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A comparison of hydrological and 
topological watersheds
B. Burger1, J. S. Andrade Jr.1,2 & H. J. Herrmann1,2

We introduce the hydrological watershed, a watershed where water can penetrate the soil, and 
compare it with the topological watershed for a two-dimensional landscape. For this purpose, we 
measure the fractal dimension of the hydrological watershed for different penetration depths and 
different grid sizes. Through finite size scaling, we find that the fractal dimension is 1.31 ± 0.02 which 
is significantly higher than the fractal dimension of the topological watershed. This indicates that 
the hydrological watershed belongs to a new universality class. We also find that, as opposed to the 
topological watershed, the hydrodynamic watershed can exhibit disconnected islands.

Watersheds separate hydrological basins and are an intrinsic property of landscapes1–4. Rooted in geomorphology, 
watersheds play an important role in water management5,6 and are as such connected to topological studies about 
the water retention capacity7. They can also be encountered when defining the borders of countries, as seen in 
the case of Chile and Argentina8 or Switzerland and Italy9. While watersheds are directly related to percolation 
theory10,11, they furthermore have applications in medicine12,13 and image processing14,15.

An interesting property of watersheds is their self-similar character16. Fractality is a general, important prop-
erty of physical structures and in the case of watersheds it can be used to deduce the length of the watershed in 
dependency of the scale. This can be helpful to correctly estimate the length of watersheds when rescaling digital 
maps. The fractal dimension of an object is also a measure for its structure, as two objects with different fractal 
dimensions will scale differently. It can furthermore connect phenomena that are at first glance seemingly uncon-
nected physical problems if they have the same universal fractal dimension17–20. For artificial landscapes and for 
digital elevation models, the fractal dimensions of watersheds have already been calculated under the condition 
that water only flows on the surface and can not penetrate into the soil, which we will call here the topological 
watershed21–25. This watershed is in the same universality class as the optimum path crack26, the shortest path on 
loop-less percolation, polymers in strongly disordered media27 and bridge percolation17. The topological water-
shed has been shown numerically to be SLE28.

The question we address is how the structure of a topological watershed of a two-dimensional surface changes 
compared to a hydrological watershed, where water can penetrate the soil. Whether and how the fractal dimen-
sion of the watershed changes has not yet been investigated and is the subject of the present paper. To answer this 
question, we use a generalized version of the invasion percolation (IP) based29 algorithm proposed by Fehr et al. 
in ref.22. Throughout this paper we use an uncorrelated, artificially generated landscape to investigate the struc-
tural changes in a more controllable environment.

Methods
For the definition of the hydrological watershed’s landscape, we choose a three-dimensional grid consist-
ing of sites i with heights hi on the upper surface and permeabilities pi below the surface. The heights hi are 
chosen randomly between zero and one. In this way, we model different permeabilities of the soil which lead 
to different penetration depths. For a soil discretized as a cubic lattice with edge length L, we implement the 
penetration-hindrance such that the resistance increases systematically with increasing depth ni. To control the 
seeping depth of the water, we generate the permeabilities pi as the sum of a randomly generated part with an 
offset which depends on the layer ni of site i given by,

= +p r an , (1)i i

where r is a random number homogeneously distributed between 0 and 1, a is the parameter of the model which 
controls the depth the water reaches, and ni is the layer of site i divided by the edge length L which also yields a 
number between 0 and 1.
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The outlets of a terrain can be something like a river, underground river, a lake, or any other structure in which 
water can leave the system. We choose the outlets to be two opposite, vertical sides of the cube. Helical boundary 
conditions are implemented on the two non-outlet, vertical sides of the cube in order to make sure to keep the 
water inside the system, if it is not leaving at one of the two outlets. The helical boundary conditions on the 
non-outlet surfaces are implemented such that the neighbors of site i of a three-dimensional lattice stored in an 
array are given by the sites i − 1, i + 1, i − L, i + L, i − L2, i + L2. We do not have to care about the bottom boundary 
if we choose the depth of the cube to be greater than =dmin a

1 . The water will never reach a layer larger than dmin 
because the permeability pdmin

 represents the maximum possible permeability of the upper surface hmax = 1 and, 
therefore, acts as a boundary for the seeping water.

The most important aspect for extracting the watershed is to find out to which outlet the water at site s drains 
to, thus to find in which catchment basin s lies. For this we follow a procedure that is called growing an IP cluster22, 
where IP stands for invasion percolation29. p is the permeability for sites that are below the surface as well as the 
height of sites that are on the surface. Starting at s, the water takes the path of steepest descent. We denote the ith 
site in the IP cluster with ci. At each step >i 1, we add the neighbor of site ci−1 with the smallest 

−
pci 1

 to the cluster, 
but only if the pneighbor is smaller than 

−
pci 1

 and if it is not already belonging to the cluster. If for all neighbors pneighbor 
is larger than 

−
pci 1

, the cluster is stuck in a local minimum that we call a pore: A pore consists of all sites p that have 
the same p as ci−1 and is the equivalent of a lake in the case of a topological watershed. We flood the pore and add 
the neighbor nmin with the lowest permeability on its perimeter to the cluster, thus we set ci = nmin. By repeating 
this procedure we will at the end always reach an outlet. We know that all sites of the same IP cluster drain to the 
same outlet and we thus label all sites ci within one IP cluster as belonging to the same catchment basin. However, 
the procedure of growing IP clusters alone is not yet efficient if we grow them from each site of the surface. It is 
more convenient to start with one segment of the watershed. We label each adjacent site with the outlet to which 
the water flows by growing an IP cluster. The next segment of the watershed then comes to lie between the two 
adjacent sites that drain to different outlets of the system. By repeating this procedure we grow the watershed until 
it spans the system from one side to the other. The initial segment of the watershed can be found by moving from 
one outlet of the system to the other while growing IP clusters.

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Results
The comparison between the landscape of a hydrological and a topological watershed shows that on the top layer 
of the hydrological case, less sites belong to an IP-cluster than for the topological case (see Fig. 1). This is a direct 
result of the penetration resistance. For a 1, a large part of the IP-cluster’s mass exists underground, whereas 
for a 1, the water mostly stays at the surface, since its room for evasion into the soil is very small.

We find that as opposed to the topological watershed, the hydrological watershed is not always a connected 
line anymore, as islands can occur (see Fig. 2). An island is a region of connected sites belonging to a catchment 
basin i that is surrounded by sites belonging to catchment basin j ≠ i. In Fig. 2 we can even observe the formation 
of islands within an island. We surmise that the size of these islands and their relative placement to the watershed 
depends on the penetration depth of the water, or, expressed equivalently, on the extent of three-dimensionality 

Figure 1. The dark line is the watershed extracted with the IP-based algorithm for three-dimensional models 
generated according to Eq. (1) for different a and grid length L = 1000. The red points belong to an IP-cluster 
that drains to the upper basin and the blue ones belong to an IP-cluster that drains to the lower basin. The figure 
was created by storing the top layer of the system as a bitmap.
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of the landscape. The size of the islands as well as the distance from the watershed increases with decreasing pen-
etration resistance.

Using the yardstick method30 we measured the fractal dimension of the watershed for each simulated system, 
where the heights hi and the permeabilities pi are generated with a congruential number generator31. For each 
system i, we get a data set consisting of tuples containing the stick length ε and the number of sticks N(ε) needed 
to approximate the watershed. The function N(ε) satisfies ε ε∝ −N( ) df i, , where df,i is the fractal dimension of the 
watershed of system i. For each value of a, we average the fractal dimension over N landscapes.

The results obtained for the fractal dimension show that for the hydrological watershed, the fractal dimension 
decreases with the model parameter a (see Fig. 3). From these data we linearly extrapolated the fractal dimen-
sion of the three smallest measurement values to the limit a → 0 and found it to be 1.31 ± 0.02. We obtained 
the error bar by finding the lines of maximum and minimum slope that still fit the data. For a → ∞ the fractal 
dimension of the topological watershed is consistent with the high precision calculation by Fehr et al., namely, 
1.2168 ± 0.000524.

Figure 2. The top layer of a typical realization of a hydrological watershed, calculated for a = 0.05 and a grid 
length of L = 1100. Colors as in Fig. 1. The figure was created by storing the top layer of the system as a bitmap.

Figure 3. Measured fractal dimensions as a function of the depth parameter a. The blue line represents the 
value for a = 1200, while the red line represents the topological watershed corresponding to the asymptotic 
value a → ∞, as reported by Fehr et al. in22.
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Previous measurements of the fractal dimension of a watershed surface in three dimensions yielded a fractal 
dimension of 2.487 ± 0.00324. One might naively identify the hydrological watershed as the cut between this three 
dimensional watershed with the surface of the landscape. Therefore, we could expect the hydrological watershed 
to have a fractal dimension of 2.487 − 1 = 1.487. In what follows, we investigate the possibility that it might be 
possible that our numerical extrapolation df = 1.31 ± 0.02 is only part of a crossover, with the hydrological water-
shed asymptotically having fractal dimension df = 1.487. For this purpose, we analyzed the finite size scaling 
behavior of the watershed. The ansatz for the scaling function is given by,

− = −d d L F aL( ), (2)f
x y

0

where d0 denotes the fractal dimension for a = 0 and L → ∞, and x, y are scaling exponents. For our analysis, we 
chose to evaluate the scaling law for both d0 = 1.31 and d0 = 1.487. The scaling exponent x can be obtained using 
the relation, d0 − df ∝ L−x, when setting a = 0. Assuming the same relation for a = 0.05, we get a first estimate for 
x. Then, plotting Eq. 2 as shown in Fig. 4, we obtain final values for x and y through the best data collapse for 
different a and L with the constraint that the slope in a log-log plot be −x/y. By choosing d0 = 1.487, such a data 
collapse only becomes possible for very unlikely exponents, namely x being either 0.05 or y being 20. Setting 
d0 = 1.31, yields x = 0.56 ± 0.05 and y = 1.75, with a convincing data collapse (see Fig. 4). In this way, no realistic 
scaling function can be found for d0 = 1.487, whereas for d0 = 1.31 we observe data collapse for a reasonable 
choice of x and y. This suggests that we are not facing a crossover to the fractal dimension df = 1.487, but we have 
discovered, in fact, a new universality class for the hydrological watershed.

Discussion
The topological watershed which is directly obtained from the discrete elevation map has been studied extensively 
in the past21–24,32. We found that the penetration of water into the soil not only modifies the topological watershed, 
but also changes its continuity, and even its fractal dimension. The value of the fractal dimension of the topolog-
ical watershed in a two-dimensional model is known to be 1.2168 ± 0.000524. Our measurements for the fractal 
dimension show that the fractal dimension of a hydrological watershed is d = 1.31 ± 0.02. Comparing this to the 
fractal dimension of a watershed surface in three dimensions and its fractal dimension of 2.487 ± 0.00324, we first 
expected to obtain a fractal dimension of 1.487. We ruled out the possibility of our data being part of a crossover 
with a scaling analysis, which showed convincing data collapse for df = 1.31 ± 0.02, but not for 1.487 ± 0.003. We 
can therefore assert that the hydrological watershed belongs to a new universality class.

We obtained the measured fractal dimensions for a model of randomized linear permeability in uncorrelated 
soil. Our permeability model could very well be substituted with another soil generation method that allows for 
variations over the penetration depth of the water and which would be equally justifiable. Furthermore, a new soil 
generation method could account for spatial correlations that are occurring in real soils, which are described by a 
Hurst exponent H23,33. It is relatively easy to extend our algorithm to a different soil generation method as it does 
not affect our watershed calculation method and measurement methodology.
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