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Fields of a Bessel-Bessel light bullet 
of arbitrary order in an under-dense 
plasma
Yousef I. Salamin1,2

Considerable theoretical and experimental work has lately been focused on waves localized in time 
and space. In optics, waves of that nature are often referred to as light bullets. The most fascinating 
feature of light bullets is their propagation without appreciable distortion by diffraction or dispersion. 
Here, analytic expressions for the fields of an ultra-short, tightly-focused and arbitrary-order Bessel 
pulse are derived and discussed. Propagation in an under-dense plasma, responding linearly to the 
fields of the pulse, is assumed throughout. The derivation stems from wave equations satisfied by the 
vector and scalar potentials, themselves following from the appropriate Maxwell equations and linked 
by the Lorentz gauge. It is demonstrated that the fields represent well a pulse of axial extension, L, 
and waist radius at focus, w0, both of the order of the central wavelength λ0. As an example, to lowest 
approximation, the pulse of order l = 2 is shown to propagate undistorted for many centimeters, in 
vacuum as well as in the plasma. As such, the pulse behaves like a “light bullet” and is termed a “Bessel-
Bessel bullet of arbitrary order”. The field expressions will help to better understand light bullets and 
open up avenues for their utility in potential applications.

Bessel beams were discovered more than three decades ago1,2 and have found numerous applications since, 
such as in optical trapping and tweezing3–6, precision drilling7,8, optical microscopy9 and laser acceleration10. 
Tightly-focused and temporally short pulses (or equivalently, ones that are of finite spatial extensions) are cur-
rently in great demand for many applications11–16. Central to the utility of such pulses is the need for analytic 
expressions for their electric and magnetic field components.

This paper aims to present analytic expressions for the fields of an ultra-short and tightly-focused Bessel pulse 
of arbitrary order, propagating in an under-dense plasma. The expressions, essentially describing a non-spreading 
wavepacket17–21, can be useful for many applications, including laser acceleration and high-harmonic generation 
(HHG) by colliding a tightly-focused and ultra-short pulse with a counter-propagating electron bunch22. In par-
ticular, a non-spreading wavepacket is highly desirable for laser-assisted atomic HHG23–25. Other plasma-based 
applications, such as the creation of plasma channels26–29 treated theoretically by particle-in-cell (PIC) simula-
tions, may find the analytic expressions quite useful.

This work introduces orbital angular momentum into the description of a bessel-Bessel bullet30,31, for the 
first time. Among other things, opening up the Hilbert space of orbital angular momentum to be used to encode 
information in the fields of the bullets will boost efforts to utilize them in information transfer32.

Laser Bessel beam technology, based upon the use of axicon lenses, or combinations of annular slits and 
Fourier transforming lenses2,32 to achieve the required polarizations, is quite established now. However, experi-
mental realization of the specific orbital angular momentum states of a Bessel-Bessel bullet may be challenging. 
Attempts to produce spatio-temporally localized Bessel-Bessel bullets experimentally may be guided by, and can 
benefit from, the recent work of Wise et al.33 on Bessel-Airy light bullets.

The basic assumption made in this work is that the response of the plasma to the fields of the laser pulse may 
be considered linear34. This can reliably be the case for non-relativistic pulse peak intensities (roughly, as long as 
I ≪ 1018 W/cm2, for a laser wavelength of 1 μm). Under these conditions, Maxwell’s equations are entirely equiv-
alent to30,35–37
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for the vector potential A, together with a similar equation holding for the scalar potential, Φ, provided the two 
potentials are linked by the Lorentz gauge condition. Equation (1) has an effective plasma wavenumber kp = ωp/c, 
in which c is the speed of light in vacuum and the plasma frequency is ω ε= n e m/p 0

2
0 , where n0 is the number 

density of the ambient electrons, ε0 is the permittivity of free-space and m and −e are the mass and charge, respec-
tively, of the electron.

Methods
Change of coordinates. Equation (1) will be solved for the vector potential and the Lorentz condition will 
be used to obtain the associated scalar potential30,31,37–42. This process finally culminates in finding expressions 
for the E and B fields from the space- and time-derivatives of the potentials35. First, the Laplacian is expressed in 
cylindrical coordinates (r, θ, z). Next, assuming propagation along the z-axis, the following pair of new coordi-
nates will be introduced in terms of the z- coordinate and the time

η ζ=
+

= − .
z ct z ct

2
; and (2)

For the centroid of the pulse (assumed to have been created at the origin of coordinates at t = 0 and to travel 
along the z- axis at approximately the speed of light) z ~ ct and, hence, η ~ ct and ζ ~ 0. In other words, η gives the 
position, on the propagation axis, of the centroid of the pulse at any time t, relative to the origin and ζ determines 
its coordinate relative to the moving centroid itself37. Employing the new variables, Eq. (1) transforms into
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The fields to be derived below possess radially- as well as azimuthally-polarized electric field components. 
Thus, the object to be described by these fields will be an ultra-short and tightly-focused laser pulse, which carries 
orbital angular momentum. In other words, it is the ultra-short, tightly-focused analogue of an arbitrary-order 
Bessel beam1,2,32,42–45.

Truncated series solution. Letting ẑ be a unit vector in the propagation direction and k0 = 2π/λ0 a central 
wavenumber corresponding to a central wavelength λ0, a one-component vector potential is put forth through 
the ansatz42

ˆθ η ζ θ η ζ= ζA r za a r e( , , , ) ( , , , ) , (4)ik
0

0

with a0 a constant amplitude. The amplitude a(r, θ, η, ζ) is next synthesized from the Fourier components
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for each Fourier component ak. Solution to Eq. (6) will be sought using the standard textbook technique of sep-
aration of the variables. Thus, inserting ak(r, θ, η, k) = fkF(r)Θ(θ)G(η) into (6) and separating the variables, as 
usual, gives
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Solutions to the above equations, which describe the physical situation of interest to us in this work, are: 
Θ ~ exp(ilθ) with l an integer, G a simple complex exponential and F ~ Jl(krr) an ordinary Bessel function of the 
first kind and order l. Furthermore, kr is a separation constant, or radial index (not a radial wavenumber, because 
the wavevector does not have a radial component). In an experiment, the size of kr will ultimately be determined 
by the size of the aperture used to produce the pulse, as will be described below.

The kth Fourier component of the vector potential amplitude now takes on the form
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with fk independent of η, θ and r. For fk, we make the simple choice46
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Implied in this choice is the assumption that the initial wavepacket, which evolves into the propagating pulse, 
consists of waves that possess a uniform spectrum, or distribution of wavenumbers30,31,40 of width Δk and height 

π Δk2 / . Note that this choice renders ak(0,0,0,k) = fk. Strictly speaking, this holds only for l = 0, in which case fk 
has the Fourier transform a(0,0,0,ζ) = f(ζ) = sinc(ζΔk/2). The quantity | f(ζ)|2 represents the initial pulse intensity 
profile, with an approximate full-width-at-half-maximum ~2π/Δk. Thus, it is plausible to adopt L = 2π/Δk as 
representing the initial length (spatial extension) of the pulse in its propagation direction. On the other hand, the 
waist radius at focus, w0, will be shown shortly to be fixed by x1,l, the first zero of Jl.

Putting (9) into (8) and the result back into (5) gives
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Unfortunately, the integration in (10) cannot be carried out in closed analytic form. However, viewed as a 
function of k′ = k + k0, φk can be power-series expanded around k0, according to
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The integration in (10) may now be carried out in terms of incomplete gamma functions. Furthermore, on 
account of the fact that only the leading term(s) in (11) may contribute significantly in applications of interest, the 
series giving the full vector potential can be truncated to order n and written as
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in which Δk has been replaced by 2π/L.

Zeroth-order vector potential. From A(n) follows a complete description for the fields of the ultra-short 
and tightly-focused pulse. The presence of Jl suggests that this object is the short-pulse analogue of an lth-order 
Bessel beam. The assumption will also be made that the first term in the series contributes the most, while terms 
beyond the first contribute negligibly30. Otherwise, one may still work with the truncated series to any desired 
order. The following expression for the zeroth-order vector potential follows from Eq. (12)
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where the sinc function has been replaced by j0, the zero-order spherical Bessel function of the first kind, and ϕ0 
is a constant phase. Note that in the case of a pulse containing a few cycles, ϕ0 plays the role of a carrier envelope 
phase (CEP).

For a pulse created at t = 0, with its centroid at the origin of coordinates, A a J k r/ ( )l r
(0)

0
2 2= . Surface plots of 

this quantity, in the focal plane, are shown in Fig. 1, for l = 0, 1, 2 and 5, exhibiting all the expected properties of 
the square of Jl. It should also be borne in mind that the axial extension of the pulse, L, was determined above by 
the first zero of j0. The temporal width of the pulse may be taken as τ ~ L/c, while the waist radius at focus, w0, is 
such that krw0 = x1,l, the first zero of Jl. With the waist radius predetermined as w0 = 0.8λ0 in Figs 1–4, the radial 
index kr → kr,l, i.e., it takes on different values for the different orbital angular momentum states indexed by l. In 

Figure 1. Surface plots of the initial (t = 0) vector potential intensity profile |A(0)/a0|2 in the focal plane (z = 0) of 
ultrashort (L = 1.5λ0) and tightly focused (w0 = 0.8λ0) laser pulses of central wavelength λ0 = 1 μm, propagating 
in vacuum (n0 = 0). Other parameters used are: ϕ0 = 0 and kr = x1,l/w0, where x1,l is the first zero of Jl(x).
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an experiment, the radial indices and waist radii may alternatively be determined from knowledge of the radius 
ra of the aperture employed to produce and observe the intensity patterns. The radius wn containing the nth 
observed ring would be such that kr,lwn = xn,l, where xn,l is the nth zero of Jl. Using wn ~ ra, one gets kr,l ~ xn,l/ra. Had 
Fig. 1, in which ra = 3λ0, been produced experimentally, this procedure would have resulted in the values listed in 
the third column of Table 1 for the patterns displayed, respectively, in Fig. 1(a–d). These radial index values lead 
to the waist radii at focus listed in the fourth column of the same Table.

It will be demonstrated below that both L and w0 stay roughly fixed in magnitude during propagation of the 
pulse, thus making the pulse essentially diffraction-free and dispersion-free. This may all be traced back to the 
absence of nonlinear terms in Eq. (1). The above features qualify the pulse for being a “light bullet”33,46–52.

Results
The fields. The electric and magnetic fields of the pulse, explicit knowledge of which is required for many 
analytic and numerical calculations, follow from E = −∇Φ − ∂A/∂t and B = ∇ × A, most appropriately in cylin-
drical coordinates. The electric field has three components: radial Er, azimuthal Eθ and axial Ez. These may, respec-
tively, be found from31,37

Figure 2. Surface plots of the initial (t = 0) intensity profiles in the focal plane (z = 0) of the electric field components 
given by Eqs (18 and 19). (a–d) E E/r

(0)
0

2
, (e–h) θE E/(0)

0
2
 and (i–l) E E/z

(0)
0

2
. The columns (left to right) are for l = 0, 

1, 2 and 5, respectively. The parameters used are: L = 1.5λ0, w0 = 0.8λ0, λ0 = 1 μm, n0 = 0, ϕ0 = 0 and kr = x1,l/w0, 
where x1,l is the first zero of Jl(x).

l n kr,l ~ xn,l/ra λ −[ ]0
1 w0,l ~ (x1,l/xn,l)ra [λ0]

0 3 2.88 0.834

1 4 4.44 0.863

2 5 5.99 0.858

5 8 10.6 0.827

Table 1. Radial index values kr,l ~ xn,l/ra and waist radii w0,l ~ (x1,l/xn,l)ra that would be associated with intensity 
patterns similar to those of Fig. 1, produced using an aperture of radius ra = 3λ0, which would admit n rings in a 
typical case. Note that w0,l > w0 = 0.8λ0, for all cases considered.
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where s = ick0 − (1/a)∂a/∂t. Moreover, the magnetic field has two components: radial, Br and azimuthal, Bθ, which 
follow, respectively, from
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According to Eqs (14–16) the electric field components, after some tedious algebra and with arguments of all 
the Bessel functions temporarily suppressed, are
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Furthermore, Eq. (17) give the following expressions for the associated magnetic field components
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Figure 3. Surface plots of the initial (t = 0) intensity profiles in the focal plane (z = 0) of the magnetic field 
components given by Eqs (21 and 22). (a–d) cB E/r

(0)
0

2
 and (e–h) θcB E/(0)

0
2
. The columns (left to right) are for 

l = 0,1,2 and 5, respectively. The parameters used are: L = 1.5λ0, w0 = 0.8λ0, λ0 = 1 μm, n0 = 0, ϕ0 = 0 and 
kr = x1,l/w0, where x1,l is the first zero of Jl(x).
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Equations (18–24) give the field components of a pulse propagating in vacuum by taking the limit kp → 0. They 
also have the expected limits in the case of a zero-order Bessel pulse36, for which the components θE (0) and Br

(0) are 
absent, while Er

(0) and θB (0) vanish identically at all points on the z- axis. These components have the hollow inten-
sity profiles displayed in Figs 2 and 3. Note also that for the l = 1 pulse only the intensity profile corresponding to 
Ez

(0) is hollow. On the other hand, all profiles are hollow for l ≥ 2, due to the vanishing of Jl at r = 0, for all l ≥ 1.

Propagation characteristics. Using the second of Eq. (13) one gets a general expression for the wavevector 
of the pulse in cylindrical coordinates, namely

ˆ ˆϕ θ
α

= ∇ = + = = − .θ θk k k l
r

k kk z; ,
2 (25)z z

(0)
0

According to Eq. (25) the wavevector does not have a radial component and wavefronts (surfaces of constant 
phase) are helices of fixed radii r. In this sense the bullet carries orbital angular momentum, with the index l labeling 
different states in the relevant Hilbert space42. In general, an effective frequency for the bullet may be obtained from 
ω = −∂ϕ(0)/∂t = c(k0 + α/2), from which the dispersion relation c k k( / ) 2z

2 2
0ω α− = , follows immediately. From 

this, in turn, one gets an effective wavenumber ω= = + +k c k k k/ z r p
2 2 2 . For the fields to describe a propagating 

pulse, the axial wavevector must be positive definite, kz > 0. According to the last of Eqs. (25) this condition is equiv-
alent to the requirement kr < 2k0 = 4π/λ0. All cases in Table 1 satisfy this condition and, hence, should describe 
pulses propagating through an aperture of radius ra = 3λ0.

Key propagation characteristics of the pulse are illustrated in Fig. 4. The figure displays surface plots, in the 
z-r plane, of the intensity profile |Ez/E0|2 for an ultra-short and tightly-focused Bessel pulse of order l = 2, at the 

Figure 4. (a–c) Surface plots of the axial electric field intensity profile E E/z
(0)

0
2
, in the z − r plane, for the ultra-

short and tightly-focused analog of the order-2 Bessel beam (l = 2). These are snapshots taken at t = 10 fs, 10 ps 
and 1 ns, respectively, during propagation of the pulse in vacuum. (e–g) Show the same during propagation in 
an under-dense plasma, with ambient electron density n0 = 1020 cm−3. (d) and (h) show radial variation of the 
intensity profile at t = 1 ns at the plane defined by z = ct. The remaining parameters used are: L = 1.5λ0, 
w0 = 0.8λ0, λ0 = 1 μm, ϕ0 = 0 and kr = x1,2/w0, where x1,2 is the first zero of J2(x).
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instants (following generation at t = 0) of t = 10 fs, 10 ps and 1 ns. (a–c) display behavior during propagation in 
vacuum and (e–g) in an under-dense plasma of ambient electron density n0 = 1020 cm−3. From both sets of figures, 
one sees that the pulse propagates without distortion, neither by dispersion nor by diffraction. Over the time 
interval from 0 to 1 ns, the centroid of the pulse covers a distance, in the propagation direction, of about 30 cm, 
with the pulse-shape remaining almost intact. (d) and (h) show variations with the radial distance r of the axial 
intensity profile in the plane z = ct. Comparison of (d) with (h) reveals that the presence of a plasma background 
alters the central intensity maximum by roughly 10%, compared to its vacuum-based counterpart, for the param-
eter set used. For this particular set of parameters, the fields are enhanced by the presence of the plasma.

Discussion
Fields of an ultra-short and tightly-focused Bessel pulse of arbitrary order have been derived. The expressions 
presented and discussed in this paper are fully analytic, but approximate. They have been arrived at strictly ana-
lytically from a one-component vector potential polarized along the propagation direction of the pulse, together 
with a scalar potential linked to the said vector potential by the Lorentz gauge. Vector potential of the pulse of 
finite extension has been synthesized, like a wavepacket, from Fourier components of a uniform wavenumber 
distribution. The full vector potential has been given as a power-series expansion and the leading (zeroth-order) 
term only has been used to derive the electric and magnetic field components reported in this paper. Intensity 
profiles of the field components have been discussed and shown to propagate like those of a laser bullet, without 
distortion by dispersion or diffraction. Because of the presence of two Bessel functions in the expression giving 
the zeroth-order vector potential, the pulse deserved the designation as a “Bessel-Bessel laser bullet”.

As the figures presented above show, fields of the orbital-angular-momentum-carrying Bessel-Bessel bullets 
have complicated intensity distributions, with some of them possessing sizable background radial oscillations, in 
addition to the main/central peaks. To rid a typical pulse of its background oscillations and make it useful for such 
applications as laser-acceleration, considerable pre- and post-pulse work may be required, which can alter the 
intensity and impact the efficacy of the process in question. Furthermore, in applications like HHG, the polariza-
tion and carrier envelope phase of the pulse play important roles. Control of the polarization-related effects and 
CEP stability may turn out to be challenging for the laser technology that would aim for experimental realization 
and ultimate utilization of a Bessel-Bessel bullet.
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