroism (CD) spectrum quantitatively specify the design
performance (Figure 11f). In surrogate modeling, this machine
learning model predicts reflection spectra and the CD spectrum
from chiral structure parameters. Given the demanding
reflection and CD responses, the machine learning model can
also retrieve geometric parameters for inverse design. In the
evaluation of an i7-CPU, the optical response prediction speed
was about five orders of magnitude faster than the numerical
simulation. Researchers normally cascade the inverse network
and the forward network via the same variable of geometry.
However, the tandem structure can also be achieved by
cascading the two networks via the same spectrum varia-
ble.140,141

Similarly, concentrating on the reflection regime, So et al.
used the tandem-structured DNN to design the MIM grating
meta-atom.142 In this case, the working wavelengths focus on the
visible range. As shown in Figure 12a, a five-layer grating
structure of alternating Al and SiO2 was under investigation in
this work. The five design parameters, including the grating
period, the width, and the thicknesses of the three layers, are also
indicated in Figure 12a. Figure 12b demonstrates the
architecture of the adopted neural network. The input contains

a custom-defined reflection spectrum and specified resonant
wavelengths, as shown in Figure 12c. To validate the efficacy of
the proposed design scheme, the authors fabricated a designed
meta-grating, as shown in Figure 12d. The reflection spectra of
the target, the simulation, and the actual fabrication are all in
good agreement. To further test the design accuracy, the authors
designed a series of single-band absorbers with gradually
changing target resonant wavelengths (see Figure 12f). We
can see that the shift in resonance becomes greater closer to the
edge of the wavelength range.
Besides the geometric parameters, NN-based inverse design

can also take the choice of material into consideration. So et al.
reported an inverse design scheme for three-layer nano-
particles.143 The relevant design parameters include the material
choices and the thickness configuration for each layer, as shown
in Figure 12g. Additionally, the involved optical responses are
extinction spectra of electric and magnetic dipoles. The design
network also follows the tandem architecture (see Figure 12h).
It is worth noting that the prediction of continuous geometric
values is a regression problem, while thematerial configuration is
a classification problem. The loss function calculates the
regression and classification losses simultaneously to promise
unbiased convergence.
The tandem strategy restricts design diversity to the data

diversity of the forward network, which leads to limited
generalization capabilities. However, this is also the character-
istic of the discriminative model. To mitigate the challenges of
low diversity, generative models are applied to learn the many-
to-one mapping between the design space and target space. VAE
and GAN are two representatives of the generative model. Their
detailed structures and principle are discussed in section 2.2.3.
A VAE is composed of an encoder and a decoder. We briefly

explain the utility of VAE in image generation. The encoder in a
VAE encodes an image as a latent vector, which is a point in the
latent space. After training, latent vectors with the same
attributes are clustered together in the latent space. The training
goal of a successful VAE is to derive a sampling interval in the
latent space. A new image with the same attributes can be
reconstructed from a latent vector by the decoder in a VAE,
which is the generation principle of a VAE. For example, a data
set is composed of a large number of nanostructure patterns.144

These patterns can be divided into eight groups, as shown in
Figure 13a. Figure 13b demonstrates the 2D latent space
distribution of the data set in Figure 13a by reducing the
dimensions from 20 to 2. Each color represents a shape, and each

Figure 13.Generation principle of latent space sampling. (a) Examples for nanostructures data set of eight shapes. (b) Visualization of the latent space
via dimension reduction. The two distributions of the data set in panel a were derived from two different encoders.144 Reprinted with permission from
ref 144. Copyright 2020 Science China Press.
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point is a geometry pattern image. From the visualization, we can
conclude that points of the same shape are clustered together,
and similar shapes are also closer in space. We can generate
corresponding types of geometry graphics by sampling in the
space corresponding to a certain color. The two distributions in
Figure 13b are encoded by two different VAE models. It is clear
that the right panel is better, with more considerable interclass
distances. Therefore, the designers could generate a massive
number of candidates for a specific target with a VAE.
The optical bound states in the continuum (BICs) refer to

states that areis located in the continuous radiation spectrum but
remain completely confined.146 In applications, a weak
disturbance can turn BICs with infinite Q factors into leakage
resonances with finite but high Q factors. Based on BICs,
applications that make extensive use of high Q factors have

shown unprecedented potential, such as sensors,147 lasers,148,149

and nonlinear optics.150 Conventional design based on BICs is
the parameter sweeping of regular geometries, which is limited
and time-consuming. Therefore, inverse design for arbitrary
multiple BIC frequencies in free-form structures is much more
fascinating. A recent study demonstrated that inverse design
could support on-demand BIC design. As shown in Figure 14a,
Lin et al. developed a composite-crossed neural network
architecture for the on-demand design of BICs.131 This cross-
architecture contains a VAE for nanostructure geometry
generation and two CNNs for property readout. The latent
vector z between the encoder and the decoder in the VAE is a
low-dimensional representation for each geometric design.
Components in b are BIC frequencies. CNN1 reads z out
from b, while CNN2 does the opposite work. The training

Figure 14. Examples of a VAE. (a−d) An inverse geometry design for multiple BIC frequencies.131 Reprinted with permission from ref 131. Copyright
2021 Optical Society of America. (a) Schematic diagram of a crossed neural network architecture. The green and blue components form a VAE for
nanostructure generation. The vector b contains BIC frequencies. Latent vector z could be regarded as a low-dimensional representation of the
geometry. CNN1 reads z out from b, while CNN2 does the opposite work. (b) The data flow during network training, where 1 is for VAE, 2 is for CNN2,
and 3 is for CNN1. (c) Data flow for inverse design and surrogate modeling. (d) Demonstration of the generative ability. Variations in one component
of the latent vector lead to slightly deformed geometries, like geometry 8 becomes geometry 12, with the sites of deformation marked by red arrows
(top). Additionally, the shift of TE-like and TM-like bands at Γ-point varies as the latent vector continues (bottom). (e−g) VAE for the MIM meta-
atom design.145 Reprinted with permission from ref 145. Copyright 2019 Wiley-VCH. (e) Working flow of inverse generation and forward prediction
between the geometry and reflection spectra. (f) Two validation graphs. (g) The architecture of the proposed VAE.
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sequence and data flow are demonstrated in Figure 14b. Route 1
is for the VAE, route 2 is for CNN2, and route 3 is for CNN1. The
mapping relationship from z to b is unique. The training of
CNN2 is easy to converge. However, the mappings from BIC
frequencies to the possible geometry are not limited. In the
training of CNN1, CNN1 and trained CNN2 with fixed weights
are bound together. After training, parts of different NNs are
recombined to perform surrogate modeling and inverse design,
as shown in Figure 14c. With the latent vector z as the
intermediate variable, authors could freely predict a geometry
with predefined symmetry from BICs and vice versa. Figure 14d

proves the generative ability. Each z is a sampled point in a
Gaussian distribution. Variations in the latent vector lead to
slight geometric deformation, such as the difference between
geometry 8 and geometry 12. The bottom diagrams in Figure
14d demonstrate obvious changes in band frequencies as the
geometry slightly varies.
Out of the heuristic intuition of the optical structure design,

similar geometries behave similarly in terms of their optical
properties. The generation of such a predefined geometry
conforms with the reproduction in the VAE. With a specially
designed VAE, Ma et al. focused on meta-atom pattern design

Figure 15.Overview of the GAN-based inverse design scheme. (a and b) On-demand meta-atom design with custom-defined transmission spectra.112

Reprinted with permission from ref 112. Copyright 2018 American Chemical Society. (a) Architecture of the proposed GAN with a simulator for
surrogate modeling. The GAN is composed of a generator and a critic (discriminator). T is demanding transmission spectra, T̂ is the spredicted
pectrum of the designed pattern generated from the generator, z is the noise, and l is the authenticity of the generated image, which is determined by the
critic. (b) Example of the meta-atom under investigation and the concerned transmission spectra. (c−e) Design of a free-form meta-atom on the basis
of the reflection performance.152 Reprinted with permission from ref 152. Copyright 2019 Walter de Gruyter. (c) Schematic of the proposed GAN
architecture composed of the generator (left) and the discriminator (right). (d) The data prepared for deep learning with pair of a pattern image and a
reflection spectrum. (e) Validation of the generation capability.
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according to the requirements of the reflection spectra of
different polarizations, including x-in-x-out, y-in-y-out, and the
cross-polarized reflection.145 The meta-atom under investiga-
tion is a sandwichedMIM structure, as shown in Figure 14e. The
design result is discretized to a 64 × 64 2D binary image.
Validation results in Figure 14f show good consistency with the
ground truth, which is important for on-demand design. Figure
14g shows the architecture of the proposed VAE, which can be
divided into three parts: a recognition model for geometry
encoding, a prediction model for reflection spectra, and a
generation model for geometry reconstruction. In training, with
inputs of both pattern image features and reflection spectra, the
recognition model learns the latent distribution of geometries
conditioned on reflection responses. This deep generative
model is trained in an end-to-end manner, which avoids
nonconvergence and design diversity limitations.
GAN is another powerful generative method for on-demand

inverse design. In the original GAN, the input of the generator
was a random vector. For on-demand design, the researcher
normally adopts the conditional generative adversarial network
(cGAN), whose input has one more variable such as the
demanding spectra. At the same time, the architectures of the

generator and the discriminator are not limited to multilayer
perceptron (MLP). For convenience, we use GAN for short in
the following text. With sufficient generative capabilities, GAN
holds promise to design challenging free-form meta-atoms with
a high degree of freedom.151

Liu et al. proposed a GAN scheme of a meta-atom design for
custom-defined optical spectra. When fed arbitrary transmission
spectra across the range of 500 nm to 1.8 μm, the generative
model provided possible structure patterns with a high matching
degree and fidelity. As Figure 15a shows, the proposed GAN is
composed of a generator and a critic (discriminator). As the
name GAN suggests, the generator and the critic are adversaries.
In training, the images generated from the generator are fed to
the critic. The critic is responsible for judging whether the
generated data and the real data are in the same distribution
(same class). After constant adversarial training, the generator
learned the inherent probability distribution model of the
pattern of a natural meta-atom. Therefore, the generator can
generate a demanding geometry rather than a random noise
graph. The simulator adopts a CNN to retrieve the optical
response of the specific geometry, as shown in Figure 15b. With

Figure 16.Generative networks for inverse design with a high degree of freedom (DOF). (a−d) Free-form pattern generation with a high efficiency via
a GAN.153 Reprinted with permission from ref 153. Copyright 2019 American Chemical Society. (a) Architecture of the proposed GAN. (b) The
paradigm of the symmetrical meta-atom pattern. The dashed blue line indicates the symmetry line. (c) Working flow of the GAN retraining. (d)
Validation results of the proposed GAN on the basis of the computational time and the efficiency distribution. (e and f) Phase map design of the whole
metasurface with the VAE-GAN framework.126 Reprinted with permission from ref 126. Copyright 2021 Optical Society of America. (e) Schematic of
the proposed VAE-GAN framework. (f) The designed phase profile of the coding metasurface (left), the corresponding holographic imaging result
(right-top), and the unit cell in the coding metasurface (right bottom).
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backpropagation from the simulator and the critic, the generator
can achieve the automatic design of the meta-atom pattern.
Subsequent works further demonstrated the design potential

of the GAN in applications that required various optical
properties. For example, So et al. also used the GAN to design
meta-atom geometry patterns for custom-defined reflection
spectra.152 The specific network architecture is demonstrated in
Figure 15c. The GAN was built to design free-form meta-atoms,
as shown in the bottom panel of Figure 15d. The nanostructure
was predefined as an Ag antenna on a stacked MgF2 spacer, a Ag
reflector, and a Si substrate with a 500 nm lattice size. Given the
noise and the target spectrum, the generator outputs the
corresponding probability distribution of the structure pattern
via a series of up-sampling processes. The discriminator tries to
distinguish the generated images from the training set. The
output of the probability distribution is a fast way to force the
network to converge. Because the direct binary output is an
extreme nonlinear process whose loss function has less
restriction on the weights, the binary demanding output image
can be easily obtained by an automatic thresholding algorithm.
Most interestingly, the design performance shows great
consistency with the target spectrum (see Figure 15e), while
the generated structure is completely different from the known
ground truth. This proves that the proposed design scheme has
good generation diversity.
It is universally acknowledged that adjoint-based topology

optimization154 is computationally expensive. Jiang et al.
reported a GAN accelerated free-form diffractive meta-grating
design scheme.153 The architecture of the proposed GAN is
shown in Figure 16a. The inputs are the target outgoing angle λ
ranging from 35 to 85 degrees and the working wavelength
ranging from 500 to 1300 nm. The pattern of the designed
structure is symmetric about the y-axis, as shown in Figure 16b.
The authors used the GAN to generate meta-atom patterns
quickly and massively. The 50 candidates with top deflection
efficiencies were selected from all generated pattern images.
These candidates were further refined by iterative optimization.
Most interestingly, the initial training set of this GAN was only
600 samples, which was much smaller than its counterparts’
thousands or ten thousand samples. Fewer initial training sets
mean a lower precomputation cost. The performance of the
proposed GAN is enhanced via retraining, which is demon-
strated in Figure 16c. Additionally, the training data for the
second-generation GAN are the refined images from the GAN
and additional normal samples. With a retraining loop, the
efficacy of the GAN can be improved. The GAN-based
generator can be regarded as a computationally efficient design
tool. As shown in the left panel of Figure 16d, the proposed
scheme behaves about 5000× faster than the iterative-only
optimization method. Besides saving time, the GAN-based
method also demonstrates an ability to generate designs with a
higher deflection efficiency (see right panel of Figure 16d).
Similar work that provides design candidates closer to the
optimum via the generative network was applied to the design of
meta-gratings.155

Recently, a kind of metasurface raised attention for its easy
programming, which is called a coding, programmable, or digital
metasurface.With binary-coded phase responses, the meta-atom
in such a metasurface can be controlled easily and in real time.
Therefore, coding a metasurface is an excellent subject for AI
technology. AI has already demonstrated intelligent control in
coding metasurface applications, such as imager156 and smart
system.157 A real-time reprogrammable metasurface controlled

by a field-programmable gate array (FPGA) is promising for
holographic imaging applications. However, for meta-hologram
design, both the Gerchberg−Saxton (GS) algorithm158 and the
stochastic optimization algorithm are iterative approaches,
which cannot support the demand of real-time response. Liu
et al. proposed a new method composed of a VAE and a
GAN.126 As shown in Figure 16e, the proposed new method
uses a VAE structure to realize image reconstruction in which a
forward propagation process is integrated as the decoder. The
propagation process calculated the electric field distribution
from the current at the source point. The discriminator followed
the structure of the GAN. Their meta-hologram under
investigation was a 40 × 40 coding metasurface at 35 GHz.
Each meta-atom radiates 0-phase or π-phase EM waves, which
correspond to the 0 or 1 in the binary coding, respectively. With
a demanding phase profile, this meta-hologram is expected to
project the corresponding image at an imaging plane 30 cm
away, as shown in Figure 16f. The loss function comprehensively
considers both the MSE from the VAE part and the Wasserstein
distance159 from the discriminator. Compared with the
conventional mainstream method, GS, the proposed VAE−
GAN shows a lower MSE and a higher peak signal-to-noise ratio
(PSNR). Such combined VAE and GAN network architectures
also perform well in the design of the high-efficiency thermal
emitter. Kudyshev et al. proposed a similar framework called
adversarial autoencoders (AAE) to optimize the structure
topology for high efficiency.160

Because original GANs take random vectors as the input, the
initial results are normally noisy for the inverse design. For
example, the edges of the nanometer-scale geometric design are
jagged, leading to challenging fabrication in practice. Designers
need extra postprocessing such as smoothing to refine the
structures.
The works talked about in Table 2 cover the inverse design of

meta-atoms, supercells, and whole metasurfaces. For the meta-
atom design, the design variables are either geometric
parameters or structure patterns, similar to the description in
surrogate modeling. The design of the supercell contains a
geometry configuration for multiple unit cells. Additionally, the
inverse design of a whole metasurface normally focuses on the
phase profile. The shapes of discussed meta-atoms vary, as they
can be free-form, have a specific structure, or have a symmetry
limit. The involved algorithms can be divided into discriminative
models and generative models (GAN and VAE, respectively).
Additionally, the working bands mentioned in Table 2 penetrate
visible light, infrared light, and microwave wavelengths. The
inverse design scheme can work for both plasmonic and
dielectric metasurfaces.
In free-form meta-atom structure design, some researchers

use a fine discretization grid for a high DOF. While the several-
pixel vibration of the structure pattern sometimes leads to great
variation in optical properties, the fabrication deviations are
common in practice. Therefore, this is likely due to the fact that
the theory exists and the experiment is not feasible. Considering
the current feasible manufacturing scale, it is difficult to
manufacture binary structure pattern designs with pixel sizes
less than 10 nm. Considering the lattice period and the discrete
levels of patterns, some works are overfine, which is difficult to
fabricate. Fine discretization brings a high degree of freedom to
the design, but the manufacturing complexity should be
considered in the actual configuration.
The majority of inverse design schemes are for automatic on-

demand design, and a minor part is to solve the optimization
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problem. Most algorithms consume over ten thousand training
data. Due to semi-supervised learning, methods based on
generative models require less training data (usually thousands).
The designers will normally demonstrate an application example
for their specially constructed design scheme and that the
validation results are in line with expectations.
NN-based inverse design requires less knowledge of optics.

What the neural network provides is only an approximate
solution of the system, which is not exactly the same as the target
requirements. Most methods exhibit an accuracy of over 70% for
on-demand design at a considerable speed. Inverse design of the
conventional trial-and-error mode is time-consuming and
cannot guarantee the solution. Despite the discrepancy, a
quasi-solution is better than no solution.
3.2.2. Gradient-Free Evolutionary Computation. Evolu-

tionary computing is a crucial subfield of artificial intelligence
and is a family of metaheuristics, including genetic algorithm,
evolutionary algorithm, ant colony algorithm, and particle
swarm algorithm,. It is inspired by the natural selection
mechanism of the survival of the fittest and the influence of
the law of the transmission of genetic information. Evolutionary
computation mimics the process of biological evolution. The
race multiplication process is simulated through the iterative
process of computer programs. Each generation introduces
mutations as small random changes, and the unqualified
solutions are discarded via choice. In this way, the optimal
solution is finally obtained through evolution. Benefiting from
guided random search in the solution space, evolutionary
computation is designed to search for the global optimal
solution. Thus, evolutionary computation is normally acknowl-
edged as a collection of global optimization algorithms.
Genetic algorithm (GA, sometimes named evolutionary

algorithm)162 is one of the most frequently used evolutionary
computation strategies. Additionally, GA has greatly promoted
the inverse design of metasurfaces in recent years, such as a
metalens,163 a terahertz quarter-wave plate,164 programmable
metamaterials,165 and subwavelength lattice optics.166

Figure 17a demonstrates a general working flow of GA. GA
usually takes a set of randomly generated solutions or artificially
set initial points as the first generation of the population. Every
subsequent iteration of the algorithm is a new generation of the
population. The objective function is built according to the
requirements of the optimization problem, and the objective
function is used to evaluate the fitness of the individuals in the
population. Individuals with low fitness are abandoned, and
individuals with high fitness are selected to generate a new
generation of the population through crossover and mutation.
Crossover refers to the replacement and recombination of the
parental generation, while mutation is the random change of
certain attributes of an individual. As a result, the fitness result of
each new generation is better than that of the previous
generation, and the population evolves in the iterative process.
The final algorithm ends when it meets the fitness requirements
or reaches the set number of iterations.
In the specific application design, GA is modified to obtain

various variants to meet different requirements. In a phase
profile design of a PB phase-controlled metasurface light sheet,
the adopted modified GA removed the crossover operation for
processing efficiency.169

Microwave-absorbing materials have become prolific because
of military radar stealth and commercial antenna telecom
protection. For address the increasing demand for broadband
absorption, strategies combining ametasurface and the substrateT
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of the material raise researchers’ interests. The absorption
bandwidth can be tremendously improved by loading a
metasurface onto the substrate of the absorbing material.
Zhang J. et al. proposed an efficient metasurface to broaden the
absorption bandwidth of the substrate with the support of
GA.118 To meshing and coding the meta-atom of the
metasurface (see Figure 17b), they employed the absorbing
performance as the fitness value. Under the indication of the
fitness, the coding pattern is optimized in iterations. In the
validation experiment, the authors demonstrated the absorption
bandwidth increased from 4.5 to 13.5 GHz with the optimized
metasurface. Additionally, this GA-based strategy was proven to
be universally applicable to various absorbing materials and is a
universal design method.
When the phase modulation range is less than 2π, or even less

than π, the metasurface can still exhibit a strong beam -steering
ability. As shown by the example in Figure 17c, Lin et al.
proposed a method named genetic-type tree search (GTTS),
which originated from Monte Carlo tree search and a genetic
algorithm with an unsupervised k-means clustering algorithm, to

inversely design the high-performance beam-steering metasur-
face.167 They demonstrated three Al-based beam-steering
metasurfaces for different wavelengths and a tunable beam-
steering metasurface with Au−-graphene units. Given the target
steering angle, GTTS can output the corresponding amplitude
and phase profile, which are sampled as 30 points. The angular
resolution and steering angular range of beam deflection design
could reach 0.5° and ∼25°, respectively.
In previous works, the Gerchberg−Saxton (GS) algorithm

was extensively applied for meta-hologram design. Compared
with the GS algorithm, inverse design based on GA shows a
preponderance in search space, computing speed, image quality,
and image pixels. However, slow convergence caused by the
large search space hinders the application of GA. Jin et al.
introduced a segmented hierarchical evolutionary algorithm to
decrease the computation load of complex and large-pixelated
inverse meta-hologram design.168 They divided the evolutionary
process into two stages, as shown in Figure 17d. Taking the
meta-hologram as a binary amplitude array, Jin Z called this
array the genome in GA. The low-resolution genome surrogate

Figure 17.Use of a GA and GA variants. (a) Flowchart of the general GA. (b) Flowchart of the GA for the generation of the coding metasurface. The
coding metasurface works for absorption bandwidth broadening.118 Reprinted with permission from ref 118. Copyright 2021 American Chemical
Society. (c) Design diagram of a genetic-type tree search (GTTS) that integrates Monte Carlo tree search (MCTS) and a GA.167 Reprinted with
permission from ref 167. Copyright 2021 American Chemical Society. (d) Application for a large-pixel metasurface design with a segmented
hierarchical GA. The genome in the lower segmentation is composed of fewer pixels than that in the higher segmentation. Stage separation reduces the
amount of computation. The cyan and yellow blocks represent pixel states denoted as values “1” and “0”, respectively.168 Reprinted with permission
from ref 168. Copyright 2019 American Chemical Society.
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was first evolved in the early stage, which had a low
computational cost. In the later stage, the genome with the
actual resolution was initialized using the evolutionary result of
the low-resolution genome surrogate and further evolved. This
segmented hierarchical evolutionary algorithm greatly reduces
the size of the search space in the initial search stage and
significantly improves the convergence speed.
Evolution strategy (ES) is also an optimization technique

based on ideas of evolution. ES is very similar to GA. To
eliminate the limitations of GA’s binary coding, ES uses real
numbers to encode genotype sequences and introduces
mutation strength. Unlike the direct conversion of 0 and 1 in
GA, the mutation in ES adds a random vector to the current real-
value DNA sequence. This random vector conforms to the
normal distribution, with a standard deviation of the mutation
strength. The coding chain of the mutation strength will also
perform a crossover operation and be passed on together with
the real-value genes of the individual from the parent to the
offspring. The covariance matrix adaptation evolution strategy
(CMA-ES) is an adaptive version of ES. CMA-ES will calculate
and update the covariance matrix of the entire parameter space.
By adaptively adjusting the genotype and the mutation strength,
the size of the search space can be increased or decreased in the
next-generation search. A simple metasurface design scheme of
the CMA-ES is illustrated in Figure 19a. The CMA-ES part is
responsible for the random global solution search, and the
simulation tool is in charge of the specific optical response of the
found mathematical solution.
Sieber and Werner compared the performance of CMA-ES

with that of binary GA for metasurface design in 2014.170 The
computational efficiency and the quality of the solution found
were contrasted between the Beźier metasurface optimized by
CMA-ES and the pixelized metasurface optimized by binary GA
for the application of infrared broadband quarter-wave and half-
wave plates. As shown in Figure 18, CMA-ES far exceeds GA not
only in the convergence speed but also in the final performance.

CMA-ES showed a performance closer to the ideal, with a
significant reduction in evolutionary generations.
CMA-ES was employed to compute the values of capacitors

and resistors in reconfigurable metasurface absorbers.175 In
conjunction with the commercial optical simulation tools,
CMA-ES can optimize the dimensions of eachmeta-atom. It was
used for the nanostructure optimization of metasurface-enabled
waveplates176 and a gradient-index (GRIN)metasurface lens.177

CMA-ES also demonstrated topology-optimization capabilities
in thermal cloaks.178 As a global optimizer, CMA-ES provides
designers with the confidence to achieve optimal target
performance. Nagar et al. employed CMA-ES to maximize the
three-color (apochromatic) correction performance of the
GRIN metasurface lens, as shown in Figure 19b.172 The
optimized lens parameters demonstrate consistency with those
predicted by paraxial analytical theory. Comparison ratios for
the front radius of curvature, the thickness, and the metasurface
power all vary slightly at the beginning and quickly approach
unity.
Working with other optimization methods, the application of

CMA-ES is more flexible and powerful. Elsawy et al. combined
CMA-ES with statistical learning.179 They achieved GaN phase
gradient metasurfaces in the visible range with over 85%
diffraction efficiency. Neural networks and evolutionary
computation are not clearly separated in practice. Designers
can use both algorithms simultaneously in inverse design. The
cooperation between deep learning and the evolution strategy is
a new direction for the inverse design of a metasurface. The
combination alleviates the problems of eachmethod, namely the
low convergence speed in evolutionary computation and local
optima in deep learning. As shown in Figure 19c, Liu et al.
proposed a hybrid AI-based design framework composed of
deep learning and an evolution strategy.173 Following the
hierarchical relationship in materials science, they named the
working units on the metasurface that consisted of several
different meta-atoms as meta-molecules. The specific procedure

Figure 18. Performance comparison of the pixelized metasurface (GA optimizations) vs the Beźier metasurface (CMA-ES optimizations). The
averages, means, and best fits over 20 seeds for the two algorithms are demonstrated. The use of the same seeds ensures the two algorithms have the
same randomness, which means their initial random populations are the same. The fitness value reflects the error from the ideal performance. The
smaller the fitness value, the better.170 Reprinted with permission from ref 170. Copyright 2014 Optical Society of America.
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was realized on the meta-atom design. A generative network is
responsible for generating the pattern of the meta-atoms on the
basis of the shape-controlling parameter. The workflow of the
cooperative evolutionary part follows the conventional
evolution strategy. Neural network and evolution steps form a
loop together. The pattern of the meta-atom evolves in multiple
iterations until it reaches the target. Their hybrid design casts off
the conventional laborious manual trial and error simulations

and performs the metasurface design conveniently and system-
atically.
Liu et al.124 also developed a hybrid design strategy based on

modified ES and deep learning. Given the customer-defined
input spectra, metasurfaces with continuous or discrete
topological structures are generated automatically. An advanced
short backfire antenna (A-SBFA) enhanced with metasurface
demonstrated unprecedented performance on aperture effi-

Figure 19. Optimization examples with the evolution strategy. (a) Flowchart of the PSO algorithm working together with the optical simulation
software.171 Reprinted with permission from ref 171. Copyright 2017 The Japan Society of Applied Physics. (b) Schematic diagram of a homogeneous
chromatic lens with chromatic aberrations (top left) and an apochromatic GRIN metasurface lens (bottom left) and the ratios of the lens parameters
from the theoretical prediction and the CMA-ES optimization for the front radius of curvatureRf, the thicknessT, and themetasurface powerϕm versus
f/# (right side from top to bottom).172 Reprinted with permission from ref 172. Copyright 2018 Optical Society of America. (c) Illustration of a
diatomic meta-molecule consisting of two meta-atoms (top) and the hybrid design scheme (bottom). The CPPN decoder is a neural network that
generates the pattern of the meta-atom at a pixel level. Each species is composed of control parameters for the pattern shape.173 Reprinted with
permission from ref 173. Copyright 2020 Wiley-VCH. (d) Schematic diagram of a hexagonal metasurface-enabled A-SBFA.174 Reprinted with
permission from ref 174. Copyright 2019 Springer Nature. (e) Flowchart of the hybrid VAE-ES optimization loop. The optimization target is the latent
vector v. Each v has a mutation strength m. The generator (G) is separated from a well-trained VAE to generate structure pattern S from the sampled
latent vector V. The applied ES covers fitness evaluation, selection, reproduction, and mutation. q̂ is the simulation results, q is the desired optical
property, and r is the fitness score.124 Reprinted with permission from ref 124. Copyright 2020 IEEE Circuits and Systems Society.
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Figure 20. Various metasurfaces were designed with PSO. (a) Flowchart of the PSO algorithm working together with the electromagnetic simulation
software, CST Microwave Studio.180 (b) The micro-coding unit cell of the metasurface.180 Reprinted with permission from ref 180. Copyright 2017
Springer Nature. (c) Schematic view of a single-layer metasurface with controllable multiwavelength functions.181 Reprinted with permission from ref
181. Copyright 2018 American Chemical Society. (d) Comparison of imaging under white light illumination with and without the designed meta-
corrector.182 Reprinted with permission from ref 182. Copyright 2018 American Chemical Society. (e) Schematics of a conventional diffractive
spectrometer (left) and a folded metasurface spectrometer (right).84 Reprinted with permission from ref 84. Copyright 2018 Springer Nature. (f)
Scheme for a folded metasurface hyperspectral imager.183 Reprinted with permission from ref 183. Copyright 2019 American Chemical Society. (g)
Scheme for the inverse design of a tunable metasurface with the support of PSO and corresponding liquid crystals directors under voltage-on and
voltage-off states.184 Reprinted with permission from ref 184. Copyright 2020 American Chemical Society. (h) Schematic of the electrically tunable
multifunctional polarization-dependent metasurface.185 Reprinted with permission from ref 185. Copyright 2021 American Chemical Society.
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ciency across two working bands, as shown in Figure 19d.174 In
this work, themetasurface is used tomanipulate the electric field.
The key to the design of the corresponding metasurface is the
arrangement of the impedance values. Inverse analysis of A-
SBFA is difficult to achieve because of its functional complexity.
CMA-ES is employed together with the electromagnetic
simulation tool, HFSS, to search the optimal settings globally.
To maximize the peak directivity in the two GPS working
frequency bands L1 (1.575 GHz) and L2 (1.227 GHz), the
optimization variables contain the dimensions of proposed A-
SBFA such as geometry and metasurface response like reactance
values at working bands. Authors did not place restrictions on
the searching of metasurface reactance values. The search space
covers all possible design parameters.
Liu et al. proposed a hybrid strategy that consolidated a VAE

and a modified ES, as shown in Figure 19e.124 The design
objective was to optimize the structure topology in binary image
format to fit the on-demand transmission spectra. The VAE
encodes the input binary topology into a latent vector and
decodes the sampled latent vector to retrieve a reconstructed

pattern. With a generator separated from a well-trained VAE, a
slight variation in the latent vector can produce a new structure
topology. The ES algorithm was employed on the topology
patterns generated from the latent vector to find an optimum
with the fittest optical responses. As shown in Figure 19e, the
latent vector v can be regarded as the genotype in the ES.
Reproduction and mutation can be easily applied to the vector
representation. In the optimization loop, a new structure pattern
s is generated from the latent vector v. The pattern s is then sent
to the simulator to obtain the corresponding transmission
spectra. The fitness score is the difference between the
simulation result q̂ and the target q.
Particle swarm optimization (PSO) simulates the foraging

behavior of a flock of birds and is a random search algorithm
based on group collaboration. Birds cooperate in searching for
food. They know the distance from themselves to the food, but
they do not know the specific location of the food. Therefore, the
foraging strategy of a flock of birds is to get close to the bird
closest to the food and then keep searching in the vicinity of this
bird. PSO uses a particle, the candidate solution, to simulate

Figure 21. Principle, performance, and application ofMOLACO. (a) The flowchart ofMOLACO.193 (b) Diversity comparison between conventional
ACO andMOLACO.193 Reprinted with permission from ref 193. Copyright 2017 IEEE Antennas and Propagation Society. (c) Convergence curve of
the adopted MOLACO and a schematic diagram example of a designed free-form meta-atom (inset).194 Reprinted with permission from ref 194.
Copyright 2019 Applied Computational Electromagnetics Society. (d) The path that ants walked was employed as the topology graph of the meta-
atom (top). Three-dimensional grid mesh provides a mathematically reasonable, arbitrary, and easy-to-transform design space (bottom).195 Reprinted
with permission from ref 195. Copyright 2019 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00012
Chem. Rev. 2022, 122, 15356−15413

15387

https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00012?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00012?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00012?fig=fig21&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00012?fig=fig21&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00012?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


each bird. Unlike GA, PSO does not have crossover and
mutation, and the particle updates its speed and direction
through both its own optimal solution (personal best) and the
population optimal solution (global best).186 PSO’s information
from the global best is one-way, which is a search method that
follows the update of the global optimal value.187

PSO is commonly used as a global search method for
nanostructure parameter optimization in the reverse design of
meta-optics.188−190 Optimization targets are used as the
evaluation criteria for PSO. Common optimization targets the
efficiency maximum and the phase-amplitude fitness. The
specific fitness evaluation is executed by commercial electro-
magnetic simulation software. In conjunction with the
simulation assessment, PSO could greatly improve the optical
performance of the designed optics after numerous generations
of evolution.191,192 The corresponding procedure is shown in
Figure 20a.180

The applications of PSO are generally divided into two kinds.
One application is to search for the most appropriate
nanostructure that possesses a demanding phase or amplitude.
As shown in Figure 20b, Zhang et al. used PSO to arrange the
micro-coding units of metasurface to achieve desirable phase
compensation.180 Each particle could represent one potential
binary coding pattern. Shi et al. took the phase and amplitude
difference between the goal solution and the current particle as
the error function.181 The evolution direction of PSO is to
narrow the error between the target phase-amplitude and the
realized phase-amplitude. Metasurfaces with controllable multi-
wavelength functions such as achromatic meta-lenses and
wavelength-controlled beam generators were demonstrated in
this way (see Figure 20c). Chen et al. also adopted PSO to
design a meta-corrector to correct spherical and chromatic
aberrations, as shown in Figure 20d. PSO was used to select the
most suitable elements that fit the designed phase profile.182

The other application is to improve the efficiency of certain
aspects of optical devices. Efficiency is always the key factor for
optical design. Recently, folded metasurface optics has attracted
attention for its extended optical design space. Folded
metasurface optics are metasurfaces developed in the folded
optics architecture, as shown in Figure 20e. The light will be
greatly reduced after multiple reflections. For devices composed
of multiple metasurfaces, efficiency is of crucial importance.
Faraji-Dana et al. used PSO tomaximize the deflection efficiency
of a spectrometer84 (see Figure 20e) and a hyperspectral
imager183 (see Figure 20f) with folded metasurface optics.
An electrically tunable metasurface with liquid crystals has the

potential to enhance the functionality of a device. The general
electrically tunable metasurface was designed through physical
intuition, resulting in a limited switching efficiency (<30%) and
a small angle deflection (<25°).184 Chung et al. achieved an
electrically tunable metasurface with a high switching efficiency
(80%) and a large angular deflection (144°) via inverse design,
as shown in Figure 20g.184 The key indicator of the design is the
switching efficiency, which is the efficiency of the device when
switching between different beam modes. In the comparison
test, the switching efficiency with PSO is increased by 16%. Hu
et al. also designed an electrically tunable metasurface with
liquid crystals and demonstrated various polarization-dependent
applications (see Figure 20h).185 In this case, PSO was adopted
to find the optimal nanostructure parameters of the meta-unit
and give the evolution of polarization conversion efficiencies at
different wavelengths.

Ant colony optimization (ACO), which is also a swarm
intelligence algorithm, was first proposed by Dorigo in 1992.196

This meta-heuristic mimics the foraging behavior of ant
colonies. Figure 21a demonstrates the general workflow. Ants
communicate through pheromones, which help ants identify
their nestmates and transmit information. The most common
application scenario is foraging. It is often seen that an ant
appears near the fruit core, and soon a large number of ants cover
the whole fruit core. After the ants find food, they leave
pheromones on their way back to the nest. After other foraging
ants perceive the pheromones, they will most likely stop
searching randomly, find food along with the pheromone, and
strengthen the concentration of the pheromone during the
return journey. Among the multiple paths leading to food, the
pheromones of the longer path evaporate for a longer time,
becoming less attractive to the ant colony. Shorter paths are
strengthened more frequently, forming a mechanism similar to
positive feedback. In the end, the entire ant colony will follow
the shortest path to quickly reach the food location in large
numbers.
The evaporation of the pheromones is essential for artificial

intelligence systems that simulate ant colonies. If there is no
evaporation, the initial random exploration of the first batch of
ants is too attractive for subsequent foraging. Later, ants could
hardly resist the advantages of the pioneers. The search for the
optimal solution will be limited to the initial random search, and
there is no guarantee that the optimal global solution will be
found.
The nature of ACO is that ants can move arbitrarily in the

design space. This feature makes ACO fit for topology design in
a meander line pattern. ACO has had demonstrated success in
electromagnetic design and optimization, such as meander line
RFID antennas197 and Raman fiber amplifiers.198 In 2017, Zhu
et al. introduced lazy ants into ACO and developed the multi-
objective lazy ant colony optimization (MOLACO) algorithm,
which is based on the previous analysis of the key role of lazy ants
in the ant colony.193 In conventional ACO, the optimization will
only terminate after the conditions are met. There is one more
possibility of termination in MOLACO. Each ant has a different
endurancement factor. The endurance factor determines
whether the ant is active or lazy. The longer the distance the
ant searches, the more exhausted it will be. Lazier ants reach the
fatigue limit more easily. The ants will stop moving when they
are fatigued. The decision-making process model in MOLACO
is closer to a natural ant colony than that in ACO. Compared
with conventional ACO, AOLACO increased the diversity of
the latent solution, as shown in Figure 21b. Under the same
number of optimization iterations, more possible path
candidates are generated with MOLACO. In addition to the
evaporation of pheromones, this is another safeguard against the
pioneer advantage.
In 2019, Zhu applied MOLACO in the inverse design of a

metasurface. As shown in Figure 21c, MOLACO was used to
generate three-dimensional free-formmeta-atoms for a metasur-
face.194 The specific design is not limited to the planar,
canonical, and easy-to-manufacture structure. The design goal
focuses on reaching peak performance. The final result presents
complex and tortuous three-dimensional features. Zhu et al.195

prove the capabilities of MOLACO with a beam-steering
metasurface in the midwavelength infrared (MWIR) range. It is
well know that metallic structures have more ohmic loss than all-
dielectric ones. In some application scenarios, the all-dielectric
metasurface also has its weaknesses, such as intercell coupling.
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Figure 22. Infraredmetasurface augmented by deep learning for biomolecule sensing. (a) Dynamic analysis of peptide-induced neurotransmitter cargo
release in synaptic vesicle mimics.203 Reprinted with permission from ref 203. Copyright 2018 Springer Nature. (b) Surface-enhanced infrared
absorption (SEIRA) for glucose and fructose level sensing.204 Reprinted with permission from ref 204. Copyright 2019 American Chemical Society.
(c)Workflow for dynamicmonitoring involving lipid vesicles, sucrose, nucleotides, andmelittin.205 Reprinted with permission from ref 205. Copyright
2021 Wiley-VCH.
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To improve the transmission efficiency of metallic meta-atoms,
the authors innovatively expanded the topology optimization
from two-dimensional to three-dimensional. MOLACOuses the
finally generated ant colony path as the topological diagram of
the antenna, as shown in Figure 21d. Ants can walk freely in
three-dimensional space to find the optimal three-dimensional
topological structure. Optimized unintuitive geometries of the

meta-atoms present very high transmission efficiencies, which
are comparable to the state-of-art performance of their all-
dielectric counterparts at that time. In this kind of three-
dimensional topology optimization, MOLACO is better than
traditional GA. With the same grid mesh design framework, the
computation load of GA increases exponentially with the
number of grids, while the load of MOLACO increases linearly.

Figure 23. Data analyzed by machine learning for a metasurface-based application. (a−c) Data analyzed for chemical analyte classification.208

Reprinted with permission from ref 208. Copyright 2021 American Chemical Society. (a) Schematic of the metasurface chemical classifier. (b)
Transmittance spectra for each kind of chemical. (c) Visualization of classification results of the first two principal components (top) and the first three
principal components via PCA. (d−g) Data analyzed for acoustic imaging.209 Reprinted with permission from ref 209. Copyright 2020 American
Physical Society. (d) Schematic of the experiment configuration. (e) Propagation of waves with high=amplitude wave vector components containing
subwavelength characteristic information without (left) and with (right) the meta-lens. (f) Data flow from the radiation source to back-end
reconstruction and recognition. (g) Reconstruction and recognition results for far-field information without (top) and with (bottom) the meta-lens.
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GA binarily codes each grid in the optimization model. The
relationship between adjacent codes in GA is independent. It is
difficult or impossible to fabricate discrete fragments in the final
three-dimensional result, such as an abrupt fault or cavity.
3.3. Data Analysis

Besides mapping the relationship between the structure
geometry and an optical property, AI also reveals unprecedented
capabilities of data analysis in meta-optics. Such applications
could be computer vision tasks on images that are captured from
meta-lens.199 More frequently, AI is employed to process
unreadable data obtained from metasurfaces, such as image
analysis,200 microwave signals,201 and infrared spectrum
information.202

Biomolecule detection andmonitoring is extremely important
for understanding the occurrence of diseases and the course of a
drug treatment. High-sensitivity and label-free real-time
detection usingmetasurfaces has attracted widespread attention.
The metasurface enhances the infrared absorption of bio-
molecules so that it can detect the analytes down to trace
amounts. However, in the detection of multitarget analytes, it is
difficult to distinguish the responses from different analytes,
especially when the net refractive index during the biochemical
process is basically unchanged. With the help of artificial
intelligence, the spectral data can be effectively post-processed
to distinguish the analytes.
In 2018, Rodrigo et al. presented an infrared metasurface to

dynamically analyze the molecular information in the lipid
membrane processes, which is shown in Figure 22. The
employed metasurface was Au arrays on an infrared transparent
CaF2 substrate. As the absorption spectrum is different for
different analytes, they used linear least-squares regression,
which plays an important role in the subfield of artificial
intelligence known as machine learning, to obtain the response
signals of proteins and lipids. In this way, they achieved label-free
dynamic monitoring.
Besides dynamic biochemical reactions, the monitoring of the

blood glucose concentration also has important practical
significance. The noninvasive sensing of human blood sugar
levels can avoid pain and potential infection hazards. With the
help of surface-enhanced infrared absorption (SEIRA) spec-
troscopy, Kühner et al. demonstrated reliable optical detection
in the mid-infrared spectrum of pure glucose and fructose
solutions and mixtures of the two in aqueous solutions. As
shown in the upper left panel of Figure 22b, the authors
fabricated arrays of linear gold nanoantennas on the top of the IR
transparent CaF2 wafer. The glucose (red sphere) and fructose
(blue sphere) aqueous solution mixture flows into the cell of the
sensor through a tube. Glucose and fructose have different
characteristic vibrations in the SEIRA spectrum (see the upper
right corner of Figure 22a). However, such unstable spectral data
with the interference of noise are difficult to recognize using the
naked eye or traditional linear analysis methods. The authors
used principal component analysis (PCA)206 in machine
learning to extract corresponding features and thus realize the
noninvasive sensing of glucose and fructose.
In 2021, another metasurface that worked across a more

broad mid-infrared spectrum range from below 1000 cm−1 to
above 3000 cm−1 was developed by John-Herpin et al. for in situ
SEIRA spectroscopy, as shown in Figure 22c.205 They fabricated
a similar metasurface and integrated the metasurface into a
polydimethylsiloxane (PDMS) microfluidic device to construct
a multianalyte bioparticle system in water in real time. Besides

the broader spectrum, they used a DNN to dynamically monitor
more types of biomolecules. This work employed a two-hidden-
layer DNN to transform the 1089 wavenumber data to the
weights of four kinds of biomolecules. DNN obtains the
dynamic changes in the concentrations of biomolecules from the
subtle differences in the spectral data in a short response time.
Supported by the data analysis of machine learning, SEIRA
spectroscopy with a plasmonic metasurface has become a
fascinating sensing platform with ultrasensitivity and high
fidelity.207

Infrared absorption spectroscopy is also a preferred approach
for chemical detection due to its in situ operation, fast response
speed, and high fidelity. Recently, Meng et al. presented a
microspectrometer for chemical identification, which was
composed of metasurface spectral filters and a photodetector
array, as shown in Figure 23a. The noisy raw data collected from
the detector are processed by a machine learning algorithm,
namely a support vector machine (SVM). With machine
learning, the authors achieved the chemical identification of
six gas-phase chemicals and six liquid-phase chemicals. Figure
23b demonstrates the response spectra for the 12 kinds of
chemicals. From the visualization of classification results via
PCA, as shown in Figure 23c, five analytes and the no-chemical
case were clearly classified.
In addition to the sensing of biochemical molecules, AI can

also perform image reconstruction and recognition for data
collected from a meta-lens. Due to the diffraction limit, it is
challenging for observers in the far-field to observe and identify
objects that are much smaller than the illumination wavelength.
However, a meta-lens that is placed in the near-field of the object
can reradiate the waves to the far-field.209 Figure 23d shows the
experimental setup for far-field subwavelength imaging. Addi-
tionally, the propagation of waves is vividly depicted in Figure
23e. The meta-lens receives the subwavelength image
information in the near-field of the source and then converts it
into propagation field components that can reach the far-field. In
the propagation, absorption loss and noise will increase the
difficulty of data analysis. Deep-learning-based methods could
easily handle this. Measured data from the receiver are processed
by a U-Net-shaped neural network to reconstruct the image and
perform digit recognition. The specific data flow is shown in
Figure 23f. For the reconstruction and recognition results, as
shown in Figure 23g, it is almost impossible to reconstruct
information without the meta-lens, not to mention the
identification task. This subwavelength imaging task is
completed via the cooperation of both the meta-lens and deep
learning.
Some metasurface-based applications, such as sensing and

imaging, have high data complexity and experience easy
interference, which hinder the actual application space. Artificial
intelligence can learn potential laws from a large amount of data
and provide robust and accurate intelligent feedback. From
visible199 to infrared210 and microwave,201 AI-empowered
metasurfaces demonstrated the vitality of new applications.
3.4. Intelligent Programmable Meta-devices

In recent years, programmable and reconfigurable metasurfaces
have been extensively studied for reconfiguration. However, the
conventional trial-and-error mode of reconfiguration, which is
time-consuming, hinders the real-time application. Without fast
reconfiguration, a programmable metasurface is only a non-
disposable device. With help from AI, systems based on a
programmable metasurface are like a computer with a CPU
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Figure 24. Overview of AI-empowered intelligent programmable meta-devices. (a−c) An intelligent imager.211 Reprinted with permission from ref
211. Copyright 2019 Springer Nature. (a) Working principle of a real-time intelligent imager. (b) Sixteen radiation patterns and the corresponding
patterns generated by machine learning. (c) Machine learning-driven imaging results of two cases at different numbers of measurements (100, 200,
400, and 600). (d) An intelligent imager and recognizer.212 Reprinted with permission from ref 212. Copyright 2019 Springer Nature. (e) An
intelligent cloak.213 Reprinted with permission from ref 213. Copyright 2019 Springer Nature.
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installed. When a programmable or reconfigurable metasurface
cooperates with AI, the data flow between them forms a loop. AI
is responsible for obtaining and processing optical data and
manipulates the reconfiguration of the programmable metasur-
face. This allows the metasurface to evolve from an ordinary
optical diffraction element to an intelligent element that
understands input data and gives real-time responses by itself.
In applications that have large data flows, such as a security

check or pipeline monitoring, full-resolution imaging is low in
efficiency and high in consumption. However microwave or
millimeter-wave radars are useful for such cases, as they can
reconstruct the scene without a loss of interest by recording only
a small amount of the relevant data. Compared with imaging
devices that have fixed with specific imaging scenarios due to
their fixed properties after manufacturing, a programmable
metasurface is much more flexible. As microwave imaging

devices must be able to reconstruct the scene in real time, the
radiation pattern of the coding metasurface should change
instantly when the scene changes. Real-time in situ inverse
scattering problem solution is difficult using conventional
numerical methods. Li et al. developed an intelligent imager
under the cooperation of a programmable metasurface and
machine learning, as shown in Figure 24a.211 Two machine
learning algorithms, random projection214 and PCA, were
adopted in this work. This intelligent imager can be
reprogrammed in situ to generate the radiation patterns in
real-time usingmachine learning. Figure 24b shows the radiation
and corresponding coding patterns of the metasurface for 16
leading measurement modes. Therefore, this intelligent imager
can handle both image reconstruction and recognition for
moving-through-wall body gestures. As shown in Figure 22c, the

Figure 25. Other nonmeta-optical realizations of AI. (a) All-optical diffractive neural network for digit recognition.219 (b) All-optical imaging
diffractive network.219 Reprinted with permission from ref 219. Copyright 2018 American Association for the Advancement of Science. (c) An
ensemble deep diffractive neural network system.220 Reprinted with permission from ref 220. Copyright 2020 Springer Nature. (d) Spectral encoding
of spatial information via a diffractive optical neural network.221 Reprinted with permission from ref 221. Copyright 2021 American Association for the
Advancement of Science. (e) ONNwith the photonic integrated circuit.222 Reprinted with permission from ref 222. Copyright 2017 Springer Nature.
(f) Reconfigurable diffractive optoelectronic processor.223 Reprinted with permission from ref 223. Copyright 2021 Springer Nature.
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imaging results become clearer as the number of measurements
increases.
Further unleashing the potential of the intelligent imager to

the recognizer, Li et al. displayed fascinating in situ imaging
results and recognition performance with the help of neural
networks, as shown in Figure 24d.212 In this work, two CNNs
were adopted sequentially to process the data collected by the
programmable metasurface. The first CNN extracts key features
from the disordered microwave data collected by the metasur-
face and converts features to readable optical images. Even if the
specimen stands behind a 5 cm thick wooden wall, the imaging
results are still accurate. The following CNN employs the well-
known classifier, faster R-CNN, to recognize the region of
interest (ROI). Given the location of the ROI, themetasurface is
reprogrammed to focus radiation beams on the target position.
In this way, filtered and enhanced EM data of the ROI are
delivered to another CNN to perform recognition.
The cloak of invisibility is always a hot topic in meta-optics.

Most metasurface cloaks should cooperate with outside
intervention. Qian et al. proposed an intelligent metasurface
cloak driven by AI (see Figure 24e) that responded to ambient
changes within milliseconds. The neural-network-based AI in
this work learned the relationships among the cloaking structure,
incoming light, and ambient conditions and conveyed the
understanding to the cloak. The working principle of the cloak is
that each meta-atom provides a different local reflection
spectrum. Therefore, the metasurface can generate a scattered
wave similar to blank space. For this, a five-layer DNN was
developed. After training, the proposed DNN achieved an
accuracy of over 98%. Given the information about the
surrounding background, the DNN provides the reflection
property solution of the amplitude and the phase for each meta-
atom independently. Then, each element is tuned by feeding the
corresponding bias voltages. For a fast response, all unimportant
intermediate variables should be avoided. The proposed DNN
directly uses the bias voltages as the output. The intelligent cloak
opens the way to facilitate programmable metasurfaces with AI
processing cores as intelligent meta-devices.
Besides the intelligent meta-devices discussed above, an AI-

empowered programmable metasurface can also dynamically
manipulate EM waves for real-time complex beamforming215

and to achieve 3D sensing.216 A programmable metasurface can
self-adaptively perform intelligent tasks with the help of AI,
which is a fascinating direction to develop intelligent devices.

4. META-OPTICS FOR AI

4.1. Optical Realization of Artificial Intelligence

Optical realizations of AI, such as all-optical or hybrid
optoelectronic neural networks, are fascinating for their
ultrahigh computing speeds and low energy consumption.217,218

As the medium of information, light propagates in the optical
neural network. Even for the computationally expensive tasks,
the inference time cost is still tiny because of the speed of the
light. In recent years, inspired by the development of neural
networks (deep learning), researchers began to develop optical
neural networks (ONN) wherein light diffraction mimicked the
data transfer of the fully connected layer in a DNN.
The deep diffractive neural network (D2NN) was proposed

by Lin et al. in 2018 with a fascinating demonstration of digit
recognition and an imaging lens set, as shown in Figure 25a and
b, respectively, using diffractive optical elements (DOE).219

Since then, there has been an upsurge in the use of D2NN for

recognition tasks, such as digit recognition224 and orbital angular
momentum (OAM) detection.225 Further, Rahman improved
the inference performance of D2NN, making accurate
classification possible even only with part of the input.220

Additionally, as shown in Figure 25c, the D2NN system was
developed via ensemble learning. In 2021, the D2NN could
realize the single-pixel spectral encoding of spatial image
information (see Figure 25d), which was fast and safe.221

Besides DOE, an ONN was developed by Mach−Zehnder
interferometers, as shown in Figure 25e.222 Developed in a
silicon-integrated circuit, this ONN demonstrated a vowel
recognition application.
Despite the research enthusiasm in this area and excellent

research fruits, there remain many unsolvable problems that
hinder the development of all-optical AI. The first difficulty is
the photonic nonlinearity. For example, the strength of current
neural networks significantly depends on if the function law can
be fit nonlinearly. Additionally, this nonlinearity is realized by
the heavy implementation of the nonlinear activation function
after each linear operation. However, the efficiency of optical
nonlinearity is extremely low. The all-optical neural network
cannot support much nonlinear operation due to their huge
energy loss. Due to the congenital defect of optics, to meet the
nonlinearity requirements, researchers searched for help from a
hybrid opto-electronic system,226−229 heat saturation absorp-
tion,230 or a new nanophotonic medium.231 The working unit in
Figure 25f leverages the nonlinearity in the conversion from the
optical signal to the electrical signal in the imaging sensor. In
addition to the network architecture that mimics a DNN, the
exploration of the structure of the optical neural network is also a
new developmental direction. Similar attempts include optical
recurrent neural networks232 and residual connections.233

Different from a digital computer program, optical AI is also
faced with this controlling difficulty as an analogue device.
Difficulties are also opportunities. These immature technologies
have huge developmental potential in future research. The
ability of a metasurface to freely manipulate light propagation
proves that it has the potential to replace these optical
components. The superstructure surface is flat and extremely
thin, so it only takes up a small amount of system volume. An
optical chip based on the metasurface has a high integration. All
these applications are promising directions for meta-optics.
4.2. Functions of Meta-optics for Potential Optical
Computation

At the present time, metasurface optical devices are used to
demonstrate applications due to their advanced optical
properties and novel functions. For AI technology, converting
the deep learning neural network based on a programming
language into an optical neural network can increase the
computing speed from the speed of electrons to the speed of
photons. Meta-optics for all-optical information processing have
already been noticed.75 In this section, we introduce several
functional meta-devices that have the potential to be used in the
development of optical neural networks or optical computation.
The potential meta-devices for optical computation are
categorized into wavefront engineering, nonlinear operation,
and edge detection. The wavefront engineering metasurfaces are
used to manipulate the phase, amplitude, and polarization of
light. The nonlinear metasurfaces can convert the frequency of
the incident light to achieve spectral control. The edge detection
metasurfaces have important roles in image processing and
machine vision due to the optical differential operation. These
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components can be arbitrarily combined, and the neural

network can be realized through the optical method. A next-

generation optical computing system based on meta-optics can

be implemented to serve the Al technology.

4.2.1. Wavefront Engineering. Meta-optics has been
demonstrated in various applications of classical optics. The
functions of the meta-devices can be roughly classified into four
types: phase-, amplitude-, and polarization- related types and
mixed types. The purpose of the phase-related application is to

Figure 26.Meta-lenses. (a) Au-based reflective-typemetallic achromatic meta-lens.20 Reprinted with permission from ref 20. Copyright 2018 Springer
Nature. (b) GaN-based transmissive achromatic meta-lens.70 Reprinted with permission from ref 70. Copyright 2018 Springer Nature. (c)
Polarization-insensitive TiO2-based transmissive achromatic meta-lens.33 Reprinted with permission from ref 33. Copyright 2021, Springer Nature.
(d) GaN-based pixel-level full-color routing meta-lens.77 Reprinted with permission from ref 77. Copyright 2017 American Chemical Society. (e)
Synthetic-phase airy beam metasurfaces.238 Reprinted with permission from ref 238. Copyright 2021 American Chemical Society. (f) Full-Stokes
imaging polarimetry by amorphous silicon-basedmeta-lenses.239 Reprinted with permission from ref 239. Copyright 2018 AmericanChemical Society.
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realize a full 2π phase modulation to provide full control of the
wavefront. The new wavefront can be reconstructed, and the
propagating direction can be changed arbitrarily using phase
tailoring. The representative applications of meta-optics with
phase engineering are beam steering, holographic imaging, and
focusing.
Light focusing is a typical function of optics. A metasurface

used to focus the light is called a meta-lens. The phase
distribution of the focusing can be obtained through the
focusing lens equation, which is shown below.

= + +x y x y f f( , )
2

( )2 2 2
(9)

where λ is the working wavelength, x and y are defined as the
displacements calculated from the center of the lens, and f is the
focal length of the lens. For monochrome focusing or imaging,
this kind of meta-lens can work with a high efficiency. A TiO2-
based PB-phase meta-lens demonstrated circular polarization
focusing with 86%, 73%, and 66% efficiencies at 405, 532, and
660 nm wavelengths, respectively.19 Once the wavelength and
the focal length of the meta-lens are determined, the
corresponding phase profile can be calculated. When this
meta-lens is operated at other wavelengths, its focal length will
change, which is called the chromatic aberration effect. For work
in multiple or continuous wavelengths, this is a key issue for
some application scenarios. One of the efficient ways to address
the chromatic aberration in a continuous bandwidth is to use
integrated resonant elements (IRU) to acquire the phase
compensation.234 The above-mentioned focusing lens equation
can be described and divided into two parts as follows:

= +R R R( , ) ( , ) ( , )lens max (10)
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where the designed working band is from λmin to λmax. To
eliminate the chromatic aberration and achieve an achromatic
meta-lens, φ(R, λmax) is the basic focusing phase profile that is
related to the λmax, which can be realized by the PB-phase design
method. Δφ(R,λ) is the required phase compensation of the
whole continuous working band. The IRUs provide different
phase compensations for various wavelengths. Using this
achromatic meta-lens design method, Tsai et al. first
demonstrated a Au-based reflective type metallic achromatic
meta-lens that worked in the near-infrared (NIR) region.20

Figure 26a shows the Au-based achromatic meta-lens and the
IRUs. The IRUs are rotated to fulfill the focusing phase profile,
and the various antenna sets provide the phase compensation.
The working band of this achromatic meta-lens is from 1200 to
1680 nm. For work at higher frequencies, the applied material
has to be carefully considered. Aluminum (Al) has a higher
plasma frequency than Au and low absorption in visible light. An
Al-based reflective-type metallic achromatic meta-lens was
implemented for operation over the whole visible spectrum.234

For practical usage, the GaN-based transmissive achromatic
meta-lens, which works in the visible spectrum (from 400 to 660
nm), was proposed that demonstrated full-color imaging, as
shown in Figure 26b.70 The GaN-based transmission-type
achromatic meta-lens is composed of inverse and solid GaN
nanostructures with an 800 nm height and a 50 nm minimum
width. The size of the GaN achromatic meta-lens is about 50
μm, which is on the same order as the size of human hair. The

operation efficiency is about 40% on average for achromatic
focusing. The achromatic meta-lenses mentioned above were
designed using the PB phase, so they worked under the circular
polarization of incident light. Xiao et al. demonstrated a
polarization-insensitive TiO2-based transmissive achromatic
meta-lens with a recorded high operation efficiency, 77.1−
88.5%, in the continuous working band (650 to 1000 nm).33 To
eliminate the polarization dependence, the building blocks of
this achromatic meta-lens consisted of four types of nanopillars,
namely circular, ring, square, and bipolar concentric ring-shaped
cross sections (Figure 26c). Using these four as the basic unit
structures and adjusting the feature sizes of these structures, the
authors achieved 2π phase modulation and the phase
compensation of the designed working band. The size of this
achromatic meta-lens is 25 μm, and the nanostructures were
1500 nm in height. Such a high-aspect-ratio TiO2 meta-lens
dramatically enhances the group delay range and brings the
improvement of the working efficiency.
In addition to on-axis focusing, the focus position can also be

adjusted through a special design to achieve off-axis focusing.
Figure 26d shows the GaN-based pixel-level full-color-routing
meta-lens. To converge the focus light into an arbitrary position
in free space, the focusing lens equation was rewritten as

= +r f r f r f( , )
2

( 2 sin cos( ) )fmeta lens p p p
2 2

p f p

(12)

where (rp,θp) is the arbitrary position of themeta-lens surface, ( f,
δf, θf) is the 3D position of the focus point in free space, and λ is
the designed working wavelength. A multiplex unit cell is
composed of 16 GaN nanopillars, which are four nanopillars for
633 nm light (R), four nanopillars for 430 nm light (B), and
eight nanopillars for 532 nm light (G1 and G2). The number of
green nanopillars is two-times higher than the others because
human eyes are more sensitive to green. This dielectric meta-
lens can guide individual primary colors into the four quadrants,
which matches the Bayer array configuration.77 The color router
was designed with a size of 50 μm × 50 μm, a polar angle (δf) of
8°, and a focal length of 100 μm. The efficiencies of R, G1, B, and
G2 are 15.9%, 37.86%, 38.33%, and 27.56%, respectively. This
meta-lens-empowered full-color router is promising for light
manipulation at a pixel-level scale. The manipulation of the
wavefront can be more intuitive through the superposition of
phase profiles. The phase profile of the light beam can be directly
synthesized with an additional phase to produce a new optical
function.235−237 Wen et al. demonstrated amorphous silicon-
based synthetic phase metasurfaces able to generate a focal-
plane-adjustable Airy beam by synthesizing the phase of a
Fresnel holographic lens. The cubic phase of the Airy beam was
also added a Dammann grating phase to generate an array of
Airy optical beams.238 Figure 26e shows the synthetic phase
profiles for producing a new light wavefront of the Airy beam. In
addition to multiple focal points, the generation of multiple
polarization states is also very helpful for optical calculations and
can provide another degree of freedom for the optical
calculation. Figure 26f shows the three integrated amorphous
silicon-based meta-lenses focusing on the six spots representing
six different polarization states.239 There are Tthree independ-
ent polarization bases (H/V, +45°/ −45°, and RCP/LCP). A
superpixel has six spots to focus on six pixels of the image sensor.
The intensity of the light received by these six pixels of the image
sensor is determined by to the polarization state of the incident
light. The NIR full-Stokes polarization camera was implemented
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to analyze and image the scene with a complicated polarization.
These meta-devices with a particular design can manipulate the
light’s phase, amplitude, and polarization for use in optical
computation.
4.2.2. Nonlinear Metasurface.Nonlinear operation is also

the essential operation of the deep learning neural network. To
realize the optical neural network, the nonlinear optical effect
can play a role in the operation. The nonlinear optical effect
generates a new frequency of the electromagnetic wave applied
in laser, display, spectroscopy, data storage, signal processing,
and quantum technology. Figure 27 shows the common
nonlinear effects used in optical applications, such as second-
harmonic generation (SHG), third-harmonic generation
(THG), four-wave mixing (FWM), and spontaneous parametric
down-conversion (SPDC). The energy diagram illuminates the
frequency conversion between the fundamental light and the

nonlinear light under the conservation of energy. SHG andTHG
generate nonlinear frequencies two or three times, respectively,
that of the fundamental light frequency. FWM is the interaction
between two (or three) frequencies to produce two (or one)
new frequencies. In quantum optics, SPDC is an essential
technology for preparing entangled photon pairs. The
comprehensive lectures of nonlinear meta-optics report on
fundamental concepts, design, and application.240,241 In general,
the nonlinear effect of meta-optics has occurred via the
nonlinear susceptibilities of the selected material, resonant
excitations, and the symmetry breaking of the meta-molecule.
The material for nonlinear metasurfaces can be chosen with
metal or dielectric materials. A metallic nonlinear metasurface
can be realized by both gold planar and vertical split-ring
resonators (PSRR and VSRR, respectively) for secon- harmonic
generation.54 The SHG signals of the VSRRs are shown in

Figure 27. Schematic diagram of the nonlinear optical effect and the frequency conversion. (a) Second-harmonic generation. (b) Third-harmonic
generation. (c) Four-wave mixing. (d) Spontaneous parametric down-conversion.

Figure 28.Nonlinear metasurfaces. (a) Second-order nonlinear generation by gold vertical split-ring resonators.54 Reprinted with permission from ref
54. Copyright 2019 Wiley-VCH. (b) Second-order nonlinear generation and focusing by C3 gold meta-atoms.242 Reprinted with permission from ref
242. Copyright 2018 Wiley-VCH (c) Vacuum ultraviolet light second-order nonlinear generation by ZnO.57 Reprinted with permission from ref 57.
Copyright 2018 American Chemical Society. (d) Vacuum ultraviolet light third-order nonlinear generation by TiO2.

56 Reprinted with permission from
ref 56. Copyright 2019 American Chemical Society. (e) Spontaneous parametric down-conversion by the lithium niobite metasurface.248 Reprinted
with permission from ref 248. Copyright 2021 American Chemical Society. (f) High-dimensional entangled photon pairs generated by the GaNmeta-
lens array.91 Reprinted with permission from ref 91. Copyright 2020 American Association for the Advancement of Science.
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Figure 28a. Under the same feature size condition, the pumping
wavelengths are 1035 and 858 nm for PSRR and VSRR,
respectively, in accordance with the realistic resonant position.
The nonlinear optical signal measured from the VSRR
metasurface indicates an improvement of 2.6× in SHG
compared to that of the PSRR metasurface. The VSRRs can
couple well with the electric and magnetic fields of an incident
wave. The localized field is confined between two vertical prongs
of a VSRR, which are lifted away from the glass substrate. This
well-designed feature provides an enhancement of the nonlinear
process. The nonlinear metasurface can be designed with the
focusing phase to realize nonlinear imaging. The gold C3
nanoantennas are rotated according to the phase requirement of
focusing on the formation of a nonlinear meta-lens, as shown in
Figure 28b.242 The phase modulation has followed the concept
of the nonlinear PB phase. When the right circularly polarized
fundamental light with a 1085 nm wavelength is incident on the
nonlinear meta-lens, the left circularly polarized SHG signal is
generated and focused at the designed focal plane. The “L”-
shaped aperture is used as the imaging target by a nonlinear
meta-lens with the SHG signal. The nonlinear metasurface with
the phase design can be implemented with nonlinear beam-
shaping243 and holographic49,244 and optical encryption.245

The excitation of nonlinear effects usually requires high-
powered pulsed lasers to improve the efficiency of occurrence.
Under high-powered laser irradiation, the metallic nonlinear
metasurface can be easily damaged due to the low damage
threshold. This dramatically limits the further improvement of
the nonlinear optical conversion efficiency. The dielectric
material-based nonlinear metasurface was proposed to increase
the nonlinear conversion efficiency. Semmlinger et al.
demonstrated the generator of vacuum ultraviolet (VUV) light
by a ZnO57 and TiO2

56 nonlinear metasurface. ZnO was
selected for VUV light SHG because of its large second-order
susceptibility for a significant second-order nonlinear optical
response, as shown in Figure 28c.246 The ZnO nanodisk was
designed to provide a magnetic dipole resonance mode at a
fundamental wavelength of 394 nm for VUV light generation. At
present, a prism-coupled potassium fluoroboratoberyllate
(KBBF) crystal is the most commonly used crystal for coherent
VUV generation. Compared with that of the prism-coupled
potassiumKBBF crystal, the effective nonlinear coefficient of the

ZnO nonlinear metasurface is three times. ZnO nonlinear
metasurface is compact and can be readily integrated into VUV
light source ultrafast laser systems without the requirement of
complex experimental configurations or phase matching. The
phase-matching condition can be greatly relaxed on the
metasurface because the effective nonlinear optical process
only occurs in the material layer with a subwavelength thickness.
In this case, the phase-matching condition is no longer as
necessary as that in conventional nonlinear optical crystals.
Figure 28d shows that TiO2 was employed for VUVTHGdue to
its large third-order susceptibility. The nonlinear signal with a
185 nm wavelength is generated by the strong light−matter
interaction between the fundamental light and the TiO2
nanodisk. The TiO2 nanodisk has the dark anapole mode,
which contributes to the large local field enhancement at the
fundamental wavelength. The anapole mode is increased by the
destructive interference of toroidal and electric dipole moments.
These two kinds of dipoles have a similar strengths but a −π-
phase difference. In addition, the TiO2 nanodisk has a strong
magnetic dipole that overlaps with the anapole mode to
simultaneously contribute to the electromagnetic field confine-
ment inside the disks. The measured nonlinear signal of the
TiO2 nonlinear metasurface can be enhanced by a factor of 180
compared to that of an unpatterned TiO2 thin film of the same
thickness. The nonlinear conversion efficiency of the metasur-
face is an important issue for practical use. To obtain nonlinear
light with a high generation efficiency, we can focus on several
directions, for example, the exploration of nonlinear materials
with high nonlinear susceptibilities or the design of meta-atoms
to support extremely high Q resonances at both the pump and
nonlinear signal frequencies.247

SPDC is a nonlinear optical process for quantum-entangled
photon pair generation. A pump photon of a frequency ωp
excites the nonlinear crystal and splits into two daughter
photons, called signal and idler photons, with lower frequencies
ωs and ωi, respectively. The SPDC generation efficiencies of
common nonlinear crystals, such as lithium niobate (LN) and β-
barium borate (BaB2O4, BBO), are extremely weak because
SPDC is based on the parametric amplification of the vacuum
field. Unlike classical nonlinear processes such as SHG, the
generation rate of SPDC is linearly proportional to the pump
power, so it is impossible to improve its efficiency through the

Figure 29. Edge detection using meta-optics. (a) PB-phase metasurface for orientation-dependent 1D edge detection.249 Reprinted with permission
from ref 249. Copyright 2019 United States National Academy of Sciences. (b) The metasurface spatial filter for 2D edge detection.250 Reprinted with
permission from ref 250. Copyright 2020 American Chemical Society. (c) The achromatic meta-lens array for 1D to 3D edge detection.78 Reprinted
with permission from ref 78. Copyright 2021 Walter de Gruyter.
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use of pulsed or focused pumps. To improve the generation
efficiency of the SPDC, the meta-atoms were designed with
resonances at the signal and idler photon frequencies. A
reflective type of LN-based quantum optical metasurface
(QOM) was demonstrated to generate the SPDC photon
pairs, as shown in Figure 28e.248 The QOM was excited by a
laser with a wavelength of 788 nm , and the wavelength of the
generated SPDC photon pairs was 1576 nm. The photon pairs
emitted within the narrow wavelength range of the designed
resonances. The generation rate enhancement of the QOM
showed an enhancement of two orders of magnitude compared
to that of an unpatterned LN film of the same thickness. In this
era of big data, the amount of information that needs to be
processed has increased significantly, and an artificial
intelligence path was developed to meet this demand. For
optical artificial intelligence systems, quantum-entangled
photons are powerful carriers. In quantum optics, a pair of
entangled photons can contain multiple quantum states. When
the quantum states of multiple pairs of entangled photon pairs
are coupled and superimposed on each other, new high-
dimensional quantum superposition states can be generated. To
meet the demand for high-dimensional optical quantum
information technologies, a high-dimensional quantum entan-
glement optical chip with 100 entangled photon pairs was
demonstrated by a 10 × 10 GaN meta-lens array, as shown in
Figure 28f.91 This meta-lens array was integrated with a thin
BaB2O4 crystal. The meta-lens array produced multifocused
spots of pumping light inside the nonlinear crystal. This optical
quantum chip could generate 100-path entangled photon pairs,
and the multidimensional tomography with high fidelities was
measured. This new high-dimensional quantum light source is
compact, controllable, and has no need for a low-temperature
environment.
4.2.3. Edge Detection. Edge detection is the primary

method of image processing and machine vision. Edge detection

technology is based on the optical differential operation. The
traditional optical differentiator is composed of a lens and a
spatial filter, which is bulky, complicated, and inconvenient for
system integration. The metasurface has been developed as the
optical differential operation device for the edge detection
application. Figure 29a shows a Pancharatnam−Berry-phase
metasurface, which was designed for and performed edge
detection via analog spatial differentiation.249 The sample is
made of form-birefringent nanostructured glass slabs with the
PB-phase design. The PB-phase gradient metasurface was placed
at the Fourier plane, and the output electrical field was placed at
the image plane. Under the linear polarization of incident light,
the left-handed and right-handed circularly polarized (LCP and
RCP, respectively) components face opposite phase gradients.
This leads output images with LCP and RCP that translate a
distance with opposite directions. The overlap of these two
output images presents the same linear polarization of the
incident light. The edge image can be switched on and off by a
linear polarization analyzer. The one-dimensional edge
information is along the polarization direction of the incident
light. Orientation-dependent edge detection is achieved by
varying the linear polarization state of the analyzer. Using a
similar concept, a PB-phase metasurface was also combined with
the quantum-entangled photon pair to enable quantum edge
detection.92

The metasurface-driven optical spatial filter is formed by
subwavelength TiO2 nanopillars. The phase profile of the
metasurface is designed to behave as a constant-phase profile for
LCP incident light and a spiral-phase profile that changes from 0
to 2π for one turn for RCP incident light. The metasurface
spatial filter was set in a Fourier transform set-up to provide the
complex masking function. When the masking function includes
a constant phase and amplitude (LCP light incident), a bright-
field image at the image plane is generated. In this situation, this
Fourier transform setup is like a conventional 4f imaging system.

Figure 30. Optical frontend of the neural network. (a) A configurable metasurface works as a physical trainable layer for a DNN.251 Reprinted with
permission from ref 251. Copyright 2020 Wiley-VCH. (b) A metasurface works as the optical frontend of a CNN.252 Reprinted with permission from
ref 252. Copyright 2019 Optical Society of America.
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When the masking function is a spiral-phase plate (RCP light
incident), the corresponding point spread function can be seen
as a vortex with a doughnut-like intensity distribution. The
vortex element has a π-phase difference along the opposite
azimuth, resulting in destructive interference and a dark
background for the uniform area of the input electrical field.
The arbitrarily uneven amplitude and phase gradient areas in the
region of integration remove the destructive interference and
present bright areas that represent the edge information, as
shown in Figure 29b. Ordinary diffraction imaging and isotropic
edge-enhanced imaging can be dynamically switched by varying
the circular polarization type of the incident light.
The achromatic meta-lens array enables 1D to 3D edge

detection through its ability to acquire all light information.78

The meta-lens array captures all the light field information. The
light field raw image is processed by the first-order derivation
and rendered as an algorithm of light field imaging to extract the
edge information from 1D to 3D. The image data are discrete
data, so their derivative can be obtained by the method of
difference. For 1D edge detection, the derivative is to subtract
the current pixel value from the next pixel value. The 2D edge is
the sum of the differences in the two directions, either normal
x−y directions or cross directions. When the depth information
on the object is also obtained, the edge image containing the
depth information can be realized as the detected 3D edge. In
Figure 29c, the three objects are located at different distances,
corresponding to the meta-lens array. After the image is
computed, each letter object can have the sharpest edge image
at its respective depth imaging position. Full-color edge imaging
is also performed by the achromatic meta-lens array.
4.2.4. Optical Frontend for a Neural Network. Recently,

it was reported that a metasurface can behave as the optical
frontend of the deep learning-based image processing pipeline.
The total pipeline of the optoelectronic neural network is
divided into the physical layer based on the metasurface and
digital layers developed on computers. As shown in Figure 30a, a
reconfigurable metasurface emits microwave patterns to encode

scene information for subsequent deep learning-based classi-
fication tasks.251 Additionally, because of the reconfigurability of
the adopted metasurface, it can participate in the in situ training
of the photoelectric neural network as a trainable physical layer.
In the actual training, the physical layer of the metasurface is
described as an analytical model and cascaded with a simple
DNN structure. The specific configuration of the metasurface is
determined after training. With the front end of the metasurface,
10−15% classification accuracy gains were observed. Due to the
lack of optical nonlinearity, the hybrid photonic−electronic
system could be an alternative choice for cognitive optical
computation tasks. Colburn et al. proposed an architecture that
adopted the metasurface as the frontend of a CNN, as shown in
Figure 30b.252 CNN has advantages in image-based tasks
because its operation can consider the spatial information on the
image. The digital implementation of convolution spends many
computational sources and leads to a high latency. The
metasurface is the better choice for the linear processor, as it
keeps the spatial information. The authors used the 4f system
with Fourier transform to perform the convolution operation.
Additionally, for parallel computing, the two lenses in the 4f
system are replaced by two lens arrays. The metasurface is
located on the Fourier plane and acts as the filter (kernel). The
parts that take up the most computing resources are usually in
the initial layers of the CNN. Especially for the high-resolution
image, the optical convolution operation is ultrafast and energy-
saving.
4.3. Meta-Based Optical Neural Network

A meta-based optical neural network (ONN) is used to realize
an artificial neural network (ANN) in a physical way with a
metasurface. In other words, the meta-based ONN adopts an
ANN to model the light propagation in a multilayer meta-
system. Additionally, the training strategy in an ANN is used to
optimize the configuration of each meta-atom in the meta-based
ONN. For brevity, we refer to the meta-based optical neural
network as a meta-neural network. In addition to its light-speed

Figure 31. Comparison between a metasurface-based optical neural network and an artificial neural network. (a) Schematic diagram of an optical
neural network composed of metasurface layers. (b) Schematic diagram of the corresponding artificial neural network. (c) Light diffraction among
meta-atoms of different layers. (d) Data flow among neurons of different layers.
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processing and low energy consumption, the meta-neural
network is compact and easy to visualize. The metasurface is
composed of thin, flat, and chip-level optics that can freely
control the light. A meta-neural network is a meta-system
composed of cascaded multilayer metasurfaces. In terms of
architecture, both meta-neural networks and an ANN are
layered structures. The output of each metasurface layer can be
visualized by adjusting the position of the sensor. In theory, a
metasurface can mimic the functionality of a hidden layer in an
ANN, as shown in Figure 31a and b, where the data flow is in the
form of light. The metasurface consists of a dense array of
subwavelength meta-atoms. According to Huygens’ Principle,
each meta-atom at the metasurface can be regarded as a
secondary source of the wave.219 Each subwavelength meta-
atom (see Figure 31c) behaves like an independent neuron (see
Figure 31d) in the artificial neural network. In a multiple-layer
metasurface system, every meta-atom in the l-layer metasurface
connects to all meta-atoms in the l + 1 layer metasurface through
the diffraction of light. Specifically, a meta-atom on the l-layer
metasurface is a secondary source at the location ri⃗l = (xil, yil, zil).
According to Rayleigh−Sommerfeld diffraction,253 the Huygens
wavelet of this source along the direction of propagation (z-axis)
can be described as the z-derivative of the spherical wave, which
is254
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where u(ri⃗l) is the input wave and t(ri⃗l) is the transmission
coefficient of the meta-atom.
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where k is the wavevector of light. Additionally, the electric field
u(rj⃗l+1) that reaches the meta-atom at the l + 1 layer metasurface

at the location rj⃗l+1 = (xjl+1, yjl+1, zjl+1) is the summation of the field
excited by all meta-atoms at the l-layer metasurface, which is
given by254
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The process of optical diffraction can be compared to the
matrix operations in an ANN during the transmission or
reflection coefficient t(ri⃗l) = Ailejϕid

l

of each meta-atom, which
corresponds to the neuron that carries the trainable weights. The
loss function was constructed using the difference in the light
intensity distribution between the output and the ground truth.
In addition, the transmission coefficient or the reflection
coefficient t(ri⃗l) of each meta-atom was optimized iteratively
through the back-propagation algorithm. However, the
diffraction and propagation of light are actually linear matrix
multiplications, making it impossible to fit complex nonlinear
functions. ANNs are used to model complex functions for
complicated tasks, and the use of nonlinear activation functions
enables them to approximate arbitrarily complex functions. In
the current research, the nonlinearity in the ONN is still
challenging to solve. Optical nonlinearity has always been a
problem of low efficiency, which limits the application of the
current ONN. It has been reported the use of the photoelectric
combination can be an excellent way to provide nonlinearity.
Normally, the output layer in the ONN is an image sensor and
the capture of light intensity I = |u(r)⃗|2 is a natural nonlinear
operation in the photoelectric conversion process.223 However,
this is far from the activation function in an ANN. Even the
photoelectric implementation of the nonlinear activation
function is still immature. All-optical nonlinearity is the key to
realizing a truly deep ONN.
Qian et al. proposed a diffractive neural network based on the

metasurface that was capable of all seven basic logic operations.
The authors experimentally demonstrated the AND, OR, and

Figure 32.Meta-neural network for logic operation.254 (a) Design scheme and experimental setup. (b) Schematic of the corresponding digital neural
network. (c) Experimental setup with the fabricatedmeta-neural network. (d) Design space of the meta-atom. Reprinted with permission from ref 254.
Copyright 2020 Springer Nature.
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NOT operations with a two-layer dielectric metasurface at
microwave frequency (17 GHz). This optical neural network
does not have a high requirement for the input light. Without an
additional bulky apparatus for input light control, the whole
photonic system is relatively compact. As shown by Figure 32a,
the incident plane wave is spatially encoded at the input layer,
which is an optical mask. The regions corresponding to the
computing compositions have high light transmittance. The
authors used a metasurface to mimic the functionality of hidden
layers in the artificial neural network. As shown in the right
bottom panel of Figure 32a, the magnitude changes slightly with
the height of the meta-atom, while the phase changes smoothly.
The proposed ONN uses the phase as the training variable. Each
metasurface manipulates the phase compensation to control the
propagation of light. The compound metasurfaces direct and
focus the light into one of two specific areas at the output layer,
representing the logic states 1 and 0, respectively. This work
successfully demonstrated the potential of metasurface-based
ONN for mathematical operation applications.
Besides basic mathematical operations, there are meta-neural

networks for elementary cognitive tasks, such as the recognition
of handwritten digits. With accessible images from the Modified
National Institute of Standards and Technology (MNIST) data
set,256 the recognition of handwritten digits is a universal pattern
recognition test model. The meta-neural network acts as a
classifier by directing the light from the object to the
corresponding detector (0−9). Under the diffraction simulation
model, each layer of the neuromorphic metasurface in the meta-
neural network is designed through the training strategy of
machine learning.
Wu et al. proposed a meta-neural network composed of

cascaded neuromorphic metasurfaces for the recognition of
handwritten digits.255 Figure 33a demonstrates the design
principle. Given the plane wave carrying the pattern information

as the input, the multilayer metasurfaces controls the local
amplitude and phase of the light. Each meta-atom acts as a
neuron, and light interferes strongly with each neuron. After
being processed by the three-layer meta-neural network, the
light is focused and directed to the spatial location of the
corresponding detector. As shown in Figure 33b, the authors
used a near-to-far-field transformation to model the forward
light propagation. Figure 33c provides the intensity distribution
among the free space in the meta-neural network. The intensity
of the focused beam directed toward the right detector is
stronger than others. In this proposed meta-neural network, not
only the phase but also the amplitude are considered. As shown
in Figure 33d, the authors constructed the functions of
amplitude-width and phase-width. Additionally, they directly
optimized the specific design parameters and widths of the
nanopillars in the iterative training process. The proposed meta-
neural network works at the visible wavelength (700 nm). The
accuracy tested on the MNIST data set reached 85%. However,
this work vectorized the image as the input, which did not fully
utilize the properties of the metasurface as a 2D material.
Extending the vector input (1D) to the matrix input (2D),

Weng et al. proposed a two-layer meta-neural network, as shown
in Figure 34a. Without vectorization, the spatial information in
the input is maintained. Additionally, the lack of preprocessing
means that the whole system is purely passive and has a low
latency. The monochromatic plane wave illuminates the input
pattern and reaches the metasurface. The metasurface controls
the local phase of the light. In the iterative training, the phase
profile of each metasurface is optimized. Under certain phase
compensations, the optical computation of the corresponding
matrix operation for recognition is realized by diffraction in the
3D space. Detecting regions of ten digits are uniformly
distributed on the output plane. The authors performed an
experimental verification based on 3D printing fabrication, as

Figure 33.Meta-neural network of cascaded metasurfaces for the recognition of handwritten digits. (a−d) Neuromorphic metasurface.255 Reprinted
with permission from ref 255. Copyright 2020 Optical Society of America. (a) Schematic of the classifier. (b) Model of forwarding propagation in the
meta-neural network. (c) Intensity distribution of light propogation in the neural network. (d) Amplitude and phase distribution over different meta-
atom parameters (width).
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shown in Figure 34b. They fabricated 20 steel plates of the digits
shape. Panels c and d in Figure 34 demonstrate the energy
distribution matrices of the simulation and the experiment,
respectively. The experimental results show good consistency
with the simulation. Further, the authors used a four-layer meta-
neural network to distinguish the orbital angular momentum
(OAM), which has a more complicated spatial pattern (see
Figure 34e). The key advantage of the proposed meta-neural
network is that there is no need for a strict alignment between
the beam and the recognition device. For 255 combinations of 8
OAM orders, the proposed neural network could achieve a
recognition accuracy of more than 90% even when the beam
center was misaligned by six wavelengths (6λ). On the output
plane, there are eight focused beams that denote the existence of
different OAM states. Compared with the single focused beam
in the primary classification task (e.g., the recognition of

handwritten digits), this work demonstrates more computa-
tional power.
To reduce misalignment between different layers of the

metasurface, a kind of 1Dmetasurface is proposed to achieve full
integrity, which is called a metaline (see Figure 35a).258 In the
proposed meta-neural network, each hidden layer in Figure 35b
corresponds to a metaline in Figure 35a, and each metaline is a
line of meta-atoms. In Figure 35a, each detector represents a
digit. Additionally, the five-layer meta-neural network directs the
propagation of the input signal to the corresponding detectors.
Figure 35c demonstrates examples of digit recognition, where
the light intensity of the corresponding position is higher than
others. The on-chip meta-neural network was developed on the
silicon-on-insulator (SOI) platform. As shown in Figure 35a, the
meta-atom is an etched rectangle slot. With negligible
transmission loss (see Figure 35d), the phase compensation of

Figure 34. Purely passivemeta-neural network for object recognition.257 (a)Meta-neural network for the recognition of handwritten digits. (b) Picture
of the fabricated meta-neural network. (c) Energy distribution matrix of the simulation for 20 selected samples. (d) Energy distribution matrix of the
experiment for 20 selected samples. (e) Meta-neural network for OAM state recognition. “Y” and “N” denote the presence and absence of the
corresponding OAM state, respectively. Reprinted with permission from ref 257. Copyright 2020 Springer Nature.
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each meta-atom is selected as the trainable variable. The input
image is converted to a vector signal. Tested on theMNIST data
set, this meta-neural network reached 88.8% accuracy.
As shown in Table 3, the meta-neural networks can be

composed of metasurfaces or metalines. The metasurface is
more suitable for an image-based application, which can take
spatial information into consideration. It is easy to align different
layers in the metaline-based meta-neural network, which has
more advantages in actual experiment implementation. Mostly,
the phase changes linearly with the structure parameter of the
meta-atom while the amplitude almost remains invariant.
Therefore, the meta-neural network usually adopts the phase
as the training variable. Current research of meta-neural
networks is still immature. Additionally, most of the related
literature remains in the simulation stage. Without actual
manufacturing and experimental verification, the efficacy of a
meta-neural network is difficult to prove. The high accuracy
results (>85%) are verified by the simulation, but theremust be a
gap between reality and theory. Importantly, significant of light
propagation loss is ignored in the modeling of the cascade
system. Manufacturing defects will bring undesired absorption,
which leads to the transmittance of the fabricated metasurface
being lower than the theoretical value. The deviation caused by
the quantification will also cause the actual object to deviate
from the ideal model. For example, the trained variable, such as
the phase, is not continuously realized during meta-atom
selection and fabrication. Additionally, in practice, the
diffraction loss of light in free space is very large. The amount
of light that reaches themetasurface of the next layer is much less
than the amount of light that reaches the previous layer. Due to
the efficiency limit, all the literature listed in Table 3 used only a
small number of layers. Therefore, efficiency is one of the keys to
the development of a multilayer cascaded meta-neural network.
In the application column, the number in brackets represents the
number of cognitive categories. For example, (10) means there

are 10 classes of the output. The current application is still
limited to handwritten digit recognition, whose cognitive
category is small. More complicated tasks, e.g., face recognition
and object detection, would be more challenging and fascinating
in future research.
The major deficiency of the meta-neural network is its

nontunability. Due to the deficiency in the development of
tunable metasurface, the all-optical and in situ training cannot
currently be realized. Additionally, after fabrication, the
metasurface is fixed and nonadjustable. Therefore, each meta-
neural network is tailored for a specific task. Theoretically, the
layout adopted in metasurface manufacturing is the optimal
solution after training.

5. SUMMARY AND PROSPECTS
In the forward problem, surrogate modeling is prominent for its
ultrafast computation speed. The characteristics of real-time
response and the neural network structure make it easy to
incorporate into inverse design schemes. However, the perform-
ance of the surrogate model is limited to specific tasks, which are
not flexible. Inaccurate prediction at resonances and the time-
consuming preparation of training data also make it less
practical. In the future, improvements to the deep learning-
based algorithms and the development of composite multifunc-
tional models will be promising directions.
For the inverse problem, automatic design is a fascinating

topic. NN-based methods and evolutional computation-based
algorithms are two representatives. NN-based methods are
faster, while evolution computation has no restriction on the
differentiability of the optimized function. Most current NN-
based works focus on the design of meta-atoms. Given
demanded optical responses, the inverse design scheme outputs
the geometry of the candidates. Such on-demand design
normally shows a high compliance with targets. Inverse design
provides a reliable solution to the clueless problem. However,

Figure 35. Meta-neural network of 1D metalines for the recognition of handwritten digits.258 (a) Schematic of meta-lines. (b) Corresponding
conventional neural network whose hidden layers are realized as meta-lines. (c) Verification results. (d) Design space of themeta-atom. Reprinted with
permission from ref 258. Copyright 2020 Optical Society of America.
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there is a lack of NN-based literature on supercell and
metasurface scales. The overall system design method will be
more intelligent and convenient. Gradient-free evolutionary
computation is widely applied in optimization, such as
maximizing the efficiency. Despite consuming relatively more
time, evolutionary computation-based methods show capability
in global optimization and various design tasks. Additionally,
evolution computation does not require training data. However,
the nature of iterative optimization determines that it is destined
not to be applied directly in large-scale system design. Overall,
AI lowers the threshold of meta-optics design. AI-based design
requires less experience and optical background knowledge.
Recently, AI has also shown powerful capabilities in the analysis
of data from a metasurface, which is of great importance in
extreme measurement and dynamic analysis. Furthermore, AI
can control the readjustment of the metasurface using data
previously acquired and processed. Such a loop of the data
stream achieves system automation. AI-empowered meta-optics
exhibits the capabilities of self-control. These smart and
intelligent meta-devices based on AI could be a new hot topic
in the cross-field between AI and meta-optics.
In the current development of electronic chips, Moore’s law is

about to meet the physical limit as advanced semiconductor
processes continue to approach the 3 nm process. It is becoming
more and more difficult to shrink the line width of semi-
conductors, and the cost is getting higher and higher. The
increase in the computing speed of electronic chips has gradually
slowed down. Compared with computing with electrons as a
medium, photonic computing naturally has the advantages of
the high dimension of information transmission and the strong
parallel transmission capability. In traditional optics, optical
computations are limited by the unity of material properties, and
traditional optical components are generally bulky and difficult
to integrate. The emergence of meta-optics provides a new
direction for optical computing. Through the specially designed
artificial nanoantenna array, the characteristics of light can be
arbitrarily adjusted to produce novel functions. Meta-devices
have the advantages of being ultrathin, lightweight, compact,
and easy to integrate, perfectly solving the shortcomings of
traditional optics. At present, meta-optics has realized a variety
of optical applications, which can control the phase, frequency,
polarization, amplitude, and propagation direction of light.
Through rigorous design, these optical properties can be
adjusted not only individually but also multidimensionally. AI
neural network computing realized by optics is a big trend in the
future. At present, optical neural networks are generally
implemented by optical fibers or silicon-based waveguides. In
comparison, the number of research results on optical neural
networks based on meta-optics is relatively small. The challenge
that needs to be solved urgently is the work efficiency and
tunability of meta-devices. Take the optical neural network as an
example. As the number of computing layers increases, each
layer of the metasurface provides computing information and
loses a certain amount of signal strength. Once the computing
architecture becomes more complex and the number of
computing layers increases, the number of photons obtained
at the end becomes very limited. Another challenge is the
tunability of functions. The wavefront manipulation of light is
the phase arrangement through the metasurface, and each phase
pixel of the phase profile depends on the design of each meta-
atom, such as shape, feature size, and effective refractive index.
Meta-atoms are subwavelength structures. At present, the
individual electric adjustment of the meta-atom to achieveT
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real-time adjustable meta-devices has only been realized in the
terahertz region. This is a large challenge for visible or near-
infrared meta-devices because the feature size of the meta-atom
size is very small (around a few tens of nanometers). It can only
realize the control of the entire meta-devices, resulting in a
monotonous function that is often just a switch function. With
the continuous innovation of metasurface optics research and
related fabrication technology improvements, these challenges
will hopefully be overcome.
Artificial intelligence technology applied to meta-optics can

solve complex optical designs and quickly obtain the best
solution of the problem to meet the demands of novel functions.
Currently, the amount of data processing is dramatically
increasing, and photons that carry high-dimensional information
can effectively expand the bandwidth of information operations.
Optical neural network computing based on meta-optics can
break through the bottleneck of electronic computing power and
computing speed. Artificial intelligence and metasurface optics
in synergy will help the research and development of advanced
optical chips, which is conducive to the implementation of the
next generation of optical devices and systems, and will bring
human civilization to a higher level in the future.
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