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ABSTRACT

Diseases and phenotypes caused by disrupted tran-
scription factor (TF) binding are being identified, but
progress is hampered by our limited capacity to
predict such functional alterations. Improving pre-
dictions may be dependent on expanding the set
of bona fide TF binding alterations. Allele-specific
binding (ASB) events, where TFs preferentially bind
to one of the two alleles at heterozygous sites, re-
veal the impact of sequence variations in altered TF
binding. Here, we present the largest ASB compila-
tion to our knowledge, 10 765 ASB events retrieved
from 45 ENCODE ChIP-Seq data sets. Our analysis
showed that ASB events were frequently associated
with motif alterations of the ChIP’ed TF and poten-
tial partner TFs, allelic difference of DNase I hyper-
sensitivity and allelic difference of histone modifica-
tions. For TF dimers bound symmetrically to DNA,
ASB data revealed that central positions of the TF
binding motifs were disproportionately important for
binding. Lastly, the impact of variation on TF binding
was predicted by a classification model incorporat-
ing all the investigated features of ASB events. Clas-
sification models using only DNase I hypersensitiv-
ity and sequence data exhibited predictive accuracy
approaching the models with substantially more fea-
tures. Taken together, the combination of ASB data
and the classification model represents an important
step toward elucidating regulatory variants across
the human genome.

INTRODUCTION

With recent advances in DNA sequencing technology,
comprehensive analysis of sequence variants in individual
genomes is possible for the first time. The technology has en-
abled genetics researchers to systematically seek variations

that contribute to disease phenotype. Up to now, clinical
approaches using DNA sequencing have focused on about
2% of the human genome containing protein-coding exons.
In contrast, most disease associated variants arising from
genome-wide association studies are situated within non-
coding regions (1). These regions are enriched with tran-
scription factor (TF) binding sites (TFBSs) (2), critical se-
quences for the regulation of gene expression. Thus, there is
a pressing need to predict the impact of genetic variations
on TF binding.

The prediction of which DNA sequence alterations will
alter TF binding is a long-standing challenge in bioinfor-
matics. Progress is hampered by the limited number of re-
liable data sets for TF binding disruption. Although thou-
sands of expression quantitative trait loci have been identi-
fied, they are not suitable for the study of TF binding alter-
ation because TF binding information is not available. Only
a few hundreds of naturally occurring variations have been
experimentally validated to alter the binding of TFs, with
low depth for any specific TF (3,4). Thus, current studies
cannot directly train a model on true alteration data. In-
stead existing methods score the binding potential of the
two alleles based on DNA sequence and then quantify the
difference, with examples including is-rSNP (4), BayesPI-
BAR (5) and deltaSVM (6). However, many TF binding
alterations do not arise from genetic difference within the
TFBSs, as other influences can contribute, such as epige-
netic variation and disrupted binding of cooperative TFs
(7). The lack of experimentally determined disruption data
makes it difficult to capture multiple defining properties of
disrupted TFBSs.

The availability of large-scale data obtained through
the chromatin immunoprecipitation followed by sequencing
(ChIP-Seq) technique has transformed the annotation of
regulatory elements (8–10). Through the ENCODE project
(11,12), there is a widespread access to millions of positions
at which TFs are assumed to be present in at least one tis-
sue or cell-type. The analysis of ChIP-Seq data for the pur-
pose of regulatory variant discovery has been introduced.
In short, by combining large-scale genotype data (such as
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whole genome sequencing, WGS) with ChIP-Seq, it is now
feasible to identify the TF binding preference between the
two alleles at heterozygous sites within bound regions (13–
17). Heterozygous site binding events can be classified as
allele specific binding (ASB) or non-ASB events specifying
whether one allele is significantly preferred or not. The ad-
vantages of heterozygous site binding data are that: (i) it
provides high-throughput compilation of altered TF bind-
ing data; and (ii) it compares TF binding at two similar se-
quences (1 nucleotide difference) in the same cell context,
reducing technical and biological noise (18).

In this work, we focused on heterozygous site binding
events to interpret the impact of variations on TF-DNA
binding. Using genotype calls from WGS, we extracted het-
erozygous site binding events across 45 TF ChIP-Seq ex-
periments from the ENCODE project (11). We identified a
set of features correlated with TF heterozygous site bind-
ing events, including motif alterations of the ChIP’ed TFs
and other potential partner TFs, allelic difference of DNase
I hypersensitivity (DHS) and allelic difference of histone
modifications. Finally, a classifier was trained to predict the
variation impact on TF binding, revealing that combining
DHS and WGS was an efficient approach to predict altered
TF binding. Our results suggest that heterozygous site bind-
ing events provide a foundation to identify features that in-
formed the detection of cis-regulatory variants.

MATERIALS AND METHODS

Genotype data of investigated cell lines

Genotype data for GM12878 and 6 other lymphoblas-
toid cell lines (Table 1) were obtained from the Com-
plete Genomics website (as of June 2014, specific hyper-
links provided in Supplementary Table S1) (19). For HeLa-
S3, NIH granted permission to access raw sequence data
(accession number phs000640.v2.p1) (20). Encrypted SRA
files of HeLa-S3 were converted to raw reads using fastq-
dump command from sratoolkit (https://github.com/ncbi/
sratoolkit, Version 2.3.2). Raw reads were mapped to the
hg19 reference genome using bwa (version 0.7.10-r789) with
the command bwa sampe with default parameters. The
GATK tool (version 2.7-4-g6f46d11) IndelRealigner (21)
was used to realign reads around indels. Finally, samtools
(version 0.1.9-r783) mpileup (22) was used to call variations.
Any variation with a quality of at least 30 was kept for sub-
sequent analysis.

ChIP-Seq read alignment

We downloaded ChIP-Seq data for diverse TFs, DHS data
and histone modification data, from the ENCODE project
(11)(Supplementary Table S1). For each cell line, we built a
personalized version of the hg19 reference genome in which
the single nucleotide variation (SNV) sites were replaced
with IUPAC degeneracy codes according to the genotype
data. The downloaded ChIP-Seq reads were mapped to the
personalized reference genome using Novoalign (version
3.01.00) with default parameters. We removed any reads
with a mapping quality lower than 30.

Mapping bias simulation

Even though we used a personalized reference genome to
improve the mapping sensitivity of alternative alleles, there
remained a potential mapping bias toward certain alleles
(13,17,23). To address this issue, we performed a read map-
ping simulation to estimate the mapping bias at each het-
erozygous site. For each heterozygous site within the TF
ChIP-seq peak regions, we generated all the possible 36-bp
reads overlapping with the heterozygous sites for each allele
and each strand. Then, the generated reads were mapped to
the personalized reference genome using the same settings
as for the real ChIP-Seq data. Finally, we assessed the map-
ping bias and excluded the biased sites if the imbalance ratio
of any allele was greater than 60%.

Retrieve heterozygous site binding events and call ASB events

Uniformly processed ChIP-Seq narrowPeaks were down-
loaded from ENCODE (24). In order to increase the confi-
dence of TF-bound regions, we narrowed the peaks to the
100 base pairs (bp) core regions centered around the peak
max positions (25,26). For each TF ChIP-Seq data set, we
retrieved the read counts of the two alleles at heterozygous
site binding events within the ChIP-Seq peak core regions.
Replicates were pooled together to increase the overall read
coverage (17,27). Peak core regions on sex chromosomes or
overlapping with copy number variant regions (Supplemen-
tary Table S1) were filtered out. We excluded from the down-
stream analyses core peaks that harboured >1 heterozygous
SNVs (8311 out of the 79 565 heterozygous core peaks) to
ensure that the two alleles differed by a single nucleotide.
For the sites supported by at least 10 reads, an ASB event
was called if the read count on one allele was significantly
different from the other allele based on a binomial test (false
discovery rate (FDR) <0.05). As an aside, we explored the
option of using replicate normalization and a beta-binomial
method (see Supplementary Text for details). The hypothe-
sized probability of the binomial test was set as the mapping
imbalance detected in the above-mentioned read mapping
simulation at each heterozygous site. For ASB events, we
further required the favored allele to show at least 60% allele
imbalance (proportion of reads mapped to one allele over
the total) following (27), to remove extreme P-values caused
by small changes at high read depth loci. We labeled the al-
lele with higher number of mapped reads as the favored al-
lele, and the lower one as the unfavored allele; in non-ASB
events, if the numbers of mapped reads on the two alleles
were equal, the reference allele was labelled as favored.

TFBS identification in ChIP-Seq peak regions

TF binding motifs were downloaded from the JASPAR
database (version 2014) (28). The motif of each correspond-
ing TF was scanned against the peak regions using the
Biopython (version 1.65) motifs module (28,29). For each
scanned site, the motifs module provided the motif score
(position weight matrix, PWM, score) and the P-value of
the score against a null uniform distribution of the four nu-
cleotides (referred to as motif P-value). Sites with scores
above the FDR threshold of 0.001 were predicted as TF-
BSs.

https://github.com/ncbi/sratoolkit
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Table 1. Overview of heterozygous site binding data

Cell TF DHS and Histones Peak Count
Heterozygous
binding sites events ASB

GM12878 16 12 405 427 17 222 2314
HeLa-S3 23 12 518 558 18 481 5533
GM12872 1 0 47 151 2496 488
GM12873 1 0 51 005 2575 552
GM19238 1 0 49 938 2909 500
GM19239 1 0 41 085 2473 282
GM19240 1 0 46 036 2972 573
GM12864 1 0 46 798 2390 523
8 45 24 1 205 998 51 518 10 765

For each investigated cell line (first column), we reported the number of compiled TF ChIP-Seq experiments (second column) and DHS and histone
modification data sets (third column). The corresponding total number of TF ChIP-Seq peaks was given in the fourth column. Finally, we provided the
number of heterozygous sites supported by at least 10 reads within the ChIP-Seq peaks (fifth column) and the number of ASB events (sixth column). Note
that the numbers were derived from the compilation of all the TF ChIP-Seq data for each cell line. Details for each TF can be found in Supplementary
Table S2.

Define the ASB frequency within TFBS

We defined the frequency of ASB events at each TF mo-
tif position as the proportion of ASB events observed at
this position over the total number of ASB events observed
across all motif positions considering the predicted TFBSs;
the same definition was applied to non-ASB events. Only
the TFs with at least 10 ASB and 10 non-ASB events in
the predicted TFBS are considered to calculate the ASB fre-
quency within TFBS.

Identify comotifs within ChIP-Seq peak regions

We used the findMotifsGenome.pl script from the HOMER
(30) package (version 4.6) with default settings to iden-
tify enriched known motifs in ChIP-Seq peak regions. The
HOMER default analysis window of 200 bp was applied.
Among the enriched motifs reported by HOMER, we iden-
tified the 5 most enriched motifs according to following
criteria: (i) not similar to the motif of the ChIP’ed TF if
available in JASPAR; and (ii) no similar motifs within the
five identified motifs. Motif similarity was based on the
compare-matrices command provided in the RSAT toolset
(version 2011) (31) with an information content correlation
threshold of 0.8. For the ASB SNVs not overlapping the
predicted TFBSs of the ChIP’ed TF, we tested the correla-
tion between motif alteration (log ratio of motif P-values
between the two alleles) and allele imbalance of TF binding
within the predicted TFBSs of each of the five enriched mo-
tifs (Spearman correlation, FDR < 0.05). The significantly
correlated enriched motifs were identified as comotifs.

Identify cobound TFs associated with ASB events

To identify the distribution of ASB events within binding
regions of other TFs, we used all the available TF ChIP-Seq
peaks in the same cell line. Cobound TFs were identified if
their peaks overlapped with the peaks of ASB TFs. For the
heterozygous site binding events of each ASB TF, we inves-
tigated the association between the presence of ASB events
and their overlap with the peaks of each cobound TF (two-
sided Fisher’s exact test, FDR < 0.005). The odds ratio of
Fisher’s exact test was used to interpret whether ASB events
were enriched (odds ratio > 1) or depleted (odds ratio < 1)
in cobound regions.

Classification of heterozygous site binding events

We used the randomForest package (32) and the recursive
feature elimination function from the caret package (33) to
train random forest classifiers (‘ntree’ parameter was set to
1000) and select key features. Since there were more non-
ASB events than ASB events, non-ASB events were ran-
domly downsampled to balance the training data set for
each tree building process following the balanced random
forest approach (34,35). We used a 5-fold cross-validation
approach to assess the predictive power of the classifiers.
Specifically, the predictive power corresponded to the av-
erage area under precision-recall curve (AUPRC) obtained
through the 5-fold cross-validation. For determining the im-
portance of each feature in a classifier, we took the ‘Mean-
DecreaseAccuracy’ (mean accuracy decrease over all trees)
score reported by the random forest.

The input features, listed in Supplementary Table S5,
spanned five categories: (i) motif-related features, for in-
stance the motif scores of the two alleles, the best motif
scores within the peak regions on two alleles; (ii) positional
information, such as SNV distance to the ChIP-Seq peak
max and SNV position within the predicted TFBS; (iii)
enriched-motif related features (log ratio of motif P-values
between the two alleles); (iv) cobound TFs, such as the over-
lapping of heterozygous site binding events with each avail-
able cobound TF peaks within the same cell line; and (iv)
chromatin features, for instance the read counts on the two
alleles from DHS and 11 histone modification data from the
corresponding cell type.

We combined features across the five categories and
trained three models: (i) a Seq model based on sequence
features, including categories 1–3; (ii) a Seq+DHS model
adding DHS data on top of the Seq model; and (iii) a Full
model trained using all features.

We compared our classifiers to BayesPI-BAR (5) and
deltaSVM (6). The deltaSVM score was calculated as the
gkmSVM score difference between two alleles (6). For
each TF, we trained a separate gkmSVM model (ver-
sion 2.0) with default parameters using 5000 randomly
selected ChIP-seq peaks following (36) and the associ-
ated tutorial (http://www.beerlab.org/gkmsvm/). One TF
(PRDM1) had only 4577 peaks and we used all of them
to train the gkmSVM model. The BayesPI-BAR package

http://www.beerlab.org/gkmsvm/
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was downloaded from http://folk.uio.no/junbaiw/BayesPI-
BAR/, and BayesPI-BAR scores were calculated with de-
fault parameters.

RESULTS

Compilation of heterozygous site binding events

We implemented a pipeline that combined ChIP-Seq and
genotype data from the same cell types to extract heterozy-
gous site binding events (Materials and Methods). Specifi-
cally, ChIP-Seq (and DHS) reads were mapped to personal-
ized reference genomes in which the variants reported in the
genotype data were incorporated. In total, we retrieved 51
518 heterozygous site binding events supported by at least
10 reads from 45 TF ChIP-Seq data sets from 8 cell lines.
We also extracted read counts of 11 histone modifications
and DHS on the two alleles of TF heterozygous site bind-
ing events in GM12878 and HeLa-S3 cell lines. We observed
that 4.3% of the TF ChIP-Seq peak regions contained a
single heterozygous site (Table 1 and Supplementary data).
ASB events were defined if the number of mapped TF ChIP-
Seq reads on one allele was significantly higher than the
number of mapped reads on the other allele (Binomial test,
FDR < 0.05) and with at least 60% allele imbalance for the
favored allele as in (27). We found that 20.9% of heterozy-
gous site binding events were classified as ASB events; oth-
ers were classified as non-ASB events. Among the compiled
data of 8 cell lines, GM12878 and HeLa-S3 (Tier 1 and Tier
2 cell lines from the ENCODE project) had data sets for all
the investigated TFs, DHS and histone marks; the remain-
ing 6 cell lines were restricted to ChIP-Seq data for CTCF.
Therefore, we focused on GM12878 and HeLa-S3 for most
of the study, using the additional cell lines for testing the
classification models (see below).

TFBS alterations strongly correlate with ASB events

To understand the underlying genetic mechanisms of ASB,
we considered the subset of SNVs overlapping with the pre-
dicted TFBSs (Materials and Methods). An initial analy-
sis revealed that ASB SNVs were significantly enriched in
predicted TFBSs compared with non-ASB events (Fisher’s
exact test, P-value = 1.8e-128). Next, we assessed the mo-
tif score alteration caused by the SNVs for ASB events.
We found that motif scores of favored alleles (allele with
higher read count) were significantly higher than those of
unfavored alleles in predicted TFBSs (Figure 1, P-value =
8.9e-120, one-sided Wilcoxon signed-rank test), reflecting
the contribution of motif score alteration to ASB events. In
contrast, non-ASB events displayed a balanced score distri-
bution between the two alleles. Our results agree with previ-
ous observations (18,37) but are based on data for a much
larger number of TFs and TFBSs. However, only a portion
of ASB SNVs (19.3%) overlapped with the predicted TF-
BSs, indicating that additional mechanisms beyond TFBS
alteration contribute to the observed ASB events. A plot
showing the total set of ASB and non-ASB events, includ-
ing those outside the predicted TFBSs is provided in Sup-
plementary Figure S1.

ASB events show different positional distribution within
TFBS compared with motif information content

We next examined whether specific positions within TF
binding motifs were more sensitive to ASB events and how
such impactful positions related to their information con-
tent (IC) in the TFBS motif profiles. IC has been correlated
with the strength of binding site preference for individual
nucleotides in TF binding models (38). Given a TFBS mo-
tif, the positional impact was measured as the frequency dif-
ference between ASB and non-ASB events at each position
(Materials and Methods). As expected, positional impact
was significantly correlated with positional IC across motif
positions of all investigated TFs (Spearman correlation co-
efficient = 0.38, P-value = 6.6e-12; Figure 2A). But most
motif positions did not strictly follow this trend in Figure
2A, revealing a large variance of positional impact that can-
not be attributed to IC.

The most extreme cases at the upper right corner of
Figure 2A represented motif positions where TF binding
was disproportionately impacted. We qualitatively observed
that these positions tended to be centrally positioned within
the TFBSs of the TFs which were dimers and bound sym-
metrically to DNA. When analyzing all four symmetric
TF dimers in our data sets with known TF-DNA complex
structures (CEBPB, MAX, TCF7L2 and USF1), we ob-
served that central positions significantly showed high po-
sitional impact compared with other positions with similar
IC (P-value = 0.02, one-sided Wilcoxon rank-sum test). As
a specific example, CEBPB recognizes an 11 bp motif con-
taining four positions with an IC of two bits (positions 3, 4,
6 and 10), which, according to the motif, would be expected
to be equally important for binding (Figure 2B). However,
the positional impact was particularly high at position 6, at
the center of the motif, indicating that this position could
be more critical for the disruption of TF binding (Figure
2B). Further structural analysis of a DNA-CEBPB dimer
interaction revealed that position 6 was contacted by both
monomers (Figure 2B). The critical role of central positions
suggests that mutations at these positions might potentially
affect the binding of the two monomers. Recently, the same
position of the CEBPD motif was reported to display more
somatic mutations within the predicted TFBSs than other
positions in human cancer genomes (39), which is concor-
dant with our findings. Other cases included the PAX5 mo-
tif at position 15 (Supplementary Figure S2), which was of
low IC (0.4) but with high impact, suggesting that low IC
positions could also be critical for TF binding (40). Taken
together, IC derived from motifs partially explained the dis-
tribution of ASB events across the motif, while positional
impact from ASB events provided deeper insights into the
binding properties of TFs.

Disruption of enriched comotifs can lead to ASB events

Since most variations at ASB events were outside of the pre-
dicted TFBSs (80.7%), we assessed whether disrupted TF-
BSs of potential partner TFs could be responsible for the
observed events. We retrieved the five most enriched, non-
redundant motifs within the peak regions of each TF ChIP-
Seq experiment (Materials and Methods). Within the pre-
dicted TFBS of each enriched motif, we tested the correla-

http://folk.uio.no/junbaiw/BayesPI-BAR/
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Figure 1. Transcription factor binding sites (TFBSs) motif score analysis at heterozygous site binding events. In each panel, we plotted the motif score at
heterozygous sites on the favored allele (harboring higher amount of mapped chromatin immunoprecipitation followed by sequencing (ChIP-Seq) reads,
x-axis) and unfavored allele (y-axis) at predicted TFBSs. Allele-specific binding (ASB) (left panel) and non-ASB (right panel) events were plotted separately.
The black diagonal lines indicated an identical motif score on the two alleles. Note that the figure was generated using all heterozygous site binding events
for all compiled TFs in GM12878 and HeLa-S3.

Figure 2. Information content and positional impact of each position within TFBS. (A) Correlation between positional impact and information content.
Each point corresponded to a position (given in parenthesis) within TFBSs associated to ChIP’ed TFs. Positions were plotted with respect to their associated
information content (x-axis) from the TF motif and positional impact (y-axis). The trend line was drawn by the locally weighted scatterplot smoothing
method. (B) Exceptional example of CEBPB motif with its positional impact distribution (upper), TF binding motif logo (middle) and TF–DNA interface
(lower; Protein Data Bank ID: 2e42).

tion between the motif score change and the allelic binding
imbalance of the ChIP’ed TF across all heterozygous site
binding events (Materials and Methods). We found 15 sig-
nificantly correlated enriched motifs for 9 TF ChIP-Seq ex-
periments (based on the Spearman rank statistic, FDR <
0.05, Figure 3), hereafter referred to as comotifs. Decreased
motif scores of comotifs were preferentially observed on
unfavored alleles in ASB events, consistent with a cooper-
ative binding model (41). The comotifs lay in three cate-
gories (Supplementary Table S3): (i) seven cases in which

the TFs associated to the comotifs were known to interact
with the ChIP’ed TF, for instance the comotif of P300 was
CEBPB (P300-CEBPB); (ii) one case (RUNX3-RUNX1) in
which the TF of comotif belonged to the same TF family
as the ChIP’ed TF; and (iii) seven cases of novel relation-
ships, from our knowledge, including CEBPB-BATF and
P300-NF-E2.

Moreover, 6 out of the 15 comotifs arose from the experi-
ments in which the ChIP’ed TFs did not bind DNA directly,
as for example P300. For these non-sequence specific TFs,



Nucleic Acids Research, 2016, Vol. 44, No. 21 10111

Figure 3. Alteration of comotif correlated with TF allelic imbalance. The name of each panel specified the ChIP’ed TF followed by the comotif name and
the cell line in parentheses. Each dot represented one heterozygous site binding event (red for ASB and blue for non-ASB events) found within the predicted
TFBSs of the comotif. The comotif alteration (x-axis) represented the log ratio of motif P-values between the reference and alternative alleles. The allelic
binding imbalance (y-axis) indicated the fraction of reads mapped on the reference allele over the whole read coverage at that position. We tested the
correlation between the two properties for each ChIP’ed TF and its enriched HOMER motifs, and only significantly correlated pairs were plotted (FDR
< 0.05).

33.5% of ASB-SNVs overlapped the TFBSs of comotifs,
significantly enriched compared with 17.4% for non-ASB
events (Fisher’s exact test, P-value = 7.1e-41, Supplemen-
tary Figure S3). Overall, ASB overlapping comotifs com-
prised 9.4% of ASB events.

ASB events associated with cobound TFs

Next we sought to understand how ASB events related to
regions bound by additional TFs within the same cell us-
ing ChIP-Seq data. It has been observed that TF bind-
ing in cobound regions (cases where ChIP-Seq data for
multiple distinct proteins have overlapping peaks) tends to

be more conserved over evolution than isolated binding
events (42). We tested the distribution difference between
ASB and non-ASB events in the ChIP-seq peaks of each
cobound TF (Materials and Methods), revealing 64 signif-
icant pairs (Supplementary Table S4, Fisher’s exact test,
FDR < 0.005). Of these, 27 were observed in GM12878
lymphoblastoid cells, and all of them displayed depletion
of ASB (relative to non-ASB) in the cobound regions (odds
ratio < 1). This pattern is concordant with the concept of
variant buffering effects in motif-rich DHS regions (27).
For instance, CTCF heterozygous site binding events were
classified as ASB in 8.9% of cases where ZNF143 binding
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peaks were overlapping, while 18.3% of cases were classi-
fied as ASB if there were no overlapping ZNF143 peaks
(Fisher’s exact test, P-value = 3.6e-11). The ASB TF and
cobound TF pairs included known TF–TF interactions,
such as CTCF-ZNF143, and RUNX3-YY1 (43), suggesting
functional interactions for the pairs observed. In HeLa-S3,
a cancer cell line, we observed a reversed pattern where ASB
events were enriched in cobound regions (odds ratio >1,
not depleted as in GM12878) for 17 out of 35 cases (such
as CEBPB-P300 and MAX-CMYC). The opposing pattern
between normal and cancer cells suggests that binding site
alterations in cobound regions of cancer cells may be func-
tionally important for gene dysregulation. Further analy-
ses would be required to test this hypothesis when more TF
binding data become available.

Allelic chromatin properties coordinate with ASB events

To further shed light to the mechanisms associated with
ASB events, we investigated the non-genetic properties in
proximity to ASB events. We extracted read counts from
DHS and histone modification ChIP-Seq experiments on
the two alleles at heterozygous site binding events. Next,
we assessed the correlation between allelic imbalance of
each chromatin property (DHS and 11 histone modifica-
tions) and TF binding. Overall, 196 significant correlations
were observed (Pearson correlation, FDR < 0.05; Figure
4 and Supplementary Figure S4). DHS signal was signifi-
cantly correlated with TF binding for 35 out of 39 TF ChIP-
Seq experiments. DHS showed higher read counts on the
TF favored allele for 73.4% of the ASB events compared
with 52.5% for non-ASB events. Moreover, we found 161
TF-histone correlation pairs. Active histone modifications,
such as H3K27ac, H3K4me2 and H3K3me3, exhibited pos-
itive correlation patterns with TF binding imbalance. Taken
together, DHS and histone modifications widely correlated
with ASB events, indicating their potential value for predic-
tive modeling.

DHS and sequence-derived properties are sufficient for cost-
effective ASB event prediction

Building upon the observed associations between ASB
events and properties of both sequence and experimental
data, we constructed computational models to determine
our capacity to predict SNVs disruptive of TF binding (that
is to distinguish between ASB events and non-ASB events).
We took ASB events as the positive training data, and non-
ASB events as the negative set for model training. We con-
structed random forest classifiers using only DNA sequence
information (that are the features derived from motif and
comotifs, referred to as Seq model, see Materials and Meth-
ods) and assessed their predictive performances. Consis-
tent with past literature (3–5), the Seq model had predic-
tive value but the performance was quite limited across all
the investigated TFs (average AUPRC of 0.35, Figure 5A).
The Seq models allowed consistent performance across data
from multiple individuals within the same cell type (Supple-
mentary Text).

We compared our classifiers against two existing
sequence-based models, deltaSVM (6) and BayesPI-BAR

(5). Seq models outperformed BayesPI-BAR (Wilcoxon
signed-rank test, P-value = 7.5e-09, Supplementary Figure
S6) and showed similar performance with deltaSVM
(Wilcoxon signed-rank test, P-value = 3.3e-01, Figure
5A) when predicting ASB events. The differences between
deltaSVM and our Seq models are that deltaSVM uses
k-mers to predict TF binding regions while our Seq models
allow for combining positional feature on top of motif
features (Materials and Methods). The ASB framework
potentially can incorporate any features of two alleles into
the discriminative model, e.g. adding deltaSVM scores to
cover the k-mer changes.

Next, we took into account all the features analyzed in
the previous sections into the model (Materials and Meth-
ods), which was hereafter referred to as the Full model. The
Full model showed a mean AUPRC of 0.43 across all the
tested TFs (Figure 5A). For those TFs with known binding
motifs, the top ranked features highlighted two major cate-
gories contributing to the success of the model, DHS and
motif sequence properties. Specifically, the top 5 features
were DHS read count from the unfavored allele, DHS read
count from the favored allele, motif score on the unfavored
allele, motif score on the favored allele and H3K27ac read
count from the favored allele (Figure 5B). For TFs lacking
a motif model, the feature set could not include motif se-
quence properties of the ChIP’ed TF. Consequently DHS,
H3K4me2 and H3K27ac were important for the success of
the classifiers (Supplementary Figure S7).

Given that ChIP-Seq TF binding data were not avail-
able for most cell lines, while DHS was more likely to be
available, we evaluated the performance of models limited
to sequence-derived features and DHS (Seq+DHS model).
Consistent with the number of features in the training sets
for each model, results showed that the Full model out-
performed the Seq+DHS model, which in turn outper-
formed the Seq model across all the tested TFs (P-values of
2.1e-8 and 1.1e-5, Wilcoxon signed-rank test) (Figure 5A).
From a sequence-only baseline of 0.35 in terms of average
AUPRC, the Seq+DHS model achieved 0.40 and the Full
model achieved 0.43. Importantly, inclusion of DHS with
sequence properties provided important value, representing
62.3% of the average improvement of the Full model over
the sequence-only baseline. These results highlighted that
ASB prediction could be pursued with few laboratory gen-
erated features cost-effectively by coupling sequence analy-
sis with experimental genotyping (WGS) and DHS data.

DISCUSSION

Predicting variant impact on TF binding is amongst the
biggest current challenges for genome interpretation. One
of the main obstacles is the lack of sufficient and reliable
TFBS alteration data, which are critical for the develop-
ment of bioinformatics methods. We compiled 10 765 ASB
events from 45 TF ChIP-Seq experiments from 8 cells lines.
To the best of our knowledge, this is the largest experimen-
tally defined ASB collection. While altered canonical TF-
BSs for the ChIP’d TFs were frequently observed (19.3%),
most ASB SNVs did not overlap with the primary TF motif.
When looking across positions within TFBS, we observed
that central TFBS positions for symmetric TF dimers were
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Figure 4. Allelic coordination between heterozygous site binding events for multiple TFs and chromatin properties in HeLa-S3. The heatmap represented
the -log(P-value) of Pearson correlation between allele imbalance of TF ChIP-Seq reads at heterozygous site binding events and chromatin properties
(DHS and histone modifications).

more critical than other positions with similar information
content. Alterations of comotifs, potentially bound by part-
ner TFs, were observed for a portion of ASB events (9.4%).
Taking the enlarged collection of data to train classification
models, we demonstrated that baseline models using only
genomic sequence data were improved by the incorporation
of allelic DHS data that provided 62.3% of the performance
improvement achieved by models using all available features
(∼100 per cell type) from the ENCODE data.

There are multiple statistical approaches for the call-
ing of ASB events, with most literature using the binomial
test (18,27,37,44). Recent studies detected that experimen-
tal allelic imbalance was overdispersed compared to the bi-
nomial distribution (45,46). Beta-binomial tests have been
proposed to correct the overdispersion in ASB calling un-
der the assumption that most sites are balanced (17). We
observed that non-ASB events with minor motif alterations
exhibit higher overdispersion compared to other non-ASB
events (Supplementary Text). Given this observation, we
elected to use the binomial approach, as utilizing non-ASB
events or all allelic events as the null distribution would
over-estimate the over-dispersion parameter, which would
increase false negatives. Finally, ASB events could also be
called as differentially bound regions using general linear

models (GLM), if replicates were available. However, GLM-
based approaches tend to be conservative when calling dif-
ferential binding regions (47), potentially missing a signif-
icant portion of true ASB events. Further comprehensive
evaluation of the background null model will be needed.

Our results suggest that positions of SNVs within TF-
BSs should be considered when investigating SNV impact
on symmetric TF dimers. The observed impact of SNVs
within these central positions was not fully reflected by the
information content of classic motif (position weight ma-
trix) models (48). Classic PWM-based methods (3–5,49) did
not capture such characteristics when predicting TF bind-
ing alteration. The importance of these central positions
was supported by structures of DNA–TF dimer interac-
tions showing them to be dual-contact points for both pro-
tein subunits, highlighting that structural information can
be important for understanding the impact of SNVs on TF
binding.

Our ASB classification model provides a novel super-
vised and integrative framework to model SNV impact on
TF binding. To evaluate the impact of SNVs, most prior
methods calculated binding score differences between al-
tered alleles and reference alleles based on TF binding mo-
tifs (4,5,49) or enriched k-mers (6,50). Prediction of SNV
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Figure 5. Performance of ASB classification models and key features. (A) AUPRC of the deltaSVM, Seq, Seq+DHS and Full models across all the inves-
tigated TF ChIP-Seq experiments. Seq model was based only on sequence-related features; Seq+DHS model added DHS data on top of the Seq model;
and Full model further added histone and cobound TFs. Details on each model and features can be found in Materials and Methods. (B) Top frequent key
features in the Full models for all 27 TFs with known motifs. The suffix ‘favor’ and ‘unfavor’ referred to the favored and unfavored alleles at heterozygous
sites. The ‘motif pvalue ratio’ was the log ratio between two alleles in terms of motif score P-value. The ‘peak dis’ indicated the distance of the SNV to
ChIP-Seq peak maximum position where the highest number of reads were mapped within the peak.

impact was based on those cases where the difference ex-
ceeded a threshold. However, the selection of a threshold
was difficult to justify. In contrast, our ASB model learned
the optimal threshold (decision surface) from the data di-
rectly. Moreover, our method was not limited to sequence
features (TF motifs and k-mers), with the capacity to incor-
porate diverse features (such as genetic features, DHS and
histone modifications). We anticipate that such features will
become increasingly available in the near future. In addi-
tion, the relative importance of each feature in the classifi-
cation models provided insights into the mechanisms con-
tributing to TF binding.

Only ∼30% of ASB events can be explained by motif or
comotif alteration. Understanding how the altered binding
arises in the remaining portion is likely to require advances
in our knowledge and understanding of TF binding. First,
the available TF binding models are insufficient. Most hu-
man TFs do not yet have binding models, although the cov-
erage improves. Second, the existing binding models can be
improved. For instance, CTCF has been shown to recognize
flanking motifs that stabilize binding, but these are not yet
well represented in the current PWM model (51). Moreover,
there are properties outside the sequence-specific target that
contribute to binding. Flanking sequences can influence
binding strength (52–54), potentially involving the shape
(topology) of DNA (55,56). As we advance our understand-

ing, we can anticipate that the causally unexplained portion
of ASB events will be decreased.

The predictive power (AUPRC) of the ASB classification
models is limited, particularly when considered on the scale
of analyzing a full genome. The inadequate performance
might be attributable to multiple causes. For instance, the
classification model may be under-fitted because the num-
ber of ASB events available for training was not sufficient.
In the review stage of this manuscript, two studies compiled
new ASB data sets in other cell lines to investigate GWAS
loci or the variant impact on gene expression (17,57). In the
future, we anticipate a rapidly growing body of ASB data
will be critical in training more reliable models. Alterna-
tively, the set of features available for modeling may have
missing components, e.g. the limited set of TF binding mod-
els. Lastly, ASB events could be caused by multiple SNVs or
distal SNVs. In our data compilation, we excluded the cases
where multiple heterozygous SNVs situated within the same
ChIP-Seq core peak regions to simplify the analysis. How-
ever, the accumulated effect of multiple SNVs proximal or
distal to a TFBS could alter local TF binding according to
the TF–TF interaction and chromatin interaction models
(58,59). Further efforts needs to be devoted to these areas.

Identification of cis-regulatory variants is a critical need
for understanding the genetic mechanisms contributing to
diseases (60). Our compilation of heterozygous site binding
data and ASB classification models provide unique data sets
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and a novel framework for modeling the impact of SNVs on
TF–DNA interaction. Future advances in sequencing tech-
nology and enlarged ASB database will enable the reliable
identification of cis-regulatory variants.
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Supplementary Data are available at NAR Online.
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