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Functional imaging based on tomographic X-ray imaging relies on the reconstruction of a temporal sequence of images which
accurately reproduces the time attenuation curves of the tissue. The main constraints of these techniques are temporal resolution
and dose. Using current techniques the data acquisition has to be performed fast so that the dynamic attenuation values can
be regarded as static during the scan. Due to the relatively high number of repeated scans the dose per single scan has to be low
yielding a poor signal-to-noise ratio (SNR) in the reconstructed images. In a previous publication a temporal interpolation scheme
in the projection data space was relaxing the temporal resolution constraint. The aim of this contribution is the improvement of
the SNR. A temporal smoothing term is introduced in the temporal interpolation scheme such that only the physiologic relevant
bandwidth is considered. A significant increase of the SNR is achieved. The obtained level of noise only depends on the total dose
applied and is independent of the number of scans and the SNR of a single reconstructed image. The approach might be the first
step towards using slowly rotating CT systems for perfusion imaging like C-arm or small animal CT scanners.
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1. Introduction

The application of tomographic X-ray techniques to carry
out perfusion studies relies on the reconstruction of a
sequence of images which accurately reproduces the dynam-
ics of the flow of an injected contrast agent. The temporal
evolution of the attenuation coefficient corresponding to
a voxel is denoted as time attenuation curve (TAC) or
perfusion signal and is proportional to the concentration
of contrast agent in the region occupied by said voxel.
Hence, the temporal evolution of the gray value of a voxel
is proportional to the temporal evolution of the average
concentration of contrast agent within the voxel. TACs are
used as input for algorithms based on a tracer kinetic
model which compute functional parameter maps. Several
approaches have been presented in the literature for this
purpose. We refer the reader to [1] for an overview of these
methods. The obtained maps provide the physician with
physiological information related to blood supply to the
tissues in the ROI which is crucial for the diagnosis.

One of the main constraints posed by these techniques
is the temporal resolution; that is, the data acquisition-
reconstruction process has to be capable of reproducing
the perfusion signals. For this reason, up to now, data
acquisition is performed fast enough to assume that the
attenuation values are constant during data acquisition.
Another important issue are dose considerations. Due to the
relatively high number of repeated scans in a perfusion study
the dose per single scan has to be low yielding a poor signal to
noise ratio in the reconstructed images. The noise level can
even be higher than the level of contrast enhancement caused
by contrast agent flow. Under such conditions, the detection
of perfusion signals becomes a challenging issue. This aspect
will become even more critical with the introduction of large
area detectors where a larger area of the patient is exposed.

Currently, only CT scanners allow a sampling rate high
enough to assume constant attenuation during acquisition
and therefore the only clinical application of tomographic
X-ray techniques to perform perfusion studies is perfusion
Computed Tomography (perfusion CT). This technique has
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Figure 1: Scheme of a CT scanner in cone-beam geometry with a cylindrical detector.

already found its way into clinical routine where it represents,
together with MRI, one of the primary imaging techniques
for the diagnosis of patients with symptoms of stroke. It
presents several advantages over other techniques to perform
perfusion studies as MRI which include the widespread
availability of CT scanners, an easier access to the patient
and lower cost [2]; moreover, several studies indicate that
the potential of this technique is not yet fully exploited [3–
5]. In this paper we propose an acquisition-reconstruction
scheme which tackles both the temporal resolution and the
noise problem making it suitable for perfusion studies with
other tomographic X-ray techniques.

In [6] we introduced an algorithm with increased tem-
poral resolution under the assumption of no motion, which
weakened the requirement of fast data acquisition. This
algorithm (TIA-TFDK: Temporal Interpolation Approach
Tent Feldkamp Davis Kress) is based on a convolution
and backprojection approach for circular trajectories and
reconstructs an intermediate volume image denoted as
partial block backprojection (PBB) from only that part
of the projection data that are acquired in a time period
of a given length. The final volume image at a certain
time is computed by accumulating a complete set of PBBs
of the same time, thus reducing data inconsistencies. For
this purpose a temporal spline interpolation approach is
used to estimate the value of a PBB at any desired time.
Image acquisition has to be fast enough such that the PBBs
satisfy Nyquist’s sampling condition. However, the TIA-
TFDK algorithm provides a fixed temporal resolution for a
given rotation time of the scanner and it does not take noise
into account. In order to tackle this two aspects, we introduce
in this a simple modification of the TIA-TFDK algorithm
which exploits the fact that perfusion signals are essentially
low pass. An estimation of the maximum frequency of the
fastest perfusion signal in the region of interest is used as
a priori information. By substituting the interpolation step
for a more flexible estimation scheme which allows to choose
the temporal bandwidth of the output sequence, higher fre-
quency components containing mainly noise are suppressed
and thus the SNR is improved. In our modification, which
we call Temporal Smoothing Approach-TFDK (TSA-TFDK),
we propose to use smoothing splines as a natural evolution
from the interpolation splines scheme used in [6]. With the
proposed algorithm the temporal bandwidth is an additional
parameter which is independent of the rotation time. We
also justify theoretically that under certain assumption (no
motion and only quantum noise) the image quality can

be shown to be the same independently of the rotation
time.

This algorithm opens the possibility to use other
tomographic X-ray techniques for perfusion studies as, for
example, small animal CT scanners and represents a first
step toward the application of C-arm systems for perfusion
studies. However, the assumption of no motion limits the
possible clinical applications to fixed patients.

We start with the setting of our dynamic reconstruction
problem. We then describe the low-noise estimation of time
dependent projections in the presence of noise when the
only a priori information available is the signal’s bandwidth.
We describe a practical implementation of this low-noise
estimation with polynomial spline filters. Subsequently, we
apply these ideas to the dynamic reconstruction problem and
describe the TSA-TFDK approach for dynamic reconstruc-
tion. Finally, we present a numerical simulation and provide
an illustrative example of the effect of the noise reduction on
clinical data.

2. Problem Setting

A source-detector arrangement with a cylindrical detector as
shown in Figure 1 rotates around the z axis with a constant
angular speed ω on a circular trajectory. The angular speed
ω determines the rotation time T2π , T2π = 2π/ω. The plane
containing the source trajectory is denoted as xy plane. We
assume that the source is situated at the angular position
α = 0 at t = 0; hence, the cone-beam projection Pα(γ,ϕ, tα)
is acquired at tα = α/ω. γ and ϕ denote the fan and cone-
angles, respectively, and γ′(α, x), and ϕ′(α, x), the fan and
cone-angles which determine the ray passing through x,
where x ∈ R3 denotes the spatial coordinate, for a given
angular position α. The object is represented by a time
dependent spatial distribution of an attenuation coefficient
μ(x, t), where t denotes time, and is located within a cylinder
of radius ‖xmax‖, that is,

μ(x, t) = 0 for ‖x‖ ≥ ‖xmax‖. (1)

We concentrate in changes of the attenuation coefficient
caused by the change in the composition of a substance as
in the case of contrast agent flow. We assume that neither
motion nor deformation occurs.

The source rotates continuously during a total acqui-
sition time of Ttot and during this time a total dose Dtot

is applied. We assume that the total dose is distributed
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Figure 2: Principle of low-pass filtering to obtain a low-noise
sequence. The ideal low-pass filter adapted to the signal covers the
frequency band ] − νmax, νmax[ (black dashed). The shaded area
indicates the noise power density. Light shaded indicates masked
out noise; whereas dark shaded indicates the noise in the frequency
band of the signal. The light shaded spectra are repetitions of the
spectrum of the signal due to sampling.

uniformly among all projections acquired during the acqui-
sition time. We use as an estimation of the dose applied
the mAs product, which is a reasonable measure to compare
reconstruction algorithms in terms of dose efficiency as long
as the input data are obtained with the same scanner [7].
During its continuous rotation the source may be switched
off during regular periods of time.

We also assume that the only source of noise is quantum
noise. This is a reasonable assumption for objects with small
sections, for example, in neurological applications.

Our goal is the estimation of μ(x, t) at temporal incre-
ments of Tfr during a total time of Ttot.

3. Low-Noise Estimation in Dynamic X-Ray
Tomographic Imaging

3.1. Low-Noise Estimation of Time Dependent Projections. Let
us now consider the problem of the estimation of the con-
tinuous projection value p(t) from the noisy measurements
y[n] taken every Ts.

The continuous projection value p(t) is an accumulation
of time attenuation curves along the direction of the x-ray
beam. In order to find an appropriate method to estimate
p(t) it is convenient first to characterize TACs in order
to be able to extract the maximum information from the
measurements. The model, however, should be as general
as possible in order for it to be valid both in pathologic
and nonpathologic cases. The morphology of perfusion
signals depends on the patient, on the tissue, and on the
injection parameters (amount of contrast agent, injection
rate, etc.) so that it is very variable. The task to find a
model that represents their variety is a very challenging one.
The model we propose is motivated by the linear systems
approach for the modeling of tracer kinetics [8]. According
to this approach, the time-attenuation curve in a tissue is
obtained by convolution of the time-attenuation curve of
the input artery with the impulse response of the tissue

which is essentially a low-pass filter. The flow through several
tissues is modeled by successive convolutions. Additionally,
prior to reaching tissue, venously injected contrast agent
goes through the cardio-pulmonary system which has a
very strong low-pass filtering effect. As a consequence of
this, TACs are very smooth curves. In Fourier domain, this
translates into a Fourier transform that can be neglected
over a certain threshold which we denote as νmax. Moreover,
the injection profile is usually a rectangular pulse; thus, the
power spectrum of TACs is concentrated around 0 Hz. As an
example, typical values of νmax measured in the brain at the
arteria cerebri anterior with an injection rate of 20 mL/s and
an injected volume of 50 mL are ≤0.15 Hz [9].

According to the model presented in Appendix A, the
power spectral density of quantum noise is constant over all
frequencies. The natural conclusion is then that suppressing
frequency components over |νmax|, the signal is preserved
and only noise is eliminated, increasing thus the signal to
noise ratio. The maximum enhancement of the SNR is
obtained by using a continuous ideal low-pass filter with cut-
off frequency νmax for the estimation. This principle works
only if the sampling condition is fulfilled

νmax <
1

2Ts
, (2)

which ensures that the repetitions of the frequency spectrum
(light shaded spectra in Figure 2) do not overlap.

The variance of the noise after the estimation σ2
Est is

obtained by integrating the power spectral density of the
noise in the frequency band ] − νmax, νmax[. Since the power
spectral density of noise is constant equal to ε2Ts and the
frequency response of the ideal low-pass filter is constant in
]− νmax, νmax[, we get

σ2
Est = 2νmaxε2Ts. (3)

Note that in order to come to (3) we have only used
the hypotheses of quantum white noise (see Appendix A),
bandlimited signal, and constant total dose. In the following
we consider the influence of dose settings in the noise
variance.

According to the definition of dose, the mAs product
dose is linearly accumulated. Hence, the total dose applied
Dtot is

Dtot = DpNrotNα, (4)

where Dp is the dose applied to measure each projection, Nrot

is the number of rotations with activated X-ray source, and
Nα is the number of projections acquired per rotation. Every
projection is measured once during a rotation, hence Nrot, Ts,
and the total acquisition time are related by

Nrot = Ttot

Ts
. (5)

Note that Ts need not to be T2π but might be a multiple
of it. Since the total dose is distributed uniformly among
all projections acquired, the dose applied to measure a
projection is

Dp = Dtot

NrotNα
. (6)
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It is a well-known fact that for quantum noise the mean
square value is inversely proportional to the dose applied
ε2 ∝ 1/Dp. Using (5) and (6), we get

ε2 ∝ TtotNα

TsDtot
. (7)

Finally, using (3) we get

σ2
Est ∝

νmax

Dtot
TtotNα. (8)

This expression can be interpreted as follows. The estimation
with a continuous low-pass filter exploits the redundancy in
the signal to reduce noise, and 1/νmax is a good indicator
for signal redundancy. Hence, for a given total dose Dtot

distributed during a total acquisition time Ttot and acquiring
Nα projections per rotation, the higher the redundancy
is (i.e., the lower νmax), the stronger the achieved noise
reduction will be. Note that σ2

Est does not depend on Ts. Thus
the same level of noise will be obtained by acquiring a few
scans with a high dose per view or a higher amount of scans
with lower dose per view, as long as condition (2) is fulfilled.

3.2. Low-Noise Estimation with Polynomial Spline Filters. As
stated in the introduction, we use the TIA-TFDK algorithm
from [6] as a starting point for our new approach. Hence,
the most natural choice to approximate the ideal low-pass
filters described in the previous section is to use polynomial
spline filters, since this will imply a minor modification in
the algorithm.

An ideal low-pass filter has an infinite support in
temporal domain and decays very slowly (∝ 1/|t|) so that
samples that lie far from the value to be estimated will
still contribute significantly to it. This is very inefficient for
practical purposes. Polynomial spline filters are appropiate
to approximate ideal low-pass filters for our purposes for
two main reasons. First, from [6] as a starting point for
our new approach, hence this is a natural choice since it
implies a minor modification in the algorithm. Additionally,
polynomial splines provide a viable compromise between
accuracy and efficiency. The filter kernels are quite local and
converge rapidly to the ideal low-pass kernel when the order
n of the polynomial splines increases. Given a set of samples,
by properly choosing the coefficients of the polynomial
spline basis functions (B-splines), estimations of any degree
of smoothing and, in the extreme, of no smoothing at all
(interpolation) can be performed [10, 11]. In this section we
describe how temporal smoothing with polynomial splines
can be interpreted as a low-pass filtering in time.

We denote with y[k] the temporal noisy samples of a
given signal p(t) taken every Ts. Throughout this section t′

denotes time normalized by the sampling interval Ts, that
is, t′ = t/Ts; the corresponding dimensionless frequency
is denoted by ν′ = νTs. We approximate the continuous
signal p(t′) by a polynomial spline function of order n: snλ(t′),
where λ indicates the degree of smoothing. According to
Schönberg’s theorem (see [10]), snλ(t′) can be expressed as

snλ(t′) =
∑

k∈Z
cλ[k]βn(t′ − k), (9)

where βn(t′) are the polynomial B-splines and cλ[k] the B-
spline coefficients. The polynomial B-splines are uniquely
determined by its order n so that, for a given order n, we
only need to find the coefficients cλ[k]. For this purpose we
minimize the following functional:

F
{

cλ, y
} =

∑

k∈Z

(
y[k]− snλ[k]

)2
+ λ
∥∥∥DLsnλ(t)

∥∥∥
2

L2
, (10)

where n = 2L − 1, DL denotes the Lth derivative and ‖ · ‖L2

the L2 norm. The first term in (10) forces the estimated
function to be close to the sampled values at the sampling
points. The second term is a regularity constraint which
favors a smooth estimation of the signal. It is controlled
by the smoothing parameter λ. For λ = 0, F{cλ, y} = 0
if snλ[k] = y[k], which is the interpolation condition. For
larger values of the smoothing parameter, the smoothness
constraint might determine a curve not passing through the
sampled values. If we denote bn[k] = βn(k), it can be shown
(see [11]) that the coefficients of the nth-order polynomial
spline that minimize (10) can be computed as

Ĉλ

(
ei2πν′

)
= Ŷ

(
ei2πν′

)

B̂n(ei2πν′) + λ(−ei2πν′ + 2− e−i2πν′)L
, (11)

where Ĉλ(ei2πν′), Ŷ(ei2πν′)- and B̂n(ei2πν′) denote the Fourier
Transform of the discrete sequences cλ[k], y[k], and bn[k],
respectively. Substituting the spline coefficients Ĉλ(ei2πν′) of
(11) in the Fourier Transform of (9) we obtain

ŝnλ(ν′) = Ŷ
(
ei2πν′

) (sinc(ν′))n+1

B̂n(ei2πν′) + λ(−ei2πν′ + 2− e−i2πν′)L︸ ︷︷ ︸
η̂nλ (ν′)

,

(12)

where we have used that β̂n(ν′) = (sinc(ν′))
n+1

.
Equation (12) shows that the smoothing operation can

be interpreted as the discrete convolution of the samples y[k]
with a continuous polynomial spline low-pass filter ηnλ(t′).
When λ = 0, ηn0 (t′) is the polynomial spline interpolator of
order n and it verifies limn→∞ηn0 (t′) = sinc(t′) [12].

We denote as cut-off frequency the frequency ν′c at
which the frequency response of the filter falls to half of
the maximum, that is, η̂λ(ν′c) = 0.5. Figure 3 shows the
frequency responses of different polynomial spline filters
ηnλ(t′) for different values of n and λ. By properly choosing
these parameters we can obtain good approximations to the
ideal low-pass filters used in Appendix A. In practice, n is
responsible for the sharpness of the edges of the frequency
response, that is, how close the filter is to the ideal low-
pass filter (Figure 3(a)) and λ for the position of the cut-off
frequency (Figure 3(b)).

Even if λ is responsible for the position of the cut-off
frequency, this dependency is different for different orders n.
This is illustrated in Figure 4. For λ = 0, ν′c = 0.5 for all
n values. The cut-off frequency decreases slower for lower
orders until λ ≈ 1. After this value, lower orders decrease
much faster. For high values of λ the decay is very slow and
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Figure 3: Frequency response of the polynomial spline filter ηnλ(t′).
(a) λ = 0 and orders n = 3, 5 and 9 (black arrow indicates increasing
order). (b) n = 9 and λ = 0, 0.01, 0.05, 20 and 1000 (black arrow
indicates increasing value of λ). Frequency ν′ is normalized by the
sampling frequency.

therefore large increases in the smoothing parameter provide
only very small reduction of the cut-off frequency. The value
of λ, the normalized cut-off frequency ν′c and the spline of
order n are related by [13]

λ = (2πν′c
)−n−1 − π−n−1. (13)

Contrary to the frequency response of the ideal low-
pass filter, the frequency response of polynomial spline
filters starts decaying already for frequencies under ν′c. The
proportion of the frequency interval [0, ν′c] which can be
reproduced accurately depends mainly on the order of the
splines n. For the purpose of this paper we will use n = 9 as
an approximation for the ideal low-pass filter. Figure 3 shows
that for n = 9 the frequency response is almost constant until
approximately 0.8ν′c. As a consequence, we will use hereafter
the following expression to calculate the cut-off frequency
to ensure that the frequency range from 0 to νmax remains
unaltered after filtering

νc = νmax

0.8
−→ ν′c =

νmaxTs

0.8
. (14)

In Section 3.1, we provided an expression for the estima-
tion of the variance of the filtered sequence. We will derive
now an expression for the case where polynomial spline
filtering is used instead of ideal filtering. The power spectrum
of a filtered stationary process is obtained by integrating the
product of the power spectrum of the process with the square
of the absolute value of the frequency response of the filter
[14]. Since we used an ideal low-pass filter, the integral from
−νmax to νmax could simply be substituted by 2νmax times the

n

ν′ c
(n

,λ
)
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Figure 4: Dependency of the cut-off frequency of polynomial spline
filters with the smoothing parameter λ for n = 3, 5, and 9 (black
arrow indicates increasing order).
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value of the power spectral density. If we use a spline low-pass
filter this is no longer true. We now have for(3)

σ2
Spl = ε2Ts

∫ +∞

−∞

∣∣∣η̂nλ(ν′)
∣∣∣

2
dν′. (15)

The value of the integral depends on n and λ. In Figure 3,
we show the frequency response of η9

λ(t′) for different values
of λ. Qualitatively it is clear that all these filters are very
close to an ideal low-pass filter with the corresponding cut-
off frequency. Hence, the value of the integral must be close
to 2ν′c. In Figure 5 we show the ratio

∫ +∞
−∞
∣∣∣η̂9

λ(ν′)
∣∣∣

2
dν′

2ν′c
(16)

for values of ν′c ∈ [0.02, 0.5]. The values are all between 0.914
and 0.95. We would like to have a simple rule of thumb to
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estimate the value of the variance of a sequence filtered with a
low-pass spline filter. For this purpose, we propose to use the
average value of the curve in Figure 5, 0.92 as a representative
value and then add the factor 0.92/0.8 to (3) as a correction
factor for filtering with splines. This yields

σ2
Spl ≈ 2.3ε2Tsνmax. (17)

4. Temporal Smoothing Approach-TFDK

In this section we discuss the modification of the TIA-TFDK
algorithm to exploit the ideas presented in the previous
sections. For the sake of simplicity we initially assume that
the source is always switched on during acquisition time, that
is, it operates in continuous acquisition mode.

The TIA-TFDK algorithm can be seen as a dynamic
extension of the T-FDK algorithm for cone-beam recon-
struction on circular trajectories described in [15]. We
first introduce this algorithm to which we have added the
temporal dependence of the object. Unclear relationships
between time variables will be explained further on. The
T-FDK algorithm consists in first rebinning the cone-beam
projections to a fan-parallel beam (see Figure 6)

Pα
(
γ,φ, tα

) −→ Pb
β

(
u, v, tβ

)
, (18)

and then performing filtering and backprojection on the
rebinned projections:

Qβ

(
u, v, tβ

)
=
∫ umax

−umax

(
Pb
β

(
s, v, tβ

)
w(s, v)

)
g(u− s)ds,

μr(x, tπ) = 1
2

∫ 2π

0
Qβ

(
u′
(

x,β
)
, v′
(

x,β
)
, tβ
)
dβ,

(19)

where w(u, v) is a weighting function which only depends
on the detector coordinates and (u′(x,β), v′(x,β)) are the
coordinates of the detector pixel where the ray passing
through x intersects the detector for the projection at
projection angle β (see Figure 6).

Both the rebinning and the backprojection steps include
approximations since in both, projections acquired at differ-
ent times are used to compute a value which is associated
to a unique time. During the rebinning step, in order to
calculate the rebinned value at projection angle β, cone-
beam projections acquired during the time interval tα ∈
[tβ − γmax, tβ + γmax] are used, where γmax is the maximum

fan-angle. Hence, the time uncertainty introduced in the
rebinning step depends on the maximum fan-angle, that is,
on the diameter of the object, whereas the time uncertainty
due to the backprojection step depends on the length of
the backprojection interval. We can therefore reduce the
uncertainty due to backprojection by dividing the angular
interval [0, 2π] in N subintervals of length 2π/N . We denote
the backprojection over these subintervals as partial block
backprojections (PBBs) as in [16]. Since every PBB occupies
the same amount of memory as the reconstructed volume,
taking a lot of PBB intervals has a direct impact on the
amount of memory required for the reconstruction. On the
other hand, as shown in [6], the uncertainty due to rebinning
does not depend on the number of PBBs per rotation N ;
there is a certain threshold Nmax, which only depends on the
maximum fan-angle, over which the error due to rebinning
predominates and makes it not worth increasing N , that
is, to reduce the length of the backprojection interval. For
perfusion signals, [6] shows that with the typical fields of
view of most current CT scanners and N ≥ Nmax, the
errors due to the uncertainties introduced by rebinning
and backprojection can be neglected when compared to
the errors due to resolution or noise. In the TSA-TFDK,
the reconstruction of a PBB over several rotations can be
interpreted as the sampling of time dependent PBB with a
sampling interval Ts = T2π . Furthermore, in the rebinned
geometry, for small cone-angles, equivalent rays are acquired
every Ts = Tπ . That is to say, reconstructing PBBs over
several rotations provides a series of noisy samples acquired
every half-rotation.

In Appendix A we assumed that the variances of the
projection values do not depend on time and derived a
model for the temporal behavior of noise in projections
based on this assumption. It should be noted, however,
that if this assumption holds for projection values, it
automatically holds for filtered projection values and also
for linear combinations thereof, for example, to PBBs.
Similarly, the statistical independence of the fluctuations
at different times is guaranteed for filtered projections and
linear combinations of projections as long as the projection
sets are not overlapping. As a consequence, the proposed
model for the temporal behavior of noise in projections, as a
stationary process in time with statistically independent time
samples can be also applied to filtered projections and partial
block backprojections. Therefore, a low-noise estimation is
obtained from the series of noisy samples if these are filtered
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along the time axis with a continuous polynomial spline
filter with cut-off frequency νc = νmax/0.8. According to the
sampling rate of 1/Tπ obtained when combining the time-
series of the jth PBB with the time series of the j+N/2th PBB
(computed with equivalent rays), accurate reconstruction is
possible as long as

νc = νmax

0.8
≤ 1

2Tπ
−→ T2π ≤ 0.8

νmax
. (20)

By filtering the PBBs this way, we can estimate their values at
any time and thus reconstruct an image frame at any desired
reconstruction time by accumulating N/2 PBBs. Contrary to
the TIA-TFDK algorithm, the temporal estimation is carried
out using polynomial spline filters with a normalized cut-off
frequency ν′c ≤ 0.5, that is, the PBB samples are smoothed
along the time axis.

Note that (20) is based on the assumption that we use
polynomial splines of order n = 9. If other values of n are
used, (20) should be adapted accordingly (see Section 3.2).

A detailed description of the steps of the algorithm is
provided in Appendix B.

Since typically νmax < 0.15 Hz (see [9]), the condition
(14) translates into the rotation time having to fulfill
T2π < 5.33 s, which is achieved by a wide variety of X-ray
tomographic imaging systems. For the choice of N the most
challenging case according to (20) is when T2πνmax = 0.8, for
which we provided the following empirical formula in [6]:

Nmax ≈ π√
6

1√
0.02 + r2/4Γ2

, (21)

where r is the radius of the object and Γ is the radius of the
circular trajectory of the source. This Nmax gives the value
over which the uncertainty introduced by rebinning predom-
inates over the uncertainty produced by backprojection.

A especially interesting case results from the application
of the algorithm to scanners with high rotational speeds
(e.g., 2 rotations per second) because then using the lowest
rotation time of the scanner Tmin

2π , N , can be reduced to 1
without significant loss of accuracy. Thus, the temporal esti-
mation is carried out as a postprocessing of the reconstructed
sequence.

5. Numerical Example

In this section we present an example of low-noise acquisi-
tion and reconstruction with the TSA-TFDK algorithm and
compare it to a perfusion protocol which is representative of
current clinical routine perfusion CT. During this section,
we will refer to this protocol as the reference protocol. For
the acquisition, 800 projections per rotation were simulated
with a cylindrical scanner of 256 channels. A spherical
phantom containing 6 spherical inserts with time-dependent
attenuation was used. In this phantom, the inserts follow the
temporal law

μi(t) = Ci
(
t − p1

)p2e−(t−p1)/p3 , (22)

with p1 = 5 s, p2 = 2.3, and p3 = 3 s. This curve fulfills
νmax ≤ 0.15 Hz and is representative of the temporal evolu-

Table 1: Reconstruction parameters for slow and fast scanning
reconstruction.

Slow scanning Fast scanning

n 9 9

λ 0 1533

T2π (s) 5.33 0.5

Ts (s) 2.66 0.25

N 16 2

No. rotations 8 80

(a) Reference protocol (b) TSA-TFDK

Figure 7: Comparison between reference protocol and low-noise
reconstruction. (a) Frame of the sequence reconstructed with the
reference protocol. (b) The same frame of the sequence recon-
structed with fast scanning with TSA-TFDK. Window [30, 70] HU.

tion of the concentration of contrast agent in vessels and
tissue after the injection of a bolus of contrast agent. All
inserts follow the same law, except for the amplitude. Ci

(s−2) determines the amplitude and was chosen in such a
way that the maximum values of the enhancement were
10, 18, 26, 34, 42, and 50 HU.

We first simulated acquisition and reconstruction with
the reference protocol, consisting in full-scan T-FDK recon-
structions [15]. Nsc = 40 scans were simulated with a
rotation time of T2π = 0.5 s during 40 s. The source was
switched off every second rotation. Quantum noise was
added to the projections. The corresponding values for the
rotation time and smoothing parameter were calculated
using (B.1) and (B.2) and are given in Table 1. The lowest
sampling rate implies a slow rotation scanning, in which the
signal is not oversampled and therefore λ = 0. In this case,
TSA-TFDK reduced to the TIA-TFDK algorithm as described
in [6]. The highest sampling rate implies a fast rotation
scanning such that the signal is strongly oversampled and
therefore a high value of λ is needed to adjust the cut-off
frequency to νmax. The noise parameter for each simulation
was adjusted according to the number of scans in such a way
that the accumulated total dose was kept constant.

Figures 7(a) and 7(b) show a frame of the reconstructed
sequence with the reference protocol (left) and with TSA-
TFDK with fast scanning (right). The noise reduction effect
can be clearly observed. In Figure 8, we show the temporal
evolution of the mean of the reconstructed attenuation
values within the insert with maximum enhancement 18 HU.
The curves of the TSA-TFDK sequences are clearly smoother
than the curves obtained with the reference protocol, but
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Table 2: Standard deviation of the values within the inserts for the
reference protocol and the TSA approaches.

Algorithm Std. dev.

Std. protocol 4.48

TSA-TFDK fast scanning 2.60

TSA-TFDK slow scanning 2.62

the temporal resolution is preserved. The results with fast
and slow scanning are qualitatively similar, except for some
oscillations towards the end of the sequence in the slow
scanned sequence, probably as a consequence of a light
aliasing.

In Table 2, we show the value of the standard deviation
measured within the inserts. As expected, the standard devi-
ation in the TSA-TFDK reconstructions is lower than in the
reference protocol sequence. The TSA-TFDK reconstructions
of slow and fast scans exhibit a similar noise level. Indeed,
according to (A.5) and (17) the ratio of the variances should
be

rσ2 ≈ 1
2.3νmax

= 2.898. (23)

With the values from Table 2 we can calculate the measured
reduction of the variance as 4.48/2.62 = 1.71 and (1.71)2 =
2.924, which shows that TSA-TFDK behaves as expected.

6. Results on Clinical Data

In this section, we show the effect of the low-noise recon-
struction on a clinical data set. For this purpose, we present
an example where the temporal smoothing is performed on
the reconstructed images of a neurological clinical dataset.
While this could be seen as a particular case of the TSA-
TFDK algorithm for N = 1, we would like to remark that the
TSA-TFDK has been developed for slow rotating scanners.
This example is presented to illustrate the effect of the low-
noise reconstruction and compare to current methods.

6.1. Data and Method. In the perfusion protocol data were
acquired for 40 s, during which the source rotated at 0.5 s/rot
and was switched on every two rotations. Hence, 40 images
were generated which corresponds to a rate of 1 image/s.
The scan was performed with a tube voltage of 120 kVp
and at a tube current of 220 mA. Since the rotation time
was T2π = 0.5 s, the dose per reconstructed image in mAs
was D2π = 110 mAs. Every image frame was reconstructed
from projection data of a full-scan with the reconstruction
algorithm provided by the commercial scanner. At this point,
we would like to point out that this study does not depend on
the reconstruction algorithm, since data are processed after
reconstruction. The X-ray beam was collimated to obtain a
slice width of 10 mm.

Since we had already a reconstructed sequence at our
disposal, we used it to estimate a value of νmax instead of
using an a priori general estimation for it. Note that this was
possible because the sampling interval was Ts = 1 s which
satisfies the sampling condition since νmax � 0.5 Hz [9].
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(a) Max. enh.: 18 HU, fast scanning
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(b) Max. enh.: 18 HU, slow scanning

Figure 8: Time-attenuation curves of the inserts with maximum
enhancement 18 HU. (a) Fast-scanning, (b) slow-scanning. Black
curves: phantom value, grey curves: values obtained with the
reference protocol, and dashed curves show the value of the
reconstruction with TSA-TFDK.

For the purpose of estimating νmax, we used an ROI within
the arteria cerebri anterior. The temporal evolution of the
concentration of contrast agent in this artery can be assumed
to be the fastest in the dataset. Additionally, the arteria cerebri
anterior is approximately orthogonal to the slice plane so
that partial volume effects are avoided. With this TAC we
estimated νmax as the value for which [−νmax, νmax] contains
99% of the energy of the signal. We obtained a value of
νmax ≈ 0.0966 Hz.

According to this estimation, the signal is clearly over-
sampled and there is leeway for low-pass filtering to increase
the SNR as discussed in Section 3.2. Particularly, using (14)
we get

ν′c =
0.0966 Hz× Ts

0.8
≈ 0.12 (24)

for which λ = 15.82 (see (13)).
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(a) Arteria cerebri anterior
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(b) Sinus sagittalis
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(c) Tumor
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(d) Gray matter

Figure 9: Example of TACs in different tissues. The gray curve corresponds to the original dataset. The black curve corresponds to the
low-noise sequence.

(a) (b) (c)

Figure 10: Detail of the left hemisphere in a frame of the perfusion sequence with high contrast enhancement (t = 19 s). (a) Original
sequence. (b) Sequence 4 (Ts = 4 s). (c) Sequence 1 (Ts = 1 s). Window [16, 56] HU.
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Figure 11: Cerebral blood flow maps computed from the original sequence (a), sequence 4 (Ts = 4 s), (b) and sequence 1 (Ts = 1 s) (c).

As we saw in Section 3.1, this low-noise level can also
be achieved by concentrating the same total dose to fewer
rotations. A simple way to simulate sequences with different
sampling rates is to downsample the original sequence by
a factor of K , that is, to keep one every K samples of the
original sequence. The maximum value of K can be obtained
from (14) taking into account that ν′c ≤ 0.5,

ν′c =
νmaxKTs

0.8
≤ 0.5 −→ K ≤ 4.14. (25)

Hence, according to the analysis of Section 3.1, we should be
able to obtain complete sequences with the same low level
of noise from sequences sampled every 1, 2, 3, or 4 seconds.
Using (13) and (25) we get ν′c and λ for every sequence, these
values are shown in Table 3.

Note that since we do not increase the dose by the same
downsampling factor, the total dose applied Dtot is reduced
by the downsampling factor K . The only way to avoid
this would be to perform the acquisition of every sequence
independently so that the dose per rotation is increased by
the corresponding value for every sequence. Since this would
be highly invasive for the patient, we use here a more simple
way to verify the validity of our approach. We simply exploit
the fact that the variance of the noise is inversely proportional
to the dose applied as shown in (8). Thus according to our
model, if we take as a reference the sequence with K = 1, the
variance of the other sequences will be

σ2
K = Kσ2

Spl ≈ 2.3ε2KTsνmax. (26)

The variance of the noise of the original data is σ2
Or = ε2.

Hence, we can express the ratio between the variance of the
noise in the original sequence and that of the downsampled
and filtered sequences as

σ2
Or

σ2
K

≈ 1
2.3KTsνmax

. (27)

6.2. Results. In Figure 9, we show some examples of time-
attenuation curves of the original (gray) and the low-noise
sequence 1 withK = 1 (black). The curves show the temporal
evolution of the average value of the pixels within a ROI
in different tissues. As can be seen, the enhancement curve

Table 3: Input sequence and filter parameters for every sequence.

Sequence No. of images Ts(s) ν′c λ

Seq. 1 40 1 0.121 15.82

Seq. 2 20 2 0.241 0.0154

Seq. 3 13 3 0.362 2.57e − 4

Seq. 4 10 4 0.483 4.41e − 6

Table 4: Sequences and reduction of the variance.

Sequence Measured Estimated

1 4.90 4.5

2 2.32 2.25

3 1.54 1.5

4 1.04 1.12

for the arteria cerebri anterior in the low-noise sequence is
smooth but can still follow the changes in the original curve.
The same can be observed for the sinus sagittalis. In such large
vessels, the enhancement due to contrast agent flow is higher
than in tissue or in small vessels, and the original SNR is
high enough to compute physiological parameters without
smoothing. In other regions, enhancement is larger than
noise but of the same order of magnitude. An example for
such regions is shown in curve Figure 9(c)) where the TAC of
an ROI within a tumor is shown. The TAC of the low-noise
estimation clearly eliminates noise and delivers a curve which
is physiologically more plausible than the curve obtained
from the original dataset. Finally, Figure 9(d)) shows the TAC
of an ROI within gray matter.

While in the original curve the enhancement cannot
really be perceived, the TAC of the low-noise sequence
clearly shows an increase with time in the concentration of
contrast agent. On the other hand, the TAC of the low-noise
sequence contains low frequency oscillations which are not of
physiological nature. These are due to low-frequency noise in
the frequency band [−νmax, νmax].

We would like now to verify if the reduction of the
noise caused by the temporal smoothing is in accordance
with the predictions of our model. Noise is measured as the
variance of pixel values in a certain region of a homogeneous
object. The variance might be due not only to quantum noise
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but also to pixels in the region of interest that correspond
to different tissues and have therefore a different temporal
behavior. Since our model concerns the temporal behavior of
the statistical fluctuations caused by quantum noise only, we
must segment a region within a tissue where all points have
the same temporal behavior. This is not practicable in clinical
images since we do not know a priori the exact temporal
behavior in any region, except for in those regions where the
attenuation is constant because contrast agent does not reach
them. For this reason we used a segmented ROI within the
ventricular system to estimate the variance. This delivered a
set of 2300 pixels with the same temporal behavior. We then
used the whole 2300 × 40 pixels to estimate the variance in
each reconstructed sequence. The ratio of the variance of
the original sequence to the variance of the postprocessed
sequences is shown in the second column of Table 4. The
third column shows the values estimated using (27). The
estimated values match approximately the measured values.
According to the proposed model for the temporal behavior
of noise, the reduction of the variance should be inversely
proportional to the sampling rate since the total dose
is decreased by downsampling. This is approximately in
accordance with the values in Table 4. The effect on image
quality is shown in Figure 10. The frame shown corresponds
to t = 19 s. Sequence 4 has samples at t = 16 s and t = 20 s so
that the frame at t = 19 s has been computed at the filtering
step. The image quality of the frame estimated from sequence
4 appears to be equivalent to the original frame although
four times fewer input data were used for the computation of
the sequence. Sequence 1, with strong temporal smoothing,
presents substantially reduced noise while visually preserving
spatial resolution. The reconstructed sequences were used as
input for the Perfusion CT software (Siemens AG, Healthcare
Sector, Forchheim, Germany) that computes the functional
parameter maps. This software first segments vessels and
bone, performs a strong spatial smoothing, and subsequently
computes the functional parameters. The segmented regions
are excluded from the functional maps and represented in
black. Figure 11 shows cerebral blood flow maps computed
from the original sequence (a), sequence 4 (b), and sequence
1 (c). Map (a) presents many small isolated segmented
regions compared to map (c). These correspond to areas
where the noise level led to a wrong classification as vessels.
Most of them disappear in map (c). Finally, map (c) is
smoother in space which is physiologically more plausible.
The quality of maps (a) and (b) is equivalent although
(b) was computed from a sequence reconstructed with four
times fewer data, equivalent to four times less dose.

7. Conclusion

In this paper we have presented the dynamic reconstruction
algorithm TSA-TFDK, which is a further development of the
previously published TIA-TFDK algorithm [6]. A temporal
sequence of image frames is generated. In the presented
modification a smoothing term is incorporated into the
temporal estimation step reducing the noise level. The con-
tinuous low-pass filter covers only the relevant bandwidth

of the dynamic process and higher frequencies are strongly
attenuated. No relevant information is lost. Image properties
are independent of the sampling rate and the rotation time
of the scanner as long as Nyquist’s sampling condition is
fulfilled. The obtained level of noise only depends on the
total dose applied. As an example the TSA-TFDK allows to
reconstruct a dynamic perfusion process with a physiologic
relevant maximum frequency of νmax = 0.15 Hz from data
acquired by scanning with any rotation time up to 5.33 s. In a
simulation study similar temporal resolution and noise level
are achieved by acquiring with slow and fast rotation time.
We have illustrated the effect of the low-pass filtering using a
clinical data set, and the results obtained were in accordance
with the predictions obtained from a model for the temporal
behavior of noise in dynamic X-ray imaging presented.
The proposed approach opens the possibility to use other
tomographic X-ray techniques such as small animal imaging
CT scanners for perfusion studies. It might even be a starting
point for the development of dynamic reconstruction algo-
rithms for C-arm systems by adapting the estimation step to
the irregular sampling scheme caused by the back and forth
movement. However, the assumption of no motion limits the
possible clinical applications to fixed patients.

Appendices

A. Temporal Sampling of Noise in Dynamic
X-Ray Tomographic Imaging

We consider the temporal evolution of a single noisy
projection value which we denote by y(t). This value is
determined by the angular position of the source, the fan-
angle and the cone-angle:

y(t) = Pα
(
γ,ϕ, t

)
. (A.1)

The temporal evolution y(t) is modeled as a continuous
deterministic signal p(t) contaminated by additive noise ε(t)

y(t) = p(t) + ε(t). (A.2)

The noise is assumed to be a continuous random process
with zero mean and mean square value ε2.

For the following analysis we consider quantum as the
main source of noise in X-ray projections and neglect
the contribution of electronic noise. This is a reasonable
assumption for applications where the maximum width
traversed by the X-ray beam is small as, for example,
neurological applications. According to the Poisson law
the mean number of quanta detected by a detector pixel
fluctuates around a mean value N with a variance equal
to the mean. As a consequence of the process of contrast
agent flow, the mean number of detected quanta depends
on time and therefore so does the noise variance. However,
the increase in attenuation due to contrast agent flow is
small compared to the overall attenuation of the passing X-
ray beam. Hence, it is reasonable to assume that the noise
variance does not depend on time (is constant) [9] and thus
ε(t) is a wide-sense stationary process in time [17]. We use
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hereafter the term stationary process to refer to a wide-sense
stationary process. Moreover, for a given projection value,
the fluctuations around the mean at two time instants t1 and
t2 are statistically independent.

In dynamic acquisition the projection value y(t) is
measured once during every rotation. This can be seen as a
temporal sampling of the signal p(t) contaminated by noise
ε(t). Let us now analyze the sampling of stationary process
ε(t). We denote by ε1[n] = ε(nTs) the discrete sequence of
noise samples obtained by sampling ε(t) with a sampling
rate of 1/Ts. As mentioned above, the fluctuations at two
different times are statistically independent and therefore
also uncorrelated. This can be expressed by the discrete
autocorrelation function Rε1 as

Rε1 [n] = E[ε1[k]ε1[k + n]] = ε2δ[n], (A.3)

where E denotes the expectation value and δ[n] is the
Kronecker symbol (δ[0] = 1 and δ[n] = 0 if n /= 0). The
discrete power spectral density S′ε1

is defined as (see [18])

S′ε1

(
ei2πν′

)
=
∑

n∈Z
Rε1 [n]e−i2πν′n = ε2 = const (A.4)

where ν′ = νTs is the normalized frequency with ν as
the physical frequency. The notation (ei2πν′) indicates that
it is the Fourier Transform of a discrete sequence and is
therefore periodic (we follow the notational conventions of
[18]). S′ε1

(ei2πν′) owes its name to the fact that integrating it
over one period of the normalized frequency, ]−1/2, 1/2[,
yields the mean square value or variance of the noise.
Downsampling ε1[n] by a factor of K (or sampling ε(t) with
sampling interval KTs) would deliver a sequence with the
same discrete autocorrelation as in (A.3) and therefore the
same discrete power spectral density as in (A.4).

Definition (A.4), however, does not provide any insight
into the physical frequency of the underlying continuous
process. For this reason we define the discrete physical power
spectral density Sε1 of the samples of a continuous process
sampled every Ts by introducing the change of variables
ν′ = νTs in (A.4). Thus, we get

Sε1

(
ei2πνTs

)
= Ts

∑

n∈Z
Rε1 [n]e−i2πνnTs = ε2Ts. (A.5)

Integrating (A.5) over one period on the physical frequency
axis we obtain the mean square value or variance of the
discrete process

ε2
1 =

∫ 1/2Ts

−1/2Ts

Sε1

(
ei2πνTs

)
dν = ε2. (A.6)

Therefore Sε1 (ei2πνTs) describes the distribution of power
density over one period of the physical frequency axis. In
order to simplify nomenclature, we will use hereafter the
wording power spectral density to refer to the physical power
spectral density.

As a consequence of (A.5) and (A.6), the discrete power
spectral density of the discrete sequence εK [n], obtained by
downsampling ε1[n] by a factor of K (or sampling ε(t) with

One period

One period

Sε1 (ν)

ε2Ts

Sε2 (ν)

2ε2Ts

− 1
2Ts

1
2Ts

ν

− 1
4Ts

1
4Ts

ν

Figure 12: Physical power spectral density of uncorrelated
sequences obtained by sampling a continuous stationary random
process with sampling rates 1/Ts (top) and 1/(2Ts) (bottom).

sampling interval KTs), is increased by a factor of K with
respect to the discrete power spectral density of ε1[n] (see
Figure 12)

SεK
(
ei2πνKTs

)
= Kε2Ts. (A.7)

B. TSA-TFDK

The TSA-TFDK is summarized in the following steps.

Algorithm TSA-TFDK. (1) Choose rotation time such that

T2π ≤ 0.8
νmax

. (B.1)

(2) Calculate λ for n = 9

λ =
(
πνmaxT2π

0.8

)−10

− π−10. (B.2)

(3) Rebin cone-beam projections to fan-parallel beam

Pα
(
γ,φ, tα

) −→ Pb
β

(
u, v, tβ

)
. (B.3)

(4) Divide every rotation in N sets of projections and
reconstruct N partial block backprojections with the T-FDK
algorithm

Qβ

(
u, v, tβ + kT2π

)

=
∫ umax

−umax

Pb
β

(
s, v, tβ + kT2π

)
w(s, v)g(u− s)ds,

ζj
(

x, t(π/N)(2 j+1) + kT2π

)

= 1
2

∫ (2π/N)( j+1)

(2π/N) j
Qβ

(
u′
(

x,β
)
, v′
(

x,β
)
, tβ + kT2π

)
dβ,

(B.4)

where for all j = 0, . . . ,N − 1, for all k ∈ Z.
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(5) Combine the jth and the ( j + N/2)th sequences of
partial block backprojections to a unique sequence

ζ ′j′
(

x, t(π/N)(2 j′+1) + kTπ

)

=

⎧
⎪⎨
⎪⎩

ζj′
(

x, t(π/N)(2 j′+1) + kT2π

)
, k even,

ζj′+(N/2)

(
x, t(π/N)(2 j′+1) + kT2π − Tπ

)
, k odd,

(B.5)

where for all j′ = 0, . . . ,N/2− 1, for all k ∈ Z.
(6) Estimate the values of the partial reconstructions at

the output frame times with polynomial spline filtering

ζ
j′

(x, t) =
∑

k∈Z
ζ ′j′
(

x, t(π/N)(2 j′+1) + kTπ

)

× ηnλ

(
t − t(π/N)(2 j′+1) − kTπ

Tπ

)
,

(B.6)

where for all j′ = 0, . . . ,N/2− 1.
(7) Accumulate the estimated N/2 partial block backpro-

jections to obtain the time dependent attenuation map

μr(x, t) = 2
N/2−1∑

j′=0

ζ
j′

(x, t). (B.7)
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