
PERSPECTIVE
published: 10 June 2020

doi: 10.3389/fendo.2020.00385

Frontiers in Endocrinology | www.frontiersin.org 1 June 2020 | Volume 11 | Article 385

Edited by:

Marilena Kampa,

University of Crete, Greece

Reviewed by:

Richard T. Premont,

Harrington Discovery Institute,

United States

Sylvie Claeysen,

Institut National de la Santé et de la

Recherche Médicale

(INSERM), France

*Correspondence:

Ashok Kumar

kash@ufl.edu

Specialty section:

This article was submitted to

Molecular and Structural

Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 01 April 2020

Accepted: 14 May 2020

Published: 10 June 2020

Citation:

Kumar A and Foster TC (2020) G

Protein-Coupled Estrogen Receptor:

Rapid Effects on

Hippocampal-Dependent Spatial

Memory and Synaptic Plasticity.

Front. Endocrinol. 11:385.

doi: 10.3389/fendo.2020.00385

G Protein-Coupled Estrogen
Receptor: Rapid Effects on
Hippocampal-Dependent Spatial
Memory and Synaptic Plasticity
Ashok Kumar* and Thomas C. Foster

Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States

In the hippocampus, estrogen regulates gene transcription linked to neuronal growth,

neuroprotection, and the maintenance of memory function (1–3). The mechanism is

likely to involve genomic regulation through classic estrogen receptor (ER) signaling

cascades that influence transcription. Estrogens binding to classic nuclear ERs, alpha

(ERα) and beta (ERβ), and have pleotropic effects on development, behavior, and

neurophysiological functions, including synaptic plasticity and memory consolidation

(4–7). In addition to ERα and ERβ, estrogen can also initiate activation of classical

second messenger signaling cascades to influence the activity of G-proteins and a

host of kinases, resulting in rapid changes in physiology (8–14). These rapid effects

of estrogen are commonly mediated by membrane receptors. In the late 90s, multiple

laboratories cloned cDNA/gene for an orphan G-protein-coupled receptor with very

low homology with other G-protein-coupled receptors and named it G-protein-coupled

receptor 30 (GPR30) (15–20). Later in 2007, the International Union of Basic and Clinical

Pharmacology designated GPR30 as G protein-coupled estrogen receptor (GPER) (21);

GPER is a seven-transmembrane G-protein-coupled receptor, predominantly expressed

on the cell membrane (22). Interestingly, GPER is reported to mediate many of the rapid

responses of estradiol in the adult brain, and is widely distributed in the mammalian

brain including the plasmamembrane of hippocampal neurons (23–31). GPERmodulates

second messenger signaling cascades involving Gαs- and Gαi/o-associated increase in

cyclic adenosine monophosphate and phosphoinositide 3-kinase or Src protein kinase

respectively (32, 33). Activation of GPER is also associated with phospholipase C, and

the inositol receptor and ryanodine receptor-mediated increase in intracellular calcium

(24, 34). This commentary is concentrated specifically on the possible rapid effects of

GPER in hippocampal-dependent spatial memory function and synaptic plasticity.
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ROLE OF GPER IN
HIPPOCAMPAL-DEPENDENT SPATIAL
MEMORY

In hippocampal neurons, GPER immunoreactivity is associated
with the plasma membrane and endoplasmic reticulum, along
with axon terminals and dendritic spines (22, 24, 29–31,
35–40). It is well established that estrogen can influence
synaptic function and improve memory (12, 41–49). G1, a

FIGURE 1 | Effect of GPER selective agonist, G1 on hippocampal synaptic responses. (A) Time course of the field EPSP measurements on slices obtained from wild

type (WT, blue), estrogen receptor (ER) alpha knockout (ERαKO, red), and ER beta knockout (ERβKO, green) mice obtained 10min before and 45min after application

of G1. (B) G1 blocked the 17-beta estradiol (E2)-induced enhanced synaptic responses in hippocampal slices. Time course of field EPSP measurements obtained

from hippocampal slices 10min before and 45min after G1 application. Bath application of G1 significantly enhanced the synaptic response. Baseline was

re-normalized from last 10min recording (dashed line) following the start of G1 application, and E2 was bath applied in the continued presence of G1. E2 in presence

of G1 failed to further enhance synaptic response. Adapted from Kumar et al. (11). Copyright permission granted order # 480097130349.

nonsteroidal high-affinity selective GPER agonist, does not

bind classical ERs (50), but similar to estrogen, improves

cognitive performance, including social recognition, spatial

working memory, and long-term spatial memory consolidation

(51–59). Results from recent studies by the Frick group, elegantly

demonstrate that like 17-beta estradiol (E2), activation of
GPER, by direct infusion of G1 into the dorsal hippocampus,
can facilitate object recognition memory and hippocampal-
dependent spatial memory in ovarectimized female mice. The
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enhancement of memory was not due to activation of the
extracellular signal-regulated kinase signaling normally observed
following E2 treatment. Rather, GPER activation was associated
with phosphorylation of c-Jun N-terminal, cofilin-mediated
actin polymerization, and spinogenesis in region CA1 (55,
57). Overall, these studies provide strong evidence that like
E2, activation of GPER can facilitate hippocampal-dependent
memory performance.

GPER AND HIPPOCAMPAL SYNAPTIC
FUNCTION

In addition to enhancing memory performance, GPER activation
also contributes to synaptic plasticity. Activation of GPER
enhances synaptic transmission at hippocampal CA3-CA1
synapses (11, 54, 60, 61). We recently demonstrated that GPER is
a major component of E2-mediated upregulation in extracellular
signal-regulated kinase and the rapid facilitation of synaptic
responses at CA3-CA1 hippocampal synapses of ovariectomized
mice. In addition, the GPER agonist, G1, induced an increase of
excitatory postsynaptic potentials (EPSPs) in hippocampal slices
obtained from ovariectomized ER alpha knockout (ERαKO) and
ER beta knockout (ERβKO) mice (Figure 1A). Confirmation
that GPER is a mechanism for rapid E2 effects on synaptic
transmission was proven by demonstrating that prior application
of G1 blocked the E2-induced enhancement of synaptic responses
in hippocampal slices (Figure 1B), while bath application
of E2 in absence of G1 increases synaptic responses (11).
Interestingly, Oberlander andWoolley demonstrated that GPER-
induced potentiation of excitatory synaptic responses in CA1
hippocampal pyramidal neurons is restricted to females and
involves postsynaptic mechanisms (61). The role of GPER in
synaptic plasticity is still evolving (62–65); however, a number of
recent studies indicate that activation of GPER contributes to a

rapid increase in hippocampal dendritic spinogenesis and spine
density (11, 54, 57, 60, 61, 66, 67).

CONCLUDING STATEMENT

In many ways, the effects of E2 are opposite to that of aging (3,
68). Recent findings indicate that similar to E2, GPER participates
in the rapid effects of the E2-induced increase in hippocampal
synaptic transmission and improved cognition. Thus, it will
be interesting for future research to explore changes in GPER
expression or function over the life span, and their contribution
to impaired cognitive and synaptic function associated with aging
and neurodegenerative diseases.
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