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Abstract

Over 26 million people worldwide suffer from heart failure annually. When the cause of heart

failure cannot be identified, endomyocardial biopsy (EMB) represents the gold-standard for

the evaluation of disease. However, manual EMB interpretation has high inter-rater variabil-

ity. Deep convolutional neural networks (CNNs) have been successfully applied to detect

cancer, diabetic retinopathy, and dermatologic lesions from images. In this study, we

develop a CNN classifier to detect clinical heart failure from H&E stained whole-slide images

from a total of 209 patients, 104 patients were used for training and the remaining 105

patients for independent testing. The CNN was able to identify patients with heart failure or

severe pathology with a 99% sensitivity and 94% specificity on the test set, outperforming

conventional feature-engineering approaches. Importantly, the CNN outperformed two

expert pathologists by nearly 20%. Our results suggest that deep learning analytics of EMB

can be used to predict cardiac outcome.

Introduction

Cardiovascular diseases are the leading cause of death globally and the leading cause of hospital

admissions in the United States and Europe [1]. More than 26 million people worldwide suffer

from heart failure annually and about half of these patients die within five years [2, 3]. Heart

failure is a serious, progressive clinical syndrome where impaired ventricular function results

in inadequate systemic perfusion. The diagnosis of heart failure usually relies on clinical his-

tory, physical exam, basic lab tests, and imaging [4]. However, when the cause of heart failure

is unidentified, endomyocardial biopsy (EMB) represents the gold standard for the evaluation

and grading of heart disease [5]. The primary concern with the manual interpretation of EMB

is the relatively high inter-rater variability [6] and limited clinical indications [5, 7]. Automated
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analysis and grading of cardiac histopathology can serve as an objective second read to reduce

variability.

With the advent of digital pathology, a number of groups have been applying computer

vision and machine learning to these datasets to improve disease characterization and detec-

tion [8–11]. Recent work has shown that sub-visual image features extracted from digitized

tumor histopathology via computer vision and machine learning algorithms can improve diag-

nosis and prognosis in a variety of cancers [12–21]. In contrast, image analysis on cardiac his-

topathology has received little attention, although segmentation of myocytes and fibrosis [22]

or quantification of adipose tissue and fibrosis have been proposed in a couple studies [23].

Recently, many approaches for image analysis have applied deep convolutional neural net-

works (CNNs) or “deep learning” instead of engineered image features. Deep learning is an

example of representation learning, a class of machine learning approaches where discrimina-

tive features are not pre-specified but rather learned directly from raw data [24]. In a CNN,

there are many artificial neurons or nodes arranged in a hierarchical network of successive

convolutional, max-pooling, and fully-connected layers. The hierarchical structure allows the

model to approximate complex functions and learn non-linear feature combinations that max-

imally discriminate among the classes. Once a CNN model is trained on a sufficiently large

data set, it should be able to generalize to unseen examples from the population. For a more

detailed description of neural networks and their structure, we refer readers to Bengio et al.

2013 and Schmidhuber 2015 [25, 26].

Deep learning has already been successfully applied to detect cancer in biopsies [27, 28],

diabetic retinopathy [29], and dermatologic lesions [30]. There are many other potential appli-

cations to digital pathology because deep learning excels at tasks with large and complex train-

ing data sets, such as whole slide images (WSI). In this study, we develop a CNN to detect

clinical heart failure from sub-images sampled from WSI of cardiac tissue. We show that the

CNN detects heart failure with high accuracy using only cardiac histopathology, outperform-

ing conventional feature-engineering approaches and two expert pathologists. We also show

that these algorithms are highly sensitive to tissue-level pathology, as our algorithms promote

a re-examination of clinically normal patients who were subsequently found to have evidence

of severe tissue pathology.

Results

Dataset description and image analysis pipeline

The dataset consisted of left ventricular tissue from 209 patients, collected at the University of

Pennsylvania between 2008 and 2013. There were two cohorts of patients: those with end-

stage heart failure (Failing or Fal; N = 94) and a comparison group without heart failure (Non-

failing or NF; N = 115). The failing cohort tissue was collected from patients with clinically

diagnosed ischemic cardiomyopathy (ICM; N = 51) or idiopathic dilated cardiomyopathy

(NICM; N = 43) who received heart transplants or left-ventricular assist devices during the col-

lection period and consented to the study. The patients in the non-failing cohort were organ

donors without a history of heart failure, but where the heart tissue was ultimately not used for

transplant. All patients with tissue sectioned, stained, and scanned during the collection phase

were included for analysis.

We randomly split the patients into two datasets: 104 patients were designated for training,

and a separate cohort of 105 patients was held out as an independent test set. Patient demograph-

ics for the training and held-out test dataset are shown in Table 1. The training dataset was further

split, at the patient level, into three-folds for cross-validation to assess training and validate algo-

rithm parameters. For each patients’ whole slide image (WSI), down sampled to 5x magnification,
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we extracted eleven non-overlapping images or regions of interest (ROI 2500μm2) at random

from within the Otsu-thresholded [31] and manually refined tissue border.

The training images were used to build two independent models to classify patients with or

without heart failure from cardiac histopathology. The primary classifier used a CNN with a

network architecture modified from Janowczyk and Madabhushi [32] (S1 Table) to transform

the image pixels into the probability that the image came from a patient with heart failure. We

compared our CNN to a traditional feature-engineering approach using WND-CHARM [33],

a generalized image pattern recognition system coupled to a random decision forest classifier

(RF). WND-CHARM computed 4059 features for each image. The top 20 features (S2 Table)

were selected using the minimum Redundancy Maximum Relevance method [34] on the

training set, and these top features were input to an RF classifier [35].

For each image, both classifiers calculated the probability of whether that image came from

a patient with heart failure. Images with probabilities greater than 50% were considered as a

prediction of the “failing” class at the image-level. The image-level predictions were grouped

by patient and the fraction of images predicted as ‘failing’ for each patient gave the patient-

level probabilities. Fig 1 shows a summary of the digital pathology workflow and S1 Fig shows

representative images of cardiac histopathology.

Table 1. Patient demographics for the heart failure data set.

Characteristic All Non-failing Failing

Entire data set

Patients 209 115 94

Age (years) 54.3±13.8 53.4±15.3 55.5±11.6

Sex (% female) 36 48 22

Heart failure

etiology (%ICM)

- - 54

ROIs 2299 1265 1034

Ethnicty (%)

African America 16 17 15

Caucasian 68 71 64

Hispanic 5 9 -

Unknown 11 3 21

Training set

Patients 104 57 47

Age (years) 54.8±13.5 54.6±14.6 55.0±12.2

Sex (% female) 33 42 21

Heart failure

etiology (%ICM)

- - 60

ROIs 1144 627 517

Held-out test set

Patients 105 58 47

Age (years) 53.9±14.1 52.2±16.0 56.0±11.1

Sex (% female) 40 53 23

Heart failure

etiology (%ICM)

- - 49

ROIs 1155 638 517

Where applicable, data are shown as mean ± SD. The two sub-classes of heart failure are ischemic cardiomyopathy

(ICM) and non-ischemic cardiomyopathy (NICM).

https://doi.org/10.1371/journal.pone.0192726.t001
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CNNs identify heart failure patients from histopathology with high

accuracy

We evaluated the performance of the CNN on the training set using three-fold cross valida-

tion. In addition, we applied each of the trained models to the held-out test dataset as an inde-

pendent test for model generalization. Table 2 shows the classification accuracy for detection

of clinical heart failure at the image and patient-level for both the training cross-validation and

held-out test datasets. The CNN performs very well, detecting heart failure from histopathol-

ogy at both the image and patient-level with accuracy exceeding 93% on both the training and

test datasets.

Next, we compared the classification accuracy of the CNN to the WND-CHRM + RF

model (Table 2). Although the WND-CHRM + RF model was able to identify heart failure

patients, the accuracy and sensitivity was significantly lower than the CNN model at both the

image and patient-level on the held-out test set (p< 0.05, unpaired two-sample t-test). Thus,

the learned features in the CNN result in a classifier that is more discriminative than a feature-

engineering approach, which is capable of accurately detecting heart failure from cardiac

histopathology.

In the clinical setting, pathologists do not routinely assess whether a patient has clinical

heart failure using only images of cardiac tissue. Nor do they limit their assessment to small

ROIs randomly sampled from the tissue. However, in order to determine how a human might

perform at the task our algorithms are performing; we trained two pathologists on the training

dataset of 104 patients. The pathologists were given the training images, grouped by patient,

and the ground truth diagnosis. After review of the training dataset, our pathologists indepen-

dently reviewed the 105 patients in the held-out test set with no time constraints.

During the evaluation phase, the pathologists were blinded to the patients’ clinical history,

and they were only shown the same 11 images per patient that were used in evaluating the

algorithms. For each set of patient images, they gave a binary prediction of whether the set of

11 images were from a patient with clinical heart failure or not. The pathologists both had an

individual accuracy of 75% at the patient-level (Table 2) with a Cohen’s kappa inter-rater

agreement of 0.40. The CNN significantly outperformed pathologists in all metrics with a 20%

differential in terms of sensitivity and specificity (p< 0.05, one-sample t-test compared to the

best human performance for each evaluation metric). We acknowledge the caveat that this

task required pathologists to perform a non-standard task that differs from their standard

Fig 1. Schematic overview of digital pathology workflow to detect heart failure. (a) Patients were divided into a training and test

dataset. WSI were scanned and regions of interest (ROI) were extracted for image analysis. All ROIs from the same patient were given

the same label, which was determined by whether the patient had clinical or pathological evidence of heart disease. (b) Three-fold cross

validation was used to train heart failure classifiers using a deep learning model or engineered features in WND-CHARM + a random

decision forest classifier. (c) Trained models were evaluated at the image and patient-level on a held-out test dataset.

https://doi.org/10.1371/journal.pone.0192726.g001
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diagnostic workflow. However, this format ensured that the algorithms and pathologists were

given the same set of information to make their respective predictions.

Review of correct and incorrectly classified images

Representative images that were correctly classified by both algorithms are shown in Fig 2A.

These images are exemplars for the well-described histological findings in normal tissue and

heart failure, described in S1 Fig. Images uniquely misclassified by the CNN are shown in Fig

2C. A qualitative review of these images by expert pathologists showed that a few contain

minor tissue processing artifacts. However, many images have some features of both normal

and abnormal myocardium such as large regions of healthy, densely packed myocytes or fibro-

sis and enlarged myocyte nuclei, respectively. This could make these images challenging for

both computers and humans to classify when only given a single image.

Table 2. Image and patient-level performance evaluation for predicting clinical heart failure from H&E stained whole-slide images for validation folds of the train-

ing data set.

Training Random Forest Deep Learning Pathologists p value

RF vs. DL

Image-level

Accuracy 0.876 ± 0.05 0.959 ± 0.02 - n.s.

Sensitivity 0.881 ± 0.07 0.971 ± 0.01 - n.s.

Specificity 0.872 ± 0.04 0.949 ± 0.05 - n.s.

Positive Predictive Value 0.851 ± 0.05 0.942 ± 0.06 - n.s.

AUC 0.938 ± 0.05 0.980 ± 0.02 - n.s.

Patient-level

Accuracy 0.933± 0.04 0.971 ± 0.03 - n.s.

Sensitivity 0.917 ± 0.07 1.00 ± 0.001 - n.s.

Specificity 0.947 ± 0.05 0.947 ± 0.05 - n.s.

Positive Predictive Value 0.938 ± 0.06 0.942 ± 0.06 - n.s.

AUC 0.958 ± 0.05 0.947 ± 0.02 - n.s.

Held-out test Random Forest Deep Learning Pathologists p value

RF vs. DL

Image-level

Accuracy 0.862 ± 0.01 0.932 ± 0.01 - <0.001

Sensitivity 0.909 ± 0.02 0.985 ± 0.01 - 0.004

Specificity 0.823 ± 0.03 0.900 ± 0.002 - 0.02

Positive Predictive Value 0.810 ± 0.03 0.878 ± 0.003 - 0.01

AUC 0.933 ± 0.003 0.971 ± 0.01 - <0.001

Patient-level

Accuracy 0.895 ± 0.03 0.940 ± 0.03 0.75 0.75 0.04

Sensitivity 0.979 ± 0.01 1.00 ± 0.001 0.81 0.64 <0.001

Specificity 0.828 ± 0.05 0.891 ± 0.01 0.71 0.85 n.s.

Positive Predictive Value 0.823 ± 0.04 0.881 ± 0.01 0.69 0.77 n.s.

AUC 0.952 ± 0.05 0.974 ± 0.01 0.75 0.73 0.04

The results are presented as the Mean ± SD of three models. Each model was trained on ~ 770 images from ~70 patients. The validation models were evaluated on the

validation fold of ~35 patients. The models were then tested on a held-out data set of 105 patients. The patient-level diagnosis is the majority vote over all the images

from a single patient. Statistical comparisons between RF and DL models were determined by an unpaired two-sample t-test with an N of three folds. Statistical

comparisons between DL and the pathologists used a one-sample t-test compared with the maximum value from either pathologist, with all p values�0.01. AUC: Area

Under the Curve (AUC) for the receiver operator characteristic.

https://doi.org/10.1371/journal.pone.0192726.t002
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Fig 2. Review of classified images and unsupervised clustering of patients. Representative images from ROIs that were: correctly classified by both

algorithms (a); errors unique to the Random Decision Forest (b); and errors unique to Deep Learning (c). The ground truth is shown in white text in the upper

left corner of the image whereas the algorithm prediction is shown in the upper right and color coded with green = correct and yellow = incorrect. (d) ROIs

from two patients without clinical heart failure that were classified with clinically “Failing” patients by both algorithms. These patients were later found to have

evidence of tissue-level pathology by two independent pathologists. (e) Consensus clustering using WND-CHARM feature vector reveals evidence for three

clusters in the data. The consensus clustering dendrogram and class results are shown above the clustergram. Some patients form a small third cluster between

the two larger groups, marked by an arrowhead, which was found to contain a patient with tissue pathology but no clinical heart disease.

https://doi.org/10.1371/journal.pone.0192726.g002
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Review of the errors unique to the WND-CHARM + RF model reveals some false negative

errors, such as classifying an image with extensive fibrosis as “Non-Failing”, when it is actually

from a patient with heart failure (Fig 2B, False Negative second row). There were also many

examples in which the WND-CHRM + RF model made errors on images containing minor

tissue-processing artifacts, such as small areas of white space between bundles of intact, normal

myocardium (Fig 2B, False Positive top row).

While reviewing the errors, we identified several non-failing patients incorrectly predicted

as “failing” with a very high probability by the CNN and WND-CHRM + RF at both the image

and patient-level. The high likelihood of class membership assigned by both models prompted

a detailed re-examination of these cases. Two expert pathologists, blinded to the patients’ clini-

cal history, reviewed the tissue pathology and labeled their findings as mild-moderate pathol-

ogy or severe tissue pathology. The consensus agreement of the pathologists was that two

patients exhibited severe tissue-level pathology (Fig 2D) while the other cases had mild to

moderate pathology or tissue-processing artifacts. Thus, at least in a couple cases, our algo-

rithm detected severe tissue pathology in patients without pre-existing heart failure.

Non-failing patients with severe pathology cluster with heart failure

patients

To determine whether the misclassified patients reproducibly clustered with the incorrect

class, we used unsupervised clustering. Consensus clustering is an unsupervised clustering and

resampling technique that provides a visual and quantitative measure of the number and sta-

bility of discrete classes in a dataset [36]. It involves subsampling a data set, hierarchical clus-

tering using a distance metric, and computing the proportion of times items occupy the same

cluster with repeated sub-sampling. Since both the CNN and WND-CHRM misclassified these

patients, and the CNN hidden layer activations are difficult to interpret, we used the image-

level WND-CHARM feature vectors for consensus clustering.

We assessed k 2 {1,. . .,10} clusters and the maximum for the consensus cumulative distri-

bution function was at three clusters. Adding more clusters did not significantly increase the

consensus values. The consensus matrix for k = 3 is shown in Fig 2E. Although many patients

cluster with patients that have similar heart function, a small subset of patients fall into a third,

smaller cluster in-between the failing and normal clusters. Misclassified patients without heart

failure, but who had severe tissue pathology, either fell into this third cluster or had a majority

of their images in the failing cluster.

The reproducible unsupervised clustering of these patients with the failing or intermediate

cluster supports our original findings for a high likelihood of class membership in the failing

class. This prompted the designation of a new ground truth label based on both the clinical his-

tory and histopathological findings. The two non-failing patients described above were reas-

signed to an “abnormal or heart failure” class due to their severe pathology and reproducible

clustering away from other non-failing samples. The remaining failing and non-failing patients

did not change after review and were assigned to the “abnormal or heart failure” or “within

normal limits” classes, respectively.

CNNs accurately detect tissue pathology in heart failure patients

Tables 3 and 4 show the evaluation metrics for classification based on the new ground truth

labels at the image and patient-level for both the cross-validation and held-out test datasets,

respectively. The CNN showed superior accuracy with a test set accuracy of 96.2 ± 1% com-

pared to the 91.7± 1% accuracy using WND-CHARM + RF. The CNN also outperformed

WND-CHRM + RF in nearly all other metrics on the held-out test set most notably, a higher

Deep-learning classification of heart failure from cardiac histopathology

PLOS ONE | https://doi.org/10.1371/journal.pone.0192726 April 3, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0192726


accuracy, sensitivity, and area under the curve (AUC) for the Receiver Operator Characteristic

(ROC) curve (all p< 0.01, unpaired t-test).

Fig 3 shows the corresponding ROC curves for the classifiers trained using labels based on

clinical history and tissue pathology. We compared the image-level ROC curves between the

CNN and WND-CHRM + RF using a two-sample Kolmogorov-Smirnov test to show that the

CNN significantly outperforms the feature-engineering approach. However, the difference

between ROC curves at the patient-level results was not statistically significant. Although both

Table 3. Patient-level performance evaluation for predicting clinical heart failure or severe tissue pathology from

H&E stained whole-slide images for validation folds of the training data set.

Metric Random Forest Deep Learning p-value

Image-level results

Accuracy 0.869 ± 0.05 0.954 ± 0.03 0.05

Sensitivity 0.866 ± 0.07 0.968 ± 0.03 n.s.

Specificity 0.872 ± 0.04 0.943 ± 0.05 n.s.

Positive predictive value 0.848 ± 0.05 0.935 ± 0.05 0.05

AUC 0.944 ± 0.04 0.977 ± 0.02 0.05

Patient-level results

Accuracy 0.923 ± 0.03 0.962 ± 0.02 n.s.

Sensitivity 0.917 ± 0.07 0.979 ± 0.04 n.s.

Specificity 0.930 ± 0.06 0.947 ± 0.05 n.s.

Positive predictive value 0.919 ± 0.07 0.942 ± 0.06 n.s.

AUC 0.963 ± 0.05 0.960 ± 0.05 n.s.

The results are presented as the Mean ± SD of three models. Each model was trained on ~770 images from ~70

patients. These models were evaluated on the validation fold of ~35 patients. The patient-level diagnosis is the

majority vote over all the images from a single patient. Statistics were determined by an unpaired two-sample t-test

with an N of three folds.

https://doi.org/10.1371/journal.pone.0192726.t003

Table 4. Patient-level performance evaluation for predicting clinical heart failure or severe tissue pathology from H&E stained whole-slide images for the held-out

test set.

Metric Random Forest Deep Learning p-value

Image-level results

Accuracy 0.871± 0.01 0.946 ± 0.01 < 0.001

Sensitivity 0.883 ± 0.02 0.968 ± 0.02 0.01

Specificity 0.860 ± 0.01 0.927 ± 0.01 0.01

Positive predictive value 0.847 ± 0.01 0.921 ± 0.01 < 0.001

AUC 0.935 ± 0.001 0.977 ± 0.01 < 0.001

Patient-level results

Accuracy 0.917 ± 0.01 0.962 ± 0.01 0.002

Sensitivity 0.932 ± 0.03 0.993 ± 0.01 0.033

Specificity 0.905 ± 0.03 0.935 ± 0.01 n.s.

Positive predictive value 0.896 ± 0.02 0.930 ± 0.01 n.s.

AUC 0.960 ± 0.01 0.989 ± 0.01 0.002

The results are presented as the Mean ± SD of three models. Each model was trained on ~770 images from ~70 patients. These models were evaluated on the held-out

test set of 105 patients. The patient-level diagnosis is the majority vote over all the images from a single patient. Statistics were determined by an unpaired two-sample t-

test with an N of three folds.

https://doi.org/10.1371/journal.pone.0192726.t004
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algorithms are reasonably efficient at detecting tissue pathology, the CNN gives higher sensi-

tivity, specificity, and positive predictive value.

Discussion

In this study, we developed a CNN classifier to detect clinical heart failure from cardiac histo-

pathology. Previous studies that have applied deep learning to digital pathology have used

CNNs to generate pixel-level cancer likelihood maps [14, 18] or segment relevant biological

structures (e.g. glands, mitoses, nuclei, etc.) that are used as features for subsequent classifica-

tion [27, 37]. However, our CNN directly transforms an image into a probability of a patient-

level diagnosis, which is similar to recent approaches that have applied CNNs to diagnose

referable diabetic retinopathy and skin cancer [29, 30].

This direct diagnosis approach can work well but has the disadvantage that the features

used by the CNN for classification aren’t immediately transparent or interpretable. A few

methods have been proposed to visualize intermediate features in CNNs (Nguyen et al. 2015),

but what these intermediate features represent and how they are combined to make a diagnosis

will require interpretation by pathologists. However, a benefit of representation learning

approaches is that they may reveal novel image features, learned by the CNN, that are relevant

to myocardial disease. The performance difference between the CNN and WND-CHRM + RF

pipeline likely reflects the contribution of the features learned by the CNN, which are not pres-

ent in the set of engineered features.

Fig 3. Receiver Operator Characteristic (ROC) curve for detection of clinical heart failure or severe tissue

pathology. (a) ROC curve for image-level detection on the training dataset (DL vs. RF, p< 0.0001, two-sample

Kolmogorov-Smirnov (KS) test). (b) ROC curve for patient-level detection on the training dataset (DL vs. RF, ns, KS

test). (c) ROC curve for image-level detection on the held-out test dataset (DL vs. RF, p< 0.0001, KS test). (d) ROC

curve for patient-level detection on the held-out test dataset (DL vs. RF, ns, KS test).

https://doi.org/10.1371/journal.pone.0192726.g003
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The highly accurate and reproducible performance by the CNN shows that cardiac histopa-

thology contains robust image features sufficient for classification and diagnosis. However, a

somewhat surprising finding of this study was that the CNN outperformed pathologists at

detecting clinical heart failure by a significant margin, up to 20% in terms of sensitivity and

specificity. Unlike cancer, where the definitive diagnosis is based on tissue pathology and

genetic or molecular markers, heart failure is a clinical syndrome. In the clinical setting,

pathologists are not called upon to determine whether a patient is in heart failure given cardiac

histopathology. Rather, when no cause of heart failure can be identified, pathologists interpret

the tissue to identify potential etiologies (e.g. viral myocarditis, amyloidosis, etc.). However, it

is interesting to note that the Cohen’s kappa inter-rater agreement of 0.40 in our task is similar

to the value of 0.39 reported for Fleiss’s kappa inter-rater agreement for grading heart rejection

using the ISHLT 2005 guidelines [6]. Together, these data suggest that deep learning can be

used in conjunction with digitized pathology images of cardiac histopathology to predict car-

diac failure. This is particularly relevant in light of the recent FDA approval of whole imaging

systems for primary diagnosis using digital slides [38].

A review of the misclassified non-failing patients where the CNN gave a high likelihood of

heart failure led to the discovery of severe tissue pathology in two patients. Unsupervised clus-

tering reproducibly grouped these patients away from the non-failing class and into the failing

class or a third, intermediate cluster. Thus, the CNN identified tissue pathology in patients

without pre-existing heart failure, suggesting these patients may represent cases of occult car-

diomyopathy. An important area of research moving forward is whether CNNs or other mod-

els can use EMBs to predict the future onset of heart failure or the rate of decline in patients

with mild or moderate heart failure.

Our study did have its limitations. We assessed our classifier on the extremes of heart dis-

ease: patients with severe heart failure requiring advanced therapies (e.g. cardiac transplant or

mechanical circulatory devices) versus patients without a history of clinical heart failure. One

may argue that comparing extremes exaggerates classifier performance. However, the identifi-

cation of tissue pathology in a small subset of patients without a definitive clinical diagnosis

suggests these algorithms are very sensitive to pathological features of myocardial disease.

Future research will need to evaluate the ability of CNNs to detect pre-clinical disease.

In summary, we develop a CNN classifier to detect heart failure and show that cardiac his-

topathology is sufficient to identify patients with clinical heart failure accurately. We also find

that these algorithms are sensitive to detect tissue pathology, and may aid in the detection of

disease prior to definitive clinical diagnosis. These data lend support for the incorporation of

computer-assisted diagnostic workflows in cardiology and adds to the burgeoning literature

that digital pathology adds diagnostic and prognostic utility. Future work will focus on predic-

tive modeling in heart failure and post-transplant surveillance for rejection, etiologic discrimi-

nation of cardiomyopathy etiologies, and risk stratification studies which correlate digital

histopathology with disease progression, survival and treatment responses.

Materials and methods

Human tissue research

Human heart tissue was procured from two separate groups of subjects: heart transplant or

LVAD recipients with severe heart failure (Fal), and brain dead, organ donors with no history

of heart failure (non-failing, NF). Tissue from patients with ischemic cardiomyopathy sampled

infarct-free regions. No organs or tissue were procured from prisoners. Prospective informed

consent for research use of heart tissue was obtained from all transplant or LVAD recipients

and next-of-kin in the case of organ donors. All patient data and images were de-identified,
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and all protocols were performed in accordance with relevant guidelines for research involving

tissue from human subjects. Tissue used in this study was collected and processed at the Car-

diovascular Research Institute and the Department of Pathology and Laboratory Medicine at

the University of Pennsylvania between 2008 and 2013. All patients were from the same insti-

tutional cohort. All study procedures were approved or waived by the University of Pennsylva-

nia Institutional Review Board.

Dataset collection and histological processing

Both failing and non-failing hearts received in situ cold cardioplegia in the operating room

and were immediately placed on wet ice in 4˚C Krebs-Henseleit buffer. Within 4 hours of car-

diectomy, transmural tissue from the left ventricular free wall were fixed in 4% paraformalde-

hyde and later processed, embedded in paraffin, sectioned and stained with hematoxylin and

eosin (H&E) for morphologic analysis. Whole-slide images were acquired at 20x magnification

using an Aperio ScanScope slide scanner. Images were down-sampled to 5x magnification for

image analysis, a magnification sufficient for expert assessment of gross tissue pathology. The

allocation to the training and held-out test cohort was random and performed prior to image

analysis.

Image analysis and machine learning

The primary neural network used in this study was adapted from Janowczyk and Madabhushi

(32). This fully-convolutional architecture is composed of alternating convolutional, batch

normalization [39], and Rectified Linear Unit (ReLU) activation layers [40, 41]. A table of the

layers, kernels, and output sizes is shown in S1 Table. This network has approximately 13,500

learnable parameters. The network accepts 64x 64 pixel RGB image patches (128x128μm) with

a label corresponding to the cohort to which the patient belongs (failing or non-failing). The

CNN classifier was trained using 100 patches per ROI, per patient, and the training set was

augmented rotating each patch by 90 degrees. The output of the CNN is a pixel-level probabil-

ity of whether ROIs belong to the failing class. The pixels in a single image were averaged to

obtain the image-level probability. Each fold of the three-fold cross validation was trained

using NVIDIA DIGITS for 30 epochs on a Titan X GPU with CUDA7.5 and cuDNN opti-

mized by Stochastic Gradient Descent built into Caffe and a fixed batch size of 64.

Additional networks used in this study include (S3 Table): AlexNet [42], GoogLeNet [43],

and a 50-layer ResNet [44] with dropout [40] with the full or half the number of kernels at

each layer. These networks were trained on 5X magnification (250 x 250) RGB images

upsampled 2X to 500 x 500 pixels, which allowed data augmentation by random cropping of

regions 227x 227 (AlexNet) or 224 x 224 (GoogLeNet or ResNet-50). Given the limited num-

ber of images in the training dataset, all networks used aggressive data augmentation includ-

ing: random cropping, random rotation (90, 180, 270), image mirroring, and stain color

augmentation [45]. Each fold of the three-fold cross-validation was trained using NVIDIA

DIGITS for 1000 epochs on a NVIDIA GTX 1080-Ti with CUDA 8.0 and cuDNN optimized

by AdaGrad [46] built into Caffe, with a fixed batch size of 512 where gradients were accumu-

lated over multiple minibatches.

The comparative approach used WND-CHARM [33] to extract 4059 engineered features

from each ROI, including color, pixel statistics, polynomial decompositions, and texture fea-

tures among others. This rich feature set has shown to perform as well or better as other feature

extraction algorithms on a diverse range of biomedical image [33]. The top 20 features were

selected using the minimal Redundancy Maximal Relevance algorithm [34]. Alternative fea-

ture selection methods, such as the Wilcoxon Rank-Sum test and the Fischer score, did not
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show improved performance. These features were used to train a 1000 tree Breiman-style ran-

dom decision forest [35] using the TreeBagger function in MATLAB. The output of the ran-

dom decision forest was an image-level probability of whether an ROI belongs to the failing

class.

Evaluation metrics

The performance of the heart failure classifiers was evaluated using traditional metrics derived

from a confusion matrix including accuracy, sensitivity, specificity, and the positive predictive

value [47]. The area under the ROC curve was computed over the three-fold cross-validated

models.

The human-level detection of heart failure was performed independently by two patholo-

gists experienced in cardiac histopathology. In order to train the pathologists for the task, they

were given access to the 104 patients in the training dataset, grouped by patient, with their

images and ground truth labels. To evaluate their performance on the test set, each pathologist

was blinded to all patient information in the test set. For each patient in the test set, they were

asked to provide a binary prediction of whether the set of images were from a patient with clin-

ical heart failure or not. The pathologists were given unlimited time to complete the task. The

inter-rater agreement was measured using Cohen’s kappa statistic [48].

Code and data availability

WND-CHARM is open-source and hosted at https://github.com/wnd-charm/wnd-charm.

The deep learning procedure used here follows the method described in Janowczyk and

Madabhushi 2016 [32]; a deep learning tutorial with source code is hosted at http://www.

andrewjanowczyk.com/deep-learning. The image data that support the findings of this study

have been uploaded to the Image Data Resource [49] under accession number idr00042, which

can be found at https://idr.openmicroscopy.org/webclient/.

Statistics

Statistical tests were performed in MATLAB R2016a or newer. An unpaired, two-sample t-test

was used to compare two sample means. A one sample t-test was used to compare the CNN to

the best human performance value for each evaluation metric. A two-sample Kolmogorov-

Smirnov test was used to compare two distributions. Unsupervised clustering was performed

using the package consensusClusterPlus in R [50].

Supporting information

S1 Fig. Example cardiac histopathology. (a) Normal cardiac tissue shows regular, dense

arrays of cardiomyocytes (green) with stroma limited to perivascular regions (orange). (b)

Patients with heart failure have an expansion of the cellular and acellular stromal tissue

(orange) that disrupts cardiomyocyte arrays (green). Other features seen in heart failure

include large myocytes with enlarged, hyperchromatic, “boxcar” nuclei (arrowhead, enlarged

200μm region shown in the inset). Images are 5x magnification and the scale bar is 1mm.

(PDF)

S2 Fig. Histogram of the probabilities for the image and patient-level predictions. The

probability of heart failure per image is shown in (A). Values close to one represent a high

probability of heart failure and values close to zero represent a low probability of heart failure,

or conversely a high probability the patient is clinically normal. The eleven ROIs per patient

were averaged to generate the patient-level probability, shown in (B). In general, the random
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decision forest gives predictions closer to 0.5 than the CNN, at the image and patient-level,

indicating that the random forest predictions are less confident than the CNN predictions.

(PDF)

S3 Fig. Visualizing a hidden-layer activation of the CNN. The original H&E stained image is

shown on the left. One hidden layer ReLU activation after the Conv1a layer has been

upsampled to match the original image size and is shown on the right in a rainbow colormap.

This node appears to activate strongest on regions of myocyte tissue as opposed to nuclei or

stroma/ fibrosis. Identifying the myocyte from the stroma is important in heart failure, as

fibrosis is a common histologic finding in heart failure. Future work will investigate the other

hidden-layer activation patterns in this and other networks in order to understand which fea-

tures the network uses to make predictions.

(PDF)

S1 Table. Primary neural network architecture. The primary network used in this study was

adapted from Janowczyk and Madabhushi (32). This fully-convolutional architecture is com-

posed of alternating convolutional, batch normalization [39], and Rectified Linear Unit

(ReLU) activation layers [40, 41]. The network has approximately 13,550 learnable parameters.

(PDF)

S2 Table. Top 20 features from mRMR feature selection. Top 20 features in the training

dataset identified by mRMR feature selection. A complete list of features computed by

WND-CHARM can be found in Orlov et al. 2008.

(PDF)

S3 Table. Performance evaluation for additional neural network architectures. We assessed

the image-level performance accuracy for neural network architectures including AlexNet

[42], GoogLeNet [43], ResNet50 [44], and ResNet50 with reduced parameters where we

reduced the number of kernels by half at each layer. These networks with a larger field of view

and higher capacity (more parameters) and they tend to easily overfit the training/validation

dataset, even when using regularization techniques and aggressive data augmentation. This

overfitting with high-capacity models is likely due to the small size of the dataset.

(PDF)
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