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The muscle growth and development of livestock animals is a complex, multistage
process, which is regulated by many factors, especially the genes related to muscle
development. In recent years, it has been reported frequently that circular RNAs
(circRNAs) are involved widely in cell proliferation, cell differentiation, and body
development (including muscle development). However, the research on circRNAs in
muscle growth and development of livestock animals is still in its infancy. In this paper,
we briefly introduce the discovery, classification, biogenesis, biological function, and
degradation of circRNAs and focus on the molecular mechanism and mode of action of
circRNAs as competitive endogenous RNAs in the muscle development of livestock and
poultry. In addition, we also discuss the regulatory mechanism of circRNAs on muscle
development in livestock in terms of transcription, translation, and mRNAs. The purpose
of this article is to discuss the multiple regulatory roles of circRNAs in the process of
muscle development in livestock, to provide new ideas for the development of a new co-
expression regulation network, and to lay a foundation for enriching livestock breeding
and improving livestock economic traits.

Keywords: circRNAs, livestock animals, muscle development, co-expression regulatory network, transcription
and translation

INTRODUCTION

Circular RNAs (circRNAs) are widely found in eukaryotic cells; they are a special type of nucleotide
sequence containing conserved microRNA (miRNA) binding sites (Westholm et al., 2014). Studies
show that most of the circRNAs that have been found so far are non-coding RNAs; this kind of
circRNA does not have the coding function of linear RNA, but it plays a regulatory role in various
life activities, including the process of muscle development in livestock animals (Das et al., 2020).
Throughout the research results of the past decade, we find that circRNAs are gradually becoming
an indispensable part of the gene regulatory network.

Abbreviations: ceRNA: circRNAs-miRNAs-mRNAs; circRNAs: circular RNAs; FoxO1: Forkhead box transcription Factor
O1; IGF-I: Insulin-like growth factor-I; IGF-II: Insulin-like growth factor-II; MEF2A-2D: myocyte enhancer factor2A-
D; MIRs: Mammalian-Wide Interspersed Repeats; miRNAs: microRNAs; MRF-4: myogenic regulatory factor-4; MSTN:
Myostatin; mTOR: Mammalian target of rapamycinMyf-5: myoblast regulatory factor family myogenic factor-5; Myhc:
myosin heavy chain; MyoD: myogenic differentiation antigen; MyoG: myogenin; Pax: paired box; RBP: RNA binding protein;
RNA-Seq: RNA sequencing.
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Muscle is an essential component of human and most meat
animal bodies, and it plays an important role in providing
exercise, maintaining posture, and generating heat (Silva et al.,
2019; Janssen et al., 2000). Livestock muscle development is
a crucial link to individual growth and development and an
important research direction in modern animal science. The
condition of muscle development directly exerts an economic
effect on animals. Therefore, an in-depth understanding of
muscle development is of great significance to the development
of animal husbandry.

With the rapid development of molecular genetics and the
development of molecular biology technology, in vitro cell line
culture technology, and gene targeting technology, people have
become more and more aware of cell growth and development
processes at the molecular level (Li X. et al., 2020). For the past
few years, scientists have repeatedly pointed out that circRNAs
may be an important biomolecule to understand the mechanism
of body development. At the same time, circRNAs play a unique
role in regulating human and animal muscle development and
its related physiological and pathological processes (Das et al.,
2020). Liang et al. identify 149 circRNAs that may be related to
muscle growth from 3 skeletal muscles of Guizhou miniature
pigs (S. scrofa); the gene ontology (GO) and KEGG enrichment
analysis of the host gene of the circRNAs indicates that these
circRNAs are mainly involved in the growth and development
of muscle-related signaling pathways (Liang et al., 2017a).
The results show that their host genes are closely related to
muscle development, chromatin modification, contraction, ATP
hydrolysis-coupled proton transport, and cation homeostasis
(Liang et al., 2017a). The above studies show that circRNAs are
ubiquitous in muscle and play a critical role in the development
process. Therefore, in-depth study of the specific mechanism
of circRNAs regulating muscle development has become one
of the urgent problems for researchers. Here, we focus on the
molecular mechanism and mode of action of circRNA as a
competitive endogenous RNA in livestock muscle development.
The purpose of this study is to expand researchers’ understanding
of the regulation of muscle development by circRNAs, to
collect research data for further improvement of the circRNA–
miRNA–mRNA (ceRNA) co-expression regulation network, and
to provide theoretical support for the improvement of muscle
development and economic traits of livestock.

OVERVIEW OF CIRCRNAS

The Discovery of CircRNAs
CircRNA is a kind of closed circular RNA, which can stably
exist in the organism, but it does not have the 5′ terminal hat
structure and the 3′ terminal poly (A) tail structure (Westholm
et al., 2014). As early as the 1970s and 1980s, researchers
proposed in Nature and PANs that circRNA is a kind of covalently
closed circular RNA molecule discovered in plant viroids and
eukaryotic cells (Sanger et al., 1976; Hsu and Coca-Prados,
1979; Kos et al., 1986). Later, Danan et al. (2012) found that
some non-coding RNAs, snoRNAs, and RNase P RNAs could
form circRNAs in archaea. Although these early studies clearly

document the existence of circRNA molecules, their potential
impact was underappreciated. With the advent of some advanced
RNA sequencing techniques and methods for calculating non-
polyadenylate RNA transcription, more and more circRNAs have
been found in paleontological, nematode, zebrafish, mouse, and
human cells (Zhang et al., 2014), and regulation of circRNA levels
can lead to a variety of molecular and physiological phenotypic
changes, which include effects on growth and development
(Liu B. et al., 2019), the nervous system (Irie et al., 2019),
innate immunity, microRNAs (Yang et al., 2017), and many
disease-related pathways (Du et al., 2018). As a result, circRNA
became a hot spot.

The Classification of CircRNAs
In order to carry out follow-up research in a more organized way,
scholars depend on the genomic loci and the relationship with the
connected parental transcript; circRNAs are categorized into five
types: exonic (Danan et al., 2012; Salzman et al., 2012; Memczak
et al., 2013; Li X. et al., 2019), intronic (Zhang et al., 2013; Das
et al., 2019a,b), sense overlapping (Humphreys et al., 2019; Patop
et al., 2019), antisense, and intergenic (Qu et al., 2015; Wang et al.,
2016). Cao et al. (2018) found 886 circRNAs in the form of introns
and exons in the sheep skeletal muscle circRNA library—most of
which interact with muscle-specific miRNA involved in muscle
growth and development, especially circ776. It is worth noting
that there are few reports on other types of circRNAs regulating
muscle development. Therefore, this is also a place where we need
further study and breakthroughs.

The Biogenesis of CircRNAs
The difference in structure between circRNA and linear RNA
means that they are formed in different ways and have different
biological functions (Figure 1). Li X. et al. (2019) prove for
the first time that the assembly mechanism of the “intro-
definition” and “exon-definition” E complex can exist from the
point of view of structural biology. On this basis, they point
out that some E complexes assembled on the middle exons of
yeast EFM5 or HMRA1 can be chased into circRNA, but this
requires exons long enough to achieve this, and most eukaryotic
circRNAs are catalyzed by classical splice bodies or group I/II
ribozymes (Lasda and Parker, 2014; Chen and Yang, 2015).
With reference to the existing research, we summarize and sort
out the formation of circRNAs: First, the lasso structure drives
cyclization, and the lasso structure is a by-product of exon
hopping. After the intron in the lasso structure is removed,
exons can be connected to form circRNAs. The second is intron
pairing driving cyclization, and there is an intron with a reverse
complementary sequence at both ends of the ring-shaped exon.
The pairing mediation of the reverse complementary sequence
of the intron can make the splicing donor and splice recipient
of the exon spliced into a ring closer to each other in space,
thus forming circRNAs (Li X. et al., 2019). Besides this, the
RNA binding protein (RBP) is an important factor in regulating
the production of circRNA. RBP can specifically bind to the
flanking introns at both ends of RNA, acting as an RBP while
narrowing the distance between the splice recipient and the
donor, resulting in the formation of circRNAs (Naqvi et al., 2019;
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FIGURE 1 | The biogenesis mechanisms and biological roles of circular RNAs. (A) Lariat-driven circularization. (B) Intron pairing–driven circularization.
(C) RBP-mediated circularization. (D) Repetitive MIR-mediated circularization. (E) EML4-ALK fusion gene–mediated circularization. (F) SLC34A2-ROS1 fusion
gene–mediated circularization. (G) Interfering with gene-mediated circularization that regulates transcription. (a) CircRNAs can sponge miRNAs. (b) A few circRNAs
containing the m6A motif or IRES can encode functional proteins. (c) CircRNAs splice with linear RNA to promote the expression of mRNA. (d) EIciRNA can interact
with U1 small nuclear ribonucleoproteins and then increase the transcription of their host genes by binding with RNA pol II; ciRNA, and the RNA pol II complex can
directly interact and play a role in regulating parental gene transcription. (e) CircRNAs can be translated into peptides or proteins. (f) CircRNA in some nuclei is
involved in histone modification. (g) Mitochondrial-derived circRNA can regulate the entry of proteins into mitochondria under the interaction of TOM40 and PNPASE.
CiRNA, Circular intronic RNA; EcircRNA, Exonic circRNA; EIciRNA, Exon–intron circRNA; RBP, RNA-binding protein; RNA pol II, RNA polymerase II.

Pagliarini et al., 2020; Zhao et al., 2020). It is well-known that
CDR1as, as an antisense transcript of cerebellar degeneration
associated protein 1, can be used as a specific circRNA of miR-
7, so it is also known as CIRS-7. However, it is surprising
that ciRS-7/CDR1as biosynthesis in circRNAs is mediated
by mammalian scattered repetitive elements mammalian-wide
interspersed repeats (MIRs) (Yoshimoto et al., 2020). In addition,
a recent study shows that m6A modification can promote the
production of circRNAs carrying an open reading frame (ORF)
during the development of male germ cells in mice (Tang et al.,
2020). Tan et al. (2018) report that the EML4-ALK fusion
gene can form F-circrEA. Later, Wu et al. (2019) found that
SLC34A2-ROS1 can form F-circrSR1 and FmurcircrSR2 by the
fusion gene, and both of them may be used as diagnostic
markers of lung cancer. Also, some scholars find that genes
that interfere with transcriptional termination contribute to
the production of transcriptional read-through products and
promote the production of downstream gene-derived circRNAs
(Liang et al., 2017; Chen S. et al., 2019). From this point of
view, the formation of circRNAs is affected by many biological

factors. Therefore, the formation of circRNAs still needs in-depth
study by researchers.

The Biological Characteristics of CircRNAs
Many studies show that circRNA is a structure with a missing 5′

end cap and 3′ end poly (A) tail, so it is not easy for circRNAs
to be degraded by exonuclease RNAseR (Suzuki et al., 2006;
Suzuki and Tsukahara, 2014; Li X. et al., 2019). Further, due
to circRNAs being highly conserved in many species, such as
humans, nematodes, zebrafish, and mice (Salzman et al., 2012;
Li X. et al., 2019), only a small number of them can evolve and
change rapidly (Zhang et al., 2013, 2014). Some studies point
out that the number of circRNAs found in eukaryotic cells has
been as high as more than 20,000 (Cocquerelle et al., 1993;
Westholm et al., 2014); a few are formed by direct cyclization
of introns, and most of them come from exons (Liu et al.,
2020a). In addition, as a kind of non-coding RNA, circRNA can
only regulate the formation of proteins at the transcriptional
or post-transcriptional level (Westholm et al., 2014), and only
a few of them can regulate life activities by encoding proteins
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(Pamudurti et al., 2017; Yang et al., 2018). Medical researchers
believe that circRNAs have certain tissue and disease specificity
and have guiding significance for the treatment of many diseases
(Cocquerelle et al., 1993).

The Biological Function of CircRNAs
In the past decade, research results have shown that circRNAs can
directly or indirectly participate in the process of gene expression,
such as RNA translation, miRNA bait, RNA translation, protein–
protein interaction, and so on (Westholm et al., 2014; Pamudurti
et al., 2017; Yang et al., 2018) (Figure 1). Based on the results
of previous studies, we summarize the biological functions of
circRNAs: (1) CircRNAs can be used as an miRNA sponge to
regulate the stability of related mRNAs or protein formation.
For example, circHIPK3 acts as a sponge of miR-7 in CRC
when the co-expression of miR-7 and circHIPK3 promotes the
proliferation of colorectal cancer cells (Zeng et al., 2018). (2) A
few circRNAs can encode functional proteins when they contain
the m6A motif or IRES. For example, studies show that some
circRNAs can carry longer ORFs, and the initiation codon of
these ORFs is modified by m6A and binds to ribosomes to
form functional proteins (Zhao et al., 2018; Tang et al., 2020).
(3) CircRNAs can be spliced with linear RNA and promote
the expression of linear mRNA. For example, complementary
pairing of CDR1as and CDR1mRNA can enhance the stability
of CDR1mRNA (Rong et al., 2017). (4) EIcircRNA or ciRNA
interacts with Pol II and U1 snRNP at the promoter of the parent
genes, thus promoting the transcription of the parent genes.
For example, circEIF3J and circPAIP2 regulate gene expression
by forming complexes with U1 snRNP and Pol II, which bind
to the promoter region of the host gene (Li D. et al., 2020).
(5) Some circRNAs can be used as translation templates for
proteins and peptides. For example, some ribo-circRNAs use the
start codon of the host mRNA and bind to membrane-related
ribosomes to participate in circRNA translation (Granados-
Riveron and Aquino-Jarquin, 2016; Pamudurti et al., 2017).
(6) CircRNAs in some nuclei are also involved in histone
modification (Burd et al., 2010; Kotake et al., 2011) and RNA
maturation (Holdt et al., 2016). CircRNAs (mecciRNAs) from
humans, and mouse mitochondria can enter mitochondria by
interacting with TOM40 and PNPASE (Liu et al., 2020b).

The Degradation of CircRNAs
CircRNAs maintain their cellular homeostasis by highly dynamic
and tightly regulated biogenesis and degradation, thereby
exerting proper biological functions. Compared with the
biogenetic mechanism of circRNA biogenesis, the specific
pathway by which cells eventually degrade circRNAs is still in
need of continued study. Some studies show that miRNAs may
initiate the degradation of circRNAs through Ago2-mediated
cleavage. For instance, as the target of CDR1as/ciRS-7, miR-
671 can perfectly load Ago2 into CDR1as/ciRS-7, which leads
to the cleavage of Ago2 in the nucleus and the subsequent
dissolution of RNA in the outer nucleus. However, it is not
known whether other miRNAs can regulate the degradation
of circRNAs by perfectly matching them with Ago2 (Hansen
et al., 2011). A recent study has shown that m6A can mediate

circRNA degradation. Park et al. (2019) point out that, when
m6A carrying circRNA is used as a marker, m6A read–write
protein YTHDF2 and linker protein HRSP12 can be recruited. As
a bridge between YTHDF2 and endoribonuclease RNase P/MRP,
HRSP12 binds directly to the GGUUC motif on circRNAs,
which leads to the initiation of RNase P/MRP and the gradual
degradation of circRNAs. In addition, Fischer et al. (2020) find
a degradation mechanism of RNA (including circRNAs). He
also points out the specific mechanism of selective degradation
of high-structure RNA under normal conditions. High overall
structure circRNA decay is regulated globally by two RNA
binding proteins, UPF1 and G3BP1 (Chen et al., 2020). Because
this pathway perceives the whole RNA structure rather than a
linear first-order sequence, it is called structure-mediated RNA
decay (SRD). Because mammalian RNA decay pathways are
widely linked to translation (Tuck et al., 2020), it is also worth
exploring whether circRNAs targeted by SRD have potential
encoding peptides. Furthermore, Liu C. X. et al. (2019) discovered
an endonuclease RNaseL that can degrade circRNAs in a full
range, which seems to increase researchers’ understanding of the
mechanism of circRNA degradation.

GENERAL SITUATION OF MUSCLE
DEVELOPMENT OF LIVESTOCK
ANIMALS

Muscle development is a very complex biological process, which
mainly depends on the proliferation and hypertrophy of muscle
fiber cells (Molkentin and Olson, 1996). Studies show that
the number of muscle fibers increases only before birth and
does not change much after birth, and the growth of muscle
fibers depends on the hypertrophy of muscle fibers (Christ and
Brand, 2004). The hypertrophy of muscle fibers includes two
aspects: One is the increase of myofibrils, and the other is
the increase in the number of nuclei in muscle fibers (Berger
et al., 2015). Muscle development is a multistep process regulated
by multiple genes, and it is not only regulated by a variety
of myogenic regulatory factors, including myogenin (MyoG),
myogenic regulatory factor-4 (MRF-4), myosin heavy chain
(MyhC), myoblast regulatory factor family myogenic factor-
5 (Myf-5), myostatin (MSTN), myocyte enhancer factor2A-D
(MEF2A-2D), myogenic differentiation antigen (MyoD), and
paired box (Pax) family members Pax 3 and Pax 7 (Chen
et al., 2020), but it is also regulated by other related genes,
such as insulin-like growth factor-I (IGF-I), insulin-like growth
factor-II (IGF-II), forkhead box transcription factor O1 (FoxO1),
and mammalian target of rapamycin (mTOR) (Wan et al.,
2016). Furthermore, studies confirm that the genes that affect
muscle development have two regulatory effects: One is positive
promotion; the other is reverse inhibition (McPherron and Lee,
2002; Chen P. R., 2019; Chen et al., 2020). These growth factors
play a unique role in regulating muscle development and can
regulate cell proliferation, apoptosis, sarcomere activation, and
muscle-specific genes at many sites in the muscle (Doynova et al.,
2017; Hernández-Hernández et al., 2017) pedigree.
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Exploring the regulatory mechanism of muscle cell
proliferation and differentiation is one of the research hot
spots in developmental biology in recent years. As an important
economic trait, the muscle development of livestock has been
paid more and more attention by researchers. CircRNAs
have been widely studied in the related fields of human
medicine and bioinformatics, which provides a new idea
for exploring the construction of regulatory networks of
circRNAs in animal husbandry. As was mentioned earlier,
muscle development is a complex biological process that
is affected by many factors. Although researchers have
conducted extensive and in-depth studies on circRNAs,
some researchers noticed that circRNAs can further guide
the process of muscle development by binding to miRNAs
or regulating the expression of genes related to muscle
development at the transcriptional level (Zhang et al., 2019).
Based on previous studies, we summarize the unique role of
circRNAs in muscle development (as shown in the Table 1 and
Figure 2).

It is reported that the number of circRNAs in animal muscles
and muscle cells ranges from 2,000 to 37,000 (Abdelmohsen
et al., 2015; Li et al., 2017; Liang et al., 2017b; Wei et al.,
2017; Ouyang et al., 2018; Zhang et al., 2018). Li et al. (2017)
first used RNA sequencing to detect 6,113 circRNAs from the
longissimus dorsi muscle of sheep. The researchers found 12,000
circRNA expressions during muscle aging in monkeys by RNA
sequencing (Abdelmohsen et al., 2015). The study found that
circRNAs regulated the growth and development of porcine
skeletal muscle and the transformation of muscle fiber types
at the age of 0–30 days; at the age of 30–240 days, circRNAs
regulated the glucose metabolism and calcium signal of porcine
skeletal muscle (Liang et al., 2017b). Many reports point out
that circRNAs play a unique and irreplaceable role in guiding
animal muscle development (Abdelmohsen et al., 2015; Li et al.,
2017; Liang et al., 2017b; Wei et al., 2017; Ouyang et al.,
2018; Zhang et al., 2018). Liang et al. (2017b) constructed
the first miniature pig circRNA database and point out that
ssc-ciR-02753, ssc-ciR-03065, ssc-ciR-03066, ssc-ciR-03069, ssc-
ciR-04335, ssc-ciR-04348, ssc-ciR-04349, ssc-ciR-04353, and ssc-
ciR-04359, can regulate porcine muscle development by affecting
cell proliferation and fusion. It is reported that many circRNAs
contain binding sites, such as miR-1, miR-133, miR-206, miR-
29, miR-378, miR-431 (Ebbesen et al., 2017), miR-7 (Li L. et al.,
2019), miR-135a (Greco et al., 2009), miR-1290 (Ng et al., 2015),
and miR-876-5p (Cook et al., 2015). Interestingly, these miRNAs
are involved in cell proliferation, differentiation, and signal
transduction during myogenesis. It lays a theoretical foundation
for the construction of a co-expression network of circRNAs
regulating the muscle development of livestock. Combined with
human medical research, it is not difficult to see that circRNAs
and miRNAs can bind and regulate the expression of downstream
mRNAs (that is, the ceRNA co-expression regulatory network)
in a certain way. A lot of evidence also shows that the muscle
development of livestock is indeed regulated by both circRNAs
and miRNAs (Abdelmohsen et al., 2015; Li et al., 2017; Liang et al.,
2017b; Wei et al., 2017; Ouyang et al., 2018; Zhang et al., 2018).
In addition, a very small number of circRNAs can regulate muscle

development in livestock at the transcriptional and translational
levels (Shen et al., 2019). However, there is almost no relevant
research in this field at present. Therefore, it is necessary for us
to pay close attention to the related regulatory mechanisms of
circRNAs on muscle development in different ways.

CIRCRNAS REGULATE MUSCLE
DEVELOPMENT OF LIVESTOCK
ANIMALS

CeRNA Co-expression Network
Regulates Muscle Development of
Livestock Animals
Muscle development of livestock is an important economic
character in the development of animal husbandry. Despite
the controversy surrounding the ceRNA hypothesis, large
amounts of experimental results show that circRNAs can regulate
the expression of mRNAs related to the muscle development
of livestock through specific miRNAs (Qian et al., 2017).
Therefore, researchers have evaluated multiple co-regulatory
relationships during muscle development. Among them,
Yue et al. (2020) verify the interaction among circHUWE1,
miR-29b, and AKT3 with the help of bioinformatics, double
luciferase report analysis, and AGO2-RNA immunoprecipitation
(RIP) and point out that circHUWE1 can directly interfere
with the ability of miR-29b to release AKT3 inhibition and
finally activate the AKT signal pathway, thus promoting the
proliferation of bovine myoblasts and inhibiting apoptosis
and differentiation of bovine myoblasts. For this reason, Yue
et al. (2020) build upon previous research results to construct
a ceRNA co-expression regulatory network, which not only
provides a good idea for the study of muscle development, but
also expands our understanding of the function of circRNAs.
KEGG pathway analysis shows that hosting genes of circRNAs
are related to the muscle development pathway, including
the mammalian target of rapamycin signaling pathway, Wnt
signaling pathway, MAPK, and transforming growth factor-β
signaling pathway (Li et al., 2017). Yan et al. (2020) identify
a total of 5,177 circRNAs in the longissimus dorsi samples
of Kazakh cattle and Xinjiang brown cattle by establishing a
RNA sequence library; of these, 46 are differentially expressed.
The identification of differentially expressed genes shows that
the process of muscle development is related to differentially
expressed circRNAs. In addition, miRanda predictions show that
there are 66 interactions between 65 circRNAs and 14 miRNAs.
For this reason, Yan et al. (2020) also establish a co-expression
network. Further, some miRNAs known to be involved in
myoblast regulation, such as miR-133b and miR-664a, are
identified. Sun et al. (2017) study the differentially expressed
coding genes, lncRNAs, circRNAs, and miRNAs, in muscle tissue
of Lantang and Landrace pigs. The results show that there are
1,401 high expressions of circRNAs and 2,959 low expressions
of circRNAs in Lantang pig, of which 236 circRNAs are closely
related to muscle development, and 40 circRNAs regulate muscle
development by participating in a miRNA-mediated ceRNA
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TABLE 1 | CircRNAs involved in muscle development and their function.

circRNAs Parental gene Organism Biological roles Target miRNA(s) miRNAs target References

circ-ZNF609 ZNF609 Homo sapiens Inhibits differentiation,
promotes proliferation; can
be translated

miR-194-5p BCLAF1 Legnini et al., 2017

circLMO7 LMO7 Bovine Inhibits differentiation,
promotes proliferation of
primary bovine myoblasts
and protects them from
apoptosis

miR-378a-3p HDAC4 Wei et al., 2016

circFUT10 FUT10 Cattle Reduces proliferation and
facilitates differentiation of
bovine myoblasts

miR-133a SRF Li et al., 2018

circSNX29 SNX29 Bovine Promote myoblast
differentiation and inhibit
cell proliferation

miR-744 Wnt5a CaMKIIδ
and Ca2+

Peng et al., 2019

circFGFR4 FGFR4 Bovine Promote cell differentiation miR-107 WNT3A Li et al., 2018

circHUWE1 HECT, UBA
and WWE

Bovine Promotes myoblast
proliferation and inhibits
differentiation

miR-29b AKT3 Yue et al., 2020

bta_circ_03789_1,
bta_circ_05453_1

ND Cattle May regulate the IGF-IR
gene by regulating the
miRNAs associated with
the longissimus dorsi
muscle, and finally regulate
muscle development

miR-133b and
miR-664a

IGF-IR Yan et al., 2020

circTTN TTN Bovine Promoted proliferation and
differentiation

miR-432 IGF-II, PI3K, AKT Wang et al., 2019

circ776 ND Sheep Involved in muscle cell
development and signaling
pathway

miR-208 ND Cao et al., 2018

circ_0001573,
circ_0001554,
circ_0013564

ND Pig Regulation of muscle fiber
transformation through
mi-499-5p

miR-499-5p KCNQ1, MRAS
and SERTM1

Li B. et al., 2020

CDR1as Human X
Chromosome

Goat Promotes myoblast
differentiation

miR-7, miR-1290,
miR-876-5p, miR-135a

IGF-1R Sun et al., 2017

ND, not determined.

regulatory network. There are 6,113 differentially expressed
circRNAs in the longissimus dorsi of Kazakh sheep at both
embryonic and adult stages, and the maternal genes of circRNAs
are mainly enriched in the signal pathways related to muscle
growth and development. Among them, oar_circ 0000385,
oar_circ_0000582, and oar_circ_0001099 have multiple binding
sites on miRNAs (miR-143, miR-133, and miR-23) related to
muscle development (Li et al., 2017). Wei et al. (2017) detect
the circRNA expression profile of bovine skeletal muscle at
two developmental periods (embryonic and adult longissimus)
for the first time and point out that the overexpression of
circLMO7 can competitively absorb miR-378a-3p when the
expression of miR-378a-3p is downregulated; the target gene
hdac4 is activated, thus promoting muscle cell proliferation
and inhibiting muscle cell differentiation. After that, Li et al.
(2018) find that circFGFR4 and miR-107 are highly expressed in
Qinchuan cattle at the embryonic stage (90 days) and adulthood
(24 months old) longissimus dorsi, and circFGFR4 could adsorb
miR-107. MiR-107 can weaken the expression of Wnt3a by
binding to overexpressed circFGFR4. It can be seen that Wnt3a,
as the target of miR-107, plays an important role in inhibiting

myotube formation and protecting myoblast apoptosis. To
sum up, circFGFR4 can be used as an miR-107 sponge to
eliminate the inhibitory effect of miR-107 on the expression of
Wnt3a and the differentiation of bovine primary myoblasts. The
differential expression of circTitin (circTTN) in bovine skeletal
muscle between fetal and adult bovine muscle tissue and the
overexpression and inhibition of circTTN induced its promoting
effect on the proliferation and differentiation of bovine primary
myoblasts because miR-432, the target gene of circTTN, is
the regulator of IGF-II. Wang et al. (2019) point out that
circTTN can activate the IGF-II/phosphatidylinositol 3-kinase
(PI3K)/AKT signal pathway through competitive binding with
miR-432, which promotes the proliferation and differentiation
of bovine myoblasts. Li et al. (2018) find that circFUT10 in
adult bovine muscle can reduce its inhibition on target genes
by competitive binding to miR-133a, and the expression of
MyHC, MyoD, and MyoG related to muscle development
changed synchronously with that of circFUT10 at the mRNA
and protein levels. Overexpression of circ-FUT10 can promote
MyHC expression, induce myoblast apoptosis, and promote
myoblast differentiation. On the contrary, circZfp609 binding to
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FIGURE 2 | CircRNAs involved in muscle development and their function. Schematic representation of the role of circRNAs in muscle proliferation and differentiation.
The diagram shows various circRNAs that regulate the proliferation and differentiation of myoblasts. The circRNAs are represented in red.

miR-194-5p inhibits the expression of bcl2-related transcription
factor 1 (BCLAF1), which also affects the expression of Myf5
and MyoG, and inhibits myoblast differentiation (Li et al., 2018).
CircSNX29 exists widely in bovine primary myoblasts, but its
expression level in embryonic skeletal muscle is significantly
higher than that in adult skeletal muscle. Peng et al. (2019)
find that overexpression of circSNX29 promotes myoblast
differentiation and inhibits cell proliferation while interfering
with circSNX29 inhibits myoblast differentiation and promotes
proliferation. Subsequently, using RNAhybrid for bioinformatics
prediction, it was found that circSNX29 may adsorb to miR-744
with 9 potential binding sites. Using a double luciferase report
assay, the results show that circSNX29 could directly bind to
miR-744 competitively and effectively reverse the inhibitory
effect of miR-744 on Wnt5a and CaMKIIδ. Importantly, through
KEGG pathway enrichment analysis, Western blotting, a calcium
fluorescence probe, and CamKII activity detection, it is found
that overexpression of Wnt5a and circSNX29 activate the non-
classical Wnt/Ca2+ pathway by increasing the activity of CamKII
kinase and the phosphorylation level of PKC and then regulate
the proliferation and differentiation of bovine myoblasts. These
results are helpful to further understand the role of circRNAs and

miRNAs in myogenesis. The study further shows that muscle
development is more efficient in embryo than in adulthood.
Interestingly, Von et al. point out that Wnt5a and CaMKIId
are the targets of miR-744, and the expression of miR-744 leads
to the activation of the atypical Wnt pathway by inhibiting
the expression of Wnt5a and CaMKIId (von Maltzahn et al.,
2012). From this, we can see that circSNX29 acts as an miR-744
sponge to upregulate the expression of CaMKIId and Wnt5a
through activating the Wnt pathway and promotes myoblast
differentiation. In addition, it is reported that circRNA9210-
miR-23a-MEF2C and circRNA290-miR27b-Foxj3 networks play
a unique role in regulating the conversion of muscle fiber types
in porcine skeletal muscle (Shen et al., 2019). Li et al. (2017)
find a total of 5,086 differentially expressed circRNAs in the
RNA sequences of sheep adult longissimus dorsi (LDM-A) and
longissimus dorsi (LDM-E) of which 2,146 are downregulated
and 2,940 are upregulated. The results of real-time quantitative
PCR show that the expression of circRNA 0000552, circRNA
00002456, circRNA 00004666, circRNA00004676, and circRNA
00004690 in LDM-E is relatively higher than that of LDM-
A. The expression of circRNA 0003451, circRNA 0005243,
circRNA 0005250, and circRNA 0005256 in LDM-A is relatively
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higher than that in LDM-E. Thus, the differential expression of
circRNAs in sheep muscle is proved. Cao et al. (2018) extracted
75.5 million sequences from the sheep skeletal muscle RNA gene
bank. These sequences were mapped to 729 genes in the reference
genome of sheep, containing a total of 886 circRNAs. Reverse
transcription PCR and DNA sequencing analysis confirm the
existence of many kinds of circRNAs and the resistance of sheep
circRNAs to RNase R digestion. Finally, Cao et al. (2018) first
used RNA-seq to study circRNAs in the longus dorsi muscle of
sheep before and after delivery. A total of 6113 circRNAs were
detected, of which some circRNAs (circRNA100, circRNA108,
circRNA205, circRNA606, circRNA678, circRNA744, and
circRNA776) contained at least two conservative targets of
miRNAs related to muscle development (miR-29b, miR-133,
miR-208, and miR-499, respectively). Thus, it can be seen that
most circRNAs interact with muscle-specific miRNAs and then
jointly regulate the process of muscle development. The results
of GO and KEGG enrichment analysis show that the host gene
of circRNAs is involved in muscle cell development and signal
transduction (Cao et al., 2018). For this reason, Cao et al. (2018)
establish a relatively complete ceRNA network that contains
a large number of potential functional circRNA (circRNA
0000385, circRNA 0001099, and circRNA 0000582) and its
predicted miRNA targets and downstream regulatory genes.
At present, these regulatory networks are an important source
of ideas for us to study muscle development. This information
may help us to further explore the unique role of circRNAs in
muscle development.

As we all know, circRNA CDR1as (CDR1as or CiRS-7) is
an antisense transcript of cerebellar degeneration associated
protein 1, but in fact, CDR1as is also considered to be related
to miRNAs related to muscle development (Geng et al., 2016;
Sang et al., 2018). Although CDR1as was identified as the
specific circular RNA of miR-7, other miRNAs, such as miR-
135a, miR-876-5p, and miR-1290, are also shown to be CDR1
response elements (Geng et al., 2016; Sang et al., 2018). It is
worth noting that CDR1as-responsive miRNA and its targeted
muscle-derived genes, such as IGF-IR, N-cadherin, ABCG2,
WNT5A, EGFR, FAK, and CCNE1, play a key role in normal
conditions and muscle diseases, such as DM1, FSHD, and
IIM, which makes CDR1 potentially an important regulatory
factor in muscle (Geng et al., 2016; Sang et al., 2018; Kyei
et al., 2020). First of all, Li L. et al. (2019) discovered that
MyoD promotes CDR1as by binding on the CDR1as 5′ flank
region; however, the overexpression or knockout of CDR1as
can significantly induce or hinder the process of muscle
differentiation. Second, CDR1as can reduce the downregulation
of IGF-IR induced by miR-7 through competitive binding to
miR-7, thus activating muscle differentiation in goat metaphase.
The above results further indicate that CDR1as plays an
irreplaceable role in the regulation of muscle development. At the
same time, these potential CDR1as/miRNAs/mRNA regulatory
networks provide a basis for further study of the function
of CDR1as in muscle development and other life activities
and processes.

In general, these results show that circRNA is a key factor that
cannot be ignored in the process of muscle development; it can

compete for endogenous miRNAs to form a circRNA–miRNA
complex and further relieve the inhibitory effect of miRNAs
on mRNA. However, the interaction between circRNAs and
endogenous miRNAs needs to be further verified because, in
some special cases, the number of miRNA sites that bind to a
specific circRNA is limited, and these sites are specific in different
species or tissues, so the ceRNA regulatory network is not the
whole content of muscle development.

CircRNA Regulates Muscle Development
in Livestock Animals at the
Transcriptional Level
Because there is no biological original to guide coding protein
in the special structure of circRNA, circRNA is considered
to be a non-coding RNA in most cases. However, recently,
researchers are increasingly finding that a very small number
of circRNAs have the ability to encode proteins (Li and
Lytton, 1999; Legnini et al., 2017; Yang et al., 2018; Liang
et al., 2019). Shen et al. (2019) point out that circRNA41,
circRNA69, and circRNA153 differentially expressed in porcine
skeletal muscle during oxidation and glycolysis are transcribed
from MyH1 (encoding MyHC-2X protein), MyH7 (encoding
MyHC-β protein), and MyH2 (encoding MyHC-2A protein)
genes, respectively. These results indicate that circRNAs play
a unique role in regulating the heterogeneity of muscle fiber
types, but at present, the research in this area has not been
reported. In addition, previous studies point out that the protein
encoded by circRNAs depends on the ORF on the sequence.
However, the circRNAs that actually have the function of coding
protein should have many necessary conditions at the same
time, such as the internal ribosome entry sites (IRES), the
biological element activated by translation, and the biological
element for detecting protein products (Wang and Wang, 2015;
Legnini et al., 2017; Pamudurti et al., 2017). A typical example
is circRNA ZNF609, which is one of the earliest endogenous
circRNAs that can be translated into a protein driven by
RES and regulating myogenesis. Circ-ZNF609 itself does not
possess the factors required for cap structure and polyadenosine
transcription translation, but it can be involved in muscle cell
development by initiating translation under cis-acting elements
through a mechanism independent of the cap structure in
response to different cellular stresses (Legnini et al., 2017).
In addition, a recent study finds that circSamd4 is related
to Pura and PURB during muscle development; as myogenic
inhibitors, Pura and PURB can inhibit the transcription of the
myosin heavy chain (MHC) protein family. Silencing CircSamd4
enhances the binding of PUR protein to the MHC promoter,
and overexpression of circSamd4 interfers with the binding of
pur protein to the MHC promoter, indicating that circSamd4
could bind to PUR protein and prevent it from interacting with
DNA. When using mutant circSamd4 without a PUR binding
site, these effects were canceled. In other words, the binding of
PUR protein to circSamd4 can promote muscle development
by reducing MHC transcription (Pandey et al., 2020). Song
et al. (2020) identify 197 differentially expressed circRNAs in
the gastrocnemius of Duchenne muscular dystrophy (DMD)
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mice and predicted their protein coding ability according to
the Nmurine 6-methyladenosine motif and ORF of circRNAs.
Among them, 189 circRNAs were predicted to have protein
coding potential, and 98 circRNAs may be translated into
peptides containing 150 or more amino acids, indicating
that circRNAs may play a key role in the pathophysiological
mechanism of DMD. CircFAM188B contains an ORF that can
be translated as circFAM188B-103aa during the skeletal muscle
development of broilers to promote the proliferation of chicken
SMSC (Yin et al., 2020). To sum up, although researchers have
gradually deepened their understanding of circRNAs, there are
still few studies on circRNAs regulating muscle development by
encoding proteins.

CircRNAs Directly Regulate Muscle
Development Through mRNA
As we mentioned earlier, muscle development in livestock
is a complex physiological process, and different kinds of
circRNAs play different roles in muscle development. Ling et al.
(2020) find that cluster16 circRNAs are highly expressed in
the early and late stages of muscle development of Anhui
white goat (AWG) embryo and are directly involved in the
Wnt signal pathway, AMPK signal pathway, and so on. It
can be seen that circRNAs can directly regulate the muscle
development of livestock. In addition, circQKI (as well as
QKI mRNA) depletion is demonstrated to have a negative
effect on myoblast differentiation, indicating that both the
circRNA and its linear counterpart cooperate in this process. By
contrast, although BNC2 mRNA depletion causes an increase in
myotube formation, knockdown of its circular counterpart has
no effect on differentiation. Interestingly, circBNC2 expression
during myoblast differentiation increases at the expense of
the corresponding mRNA, suggesting that circBNC2 could
contrast the expression of the anti-differentiative BNC2 mRNA
(Legnini et al., 2017). Similarly, circEch1 is the most different
circRNA in buffalo and beef muscle in vitro. The results
of in vitro experiments show that the overexpression of
circEch1 inhibits the proliferation of bovine myoblasts but
promotes differentiation; in vivo tests show that circEch1
stimulates skeletal muscle regeneration. In general, circEch1
induces myoblast differentiation and skeletal muscle regeneration
(Huang et al., 2021). Although there are few studies in this
area at present, we believe that with the development of
research technology, the relationship between circRNAs and
mRNA related to livestock muscle development will become
more and more clear.

CONCLUDING REMARKS AND
PERSPECTIVES

CircRNAs are a new regulator of muscle development. However,
at present, the functional annotation of circRNAs is mainly to
predict and analyze source coding genes or possible miRNA
binding sites. In this review, we further discuss the relationship
between circRNAs and muscle development of livestock by
reviewing the discovery, classification, formation, characteristics,

biological function, and degradation pathway of circRNAs. It is
obvious that most studies focus on circRNAs guiding muscle
development through the ceRNA co-expression regulation
network. In addition, some studies confirm that circRNAs can
regulate muscle development in livestock in transcription and
translation, and only a few studies show that circRNAs can
directly regulate muscle development in livestock. There is no
doubt that our point of view plays a directional role in the study
of muscle development in domestic animals; at the same time, we
believe that there are other ways for circRNAs to regulate muscle
development in livestock.

Up to now, the study of intracellular circRNAs made people
further realize the complexity of eukaryotic gene expression
regulation. In-depth study of the formation and types of
circRNAs and the mechanism of action with target genes and
exploring its biological function is of great significance for
understanding the growth and development of organisms and
disease treatment. Due to the variety of circRNAs, the diversity
of action modes, and the constraints of research methods, people
still need some time to clarify these genes and their regulatory
mechanisms. However, as a kind of non-coding RNA discovered
in the post-genome era, it effectively enriches the research
model of gene expression regulation. We think that, with the
rapid development of modern molecular biology technology,
new generation sequencing technology, and bioinformation
analysis technology, more and more new circRNAs will be
discovered in the future, and people will study its function more
and more deeply.
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