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Production animals are constantly subjected to early adverse environmental conditions
that influence the adult phenotype and produce epigenetic effects. CpG dinucleotide
methylation in red blood cells (RBC) could be a useful epigenetic biomarker to identify
animals subjected to chronic stress in the production environment. Here we compared
a reduced fraction of the RBC methylome of chickens exposed to social isolation to
non-exposed. These experiments were performed in two different locations: Brazil and
Sweden. The aim was to identify stress-associated DNA methylation profiles in RBC
across these populations, in spite of the variable conditions to which birds are exposed
in each facility and their different lineages. Birds were increasingly exposed to a social
isolation treatment, combined with food and water deprivation, at random periods of the
day from weeks 1–4 after hatching. We then collected the RBC DNA from individuals
and compared a reduced fraction of their methylome between the experimental groups
using two bioinformatic approaches to identify differentially methylated regions (DMRs):
one using fixed-size windows and another that preselected differential peaks with
MACS2. Three levels of significance were used (P ≤ 0.05, P ≤ 0.005, and P ≤ 0.0005)
to identify DMRs between experimental groups, which were then used for different
analyses. With both of the approaches more DMRs reached the defined significance
thresholds in BR individuals compared to SW. However, more DMRs had higher fold
change values in SW compared to BR individuals. Interestingly, ChrZ was enriched
above expectancy for the presence of DMRs. Additionally, when analyzing the locations
of these DMRs in relation to the transcription starting site (TSS), we found three
peaks with high DMR presence: 10 kb upstream, the TSS itself, and 20–40 kb
downstream. Interestingly, these peaks had DMRs with a high presence (>50%) of
specific transcription factor binding sites. Three overlapping DMRs were found between
the BR and SW population using the most relaxed p-value (P ≤ 0.05). With the
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most stringent p-value (P ≤ 0.0005), we found 7 and 4 DMRs between treatments
in the BR and SW populations, respectively. This study is the first approximation to
identify epigenetic biomarkers of long-term exposure to stress in different lineages of
production animals.

Keywords: stress, red blood cells, epigenetics, chicken, DNA methylation, animal welfare

INTRODUCTION

External influences affecting early life stages (pre- and post-
birth) of animals can have enormous consequences on their
adult phenotypes (Guerrero-Bosagna and Skinner, 2012). Several
environmental factors are reported to affect early development,
including environmental chemical compounds, endocrine
disrupters (Susiarjo et al., 2013), inorganic chemicals (Kile
et al., 2014), nutritional components (Dolinoy et al., 2007;
Guerrero-Bosagna et al., 2008), or stress conditions (Fagiolini
et al., 2009). Notably, epigenetic processes are substantially
affected during early exposures to each of these factors
(Guerrero-Bosagna and Skinner, 2012).

Epigenetics is the study of molecules that bind to DNA
and can maintain this interaction in a mitotically stable
manner (Skinner et al., 2010). Epigenetic modifications can
regulate gene expression and are fundamental for all cellular
processes. Epigenetic research has permeated several fields of
biological research, from molecular to evolutionary biology
(Richard and Stein, 2012). However, despite the importance of
epigenetic mechanisms in biology in general, epigenetic studies
in production animals are incipient, with some studies performed
in chickens (Pértille et al., 2017a, 2019; Bélteky et al., 2018;
Guerrero-Bosagna et al., 2020), in cattle (Su et al., 2014; Fang
et al., 2017; Zhou et al., 2018; Sevane et al., 2019), in sheep
(Cao et al., 2017; Capra et al., 2017; Zhang X. et al., 2017;
Zhang Y. et al., 2017), and pigs (Gao et al., 2014; Choi et al.,
2015; Yuan et al., 2017; Wang and Kadarmideen, 2019, 2020).
Among production animals, chickens have recently emerged
as a promising model for epigenetic studies (Frésard et al.,
2013) following their historical use as a model for translational
research with implications for human health and physiology
(Kain et al., 2014).

Chickens are livestock animals of great zootechnical interest
that are subjected to constant challenges in their production
environment. These challenges include extreme temperatures,
social disruption, unfamiliar sounds, unfamiliar or uncaring

Abbreviations: ADAMTSL5, thrombospondin type-1 domain-containing protein
6; ADJW, adjacent windows; BR, Brazil; SW, Sweden; C, control animals; CEUA,
Ethics Committee on Animal Utilization; CNPq, National Council for Scientific
and Technological Development; CONCEA, National Council for the Control
of Animal Experimentation; CP, crude protein; DMRs, differentially methylated
regions; EMBRAPA, Brazilian Agricultural Research Corporation; FAPESP, São
Paulo Research Foundation; FORMAS, Swedish Research Council for Sustainable
Development; GBS, genotyping by sequencing; HPA, hypothalamic-pituitary-
adrenal; IGF2R, insulin-like growth factor 2; Iset1, input set 1; Iset2, input set
2; MACS2, model-based analysis of ChIP-Seq data version 2; ME, metabolizable
energy; MeDIP, methylated DNA immunoprecipitation; minRowSum, minimum
sum of counts; mnMAF, minimum minor allele frequency; mnScov, minimum site
coverage; mnTCov, minimum taxon/sample coverage; RBC, red blood cells; ROI,
regions of interest; S, social isolation treatment; SP, São Paulo; TFBS, transcription
factor binding site; THOP, thimet oligopeptidase 1; TMM, trimmed mean of M
values; VEP, variant effect predictor.

handlers, feed and water restriction injection with antigens,
and diseases (Zulkifli, 2013). These exposures cause stress
responses involving an initial homeostatic imbalance followed
by physiological and behavioral responses (Zulkifli, 2013).
Stress leads to immunodepression, reduced performance, and
increased susceptibility to diseases (Eberhart and Washburn,
1993; Goerlich et al., 2012). Losses in poultry production are
generated by some noticeable phenotypes such as carcass injury
and dermatitis (Meluzzi et al., 2008) (which relate to poor rearing
conditions) and to other phenotypes that are harder to notice,
such as reduction in meat quality (Sandercock et al., 2001).
Therefore, poor handling in production animals is an issue
concerning not only animal welfare, but also meat quality and
human nutrition. Consequently, it is of utmost importance to
develop effective and cost-efficient tools to trace prolonged stress
caused by poor practices in animal production.

By knowing the physiological and molecular mechanisms
behind stress response in animals, it is possible to develop tools
for its diagnosis. For example, under stress, alterations in the
HPA axis activity result in elevated levels of glucocorticoids
(Fallahsharoudi et al., 2015). Consequently, hormonal responses
are produced such as changes in testosterone, noradrenaline,
adrenaline, prolactin, adrenocorticotrophic hormone, and
cortisol (Henry, 1993). Based on this plethora of hormonal
changes, stress in animals is usually determined by hormone
levels such as cortisol and epinephrine (Ishibashi et al., 2013;
Müller et al., 2013). However, the release of stress hormones
may show an acute physiological response but may not reflect
a prolonged exposure to stress conditions (Henry, 1993).
Recently, hair cortisol has been used as a long-term stress
indicator (Heimbürge et al., 2019). In addition, salivary cortisol
concentrations have also been used as a long-term stress indicator
in horses (Peeters et al., 2011). Researchers have also begun to
use corticosteroid metabolites in feathers, hair, or feces as a
non-invasive metric of prolonged stress in different species (Berk
et al., 2016). However, these authors report that procedures
measuring hormones are laborious, the interpretation of the
results is difficult, and the methods still need to be validated (Berk
et al., 2016). Therefore, a major challenge still lies in determining
the history of an organism’s exposure to stress for prolonged
periods. Epigenetic marks in peripheral cells may serve as
epigenetic biomarkers of stress history (Provencal et al., 2012;
Wang et al., 2012) because in animals constantly subjected to
stress it is expected that related hormonal plasmatic changes will
leave an epigenomic mark in different cells, including blood cells.

One traceable epigenetic biomarker is the DNA methylation
of cytosines in CpG dinucleotides (Feil and Fraga, 2012; Denham
et al., 2016). We have recently reported DNA methylation
differences in RBC of chickens reared in cages compared to
conventional shed systems (Pértille et al., 2017a). However,
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in this proof-of-concept study we lacked the knowledge of
which of these conditions was most stressful for the animals.
The broad interest in RBC is due to the fact that they are
easily purified and nucleated in birds. This allows us to easily
extract DNA specifically from this cell type to study epigenetic
changes without multiple cell bias and without producing major
stress to the animal. In addition, other features of RBC have
been investigated in relation to the physiological condition of
organisms, including humans. For example, changes in RBC
shape (Mueller et al., 2006) and distribution (Xanthopoulos
et al., 2017) have been associated with several coronary, heart,
and other systemic diseases in humans. Deformability of RBC
is an essential feature of its biological function (Diez-Silva
et al., 2010). Despite the importance of these studies in RBC,
they are limited to the analysis of their phenotype. Studies
in mammalian RBC involving DNA are very limited, since
only immature RBCs are nucleated (O’Neill and Reddy, 2011).
Therefore, the use of the chicken as a model is advantageous
to understanding possible biological mechanisms involving
erythrocyte responses in vertebrates.

A robust epigenetic biomarker of stress should be reproducible
between animals raised in different environmental conditions
(biomes). Thus, the present study is based on three strategies in
order to validate and fill the gaps opened by our previous study
(Pértille et al., 2017a). The present study involves the exposure
of chickens from a genetically controlled population to a known
stress. First, we selected one of the most utilized chicken breed
lines around the world, i.e., White Leghorn. White Leghorn is
a Mediterranean breed widely used throughout the global egg
industry. All commercial white egg lineages have originated from
line crosses involving the White Leghorn breed (Fulton, 2006).
Second, we selected lineages with similar genetic backgrounds
and used the same protocol to induce a known common stressor
(Yanagita et al., 2011; Goerlich et al., 2012) that involves social
isolation and deprivation of food and water stress. Third, the
animals were reared in completely different biomes, namely in
experimental systems in Sweden and a validation population in
Brazil. We compared DNA methylation in a reduced fraction
of the RBC genome (obtained by genomic digestion using a
restriction enzyme) between individuals in a stress and a non-
stress condition and then we compared the effects across the two
different biomes.

The results of the present study have an important impact
from the point of view of animal welfare. It brings us closer
to the identification of epigenetic markers that would test the
history of stress that production animals experience in their
housing environment.

MATERIALS AND METHODS

All animal experimental protocols employed in the present study
were performed in accordance with international guidelines
for animal welfare. In Brazil, the study was approved by the
resolution #008/2017 from the CEUA following the CONCEA.
In Sweden the study was approved under the license #50-13 from

the Regional Committee for Scientific Research on Animals from
Linköping, Sweden.

Animal Rearing and Treatments
This study was conducted using non-beak-trimmed, male White
Leghorn chickens (Gallus gallus domesticus) aged 0–26 days
with normal health status. The experiments were performed
with chickens from, and in, different geographic locations. One
of the lineages was from Brazil (BR) and the experiment was
performed at the Embrapa Swine and Poultry National Research
Center, Concórdia/Santa Catarina State. The other population
was from Sweden (SW) and the experiment was performed
at Linköping University. In Brazil, birds were hatched at the
EMBRAPA experimental hatchery, while in Sweden, birds were
hatched at a commercial hatchery and immediately brought to a
rearing farm. In each location, all birds were housed within the
same room, where they were provided with ad libitum access to
water and to feed provided through tubular feeders in BR, and a
chain dispersal system in SW. The commercial diet provided for
the laying birds in BR contained 12.1 MJ/kg ME (metabolizable
energy) and 21.41% CP (crude protein), while the diet provided
to the birds in SW contained 11.3 MJ/kg ME and 15.5% CP.
The animals were raised in conventional sheds in BR while in a
dark house in SW. Thus, the experimental settings present many
differences related to the different biomes (different weather,
rearing systems, and diets for each country) and minimize the
experimental heterogeneity within the same biome.

A social isolation treatment (S) was performed on 8 out of 14
animals in the SW experiment (6 controls) and on 16 out of 32
animals (16 controls) in the BR experiment.

This treatment consisted in exposing birds of both SW and BR
populations to social isolation stress at random times once a day
between 4 and 26 days of age. During the treatment, these birds
were individually placed in a metal (25 cm × 38 cm × 18 cm)
mesh (in SW facilities) or wooden (28 cm × 28 cm × 30 cm)
boxes (in the BR facilities). There, they had vocal, but not visual
or physical contact with other birds. Thus, during the stress
treatment the birds were actually exposed to a combination of
stressors: social isolation and deprivation of food and water.
The time in the treated box was gradually increased from 1 h
during the first week to 2 h during the second and 3 h during
the third week. The control animals (C) were not exposed to
the sessions of social isolation stress but experienced the same
environmental conditions as S animals. Blood samples from the S
and C animals were collected 2 h after the last isolation. The same
experimental set up has been previously applied (Goerlich et al.,
2012) to measure the effects on corticosterone levels and gene
expression across generations. Thus, the stress effect induced by
this experimental design has already been validated. To account
for genetic effects in the BR experiment, we randomly separated
complete siblings between the S and C groups, i.e., for each
chicken randomly chosen for the S group, one random sibling
was chosen for the C group.

Collection of Biological Material
Two mL of blood were collected in a 2 mL microtube with 20 µL
of 0.5 M EDTA from each individual. After blood collection,
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each tube was centrifuged at 3,000 rpm for 5 min and the RBC
fraction was separated from the whole blood. The upper white
and yellow fractions were discarded. After this, the blood samples
were frozen at −20◦C.

The DNA from the RBC was extracted after digestion with
proteinase K (Promega; Madison, United States), precipitation
of DNA in absolute ethanol, washing of DNA in 70%
ethanol, and re-suspension in ultrapure water. The DNA
samples were quantified in a fluorometer (Qubit Fluorometric
Quantitation). The DNA quality was evaluated using the
Nanodrop 2000c spectrophotometer and the integrity was
checked on 1% agarose gels.

Preparation of Sequencing Libraries
To prepare the sequencing libraries, we used an approach that
combines two techniques previously optimized in chickens:
GBS (Pértille et al., 2016) and MeDIP (Guerrero-Bosagna and
Jensen, 2015). We recently described the optimization of this
methodological combination in previous studies (Pértille et al.,
2016, 2017a). This approach allows for the parallel identification
of genetic and epigenetic differences between experimental
groups in the same reduced fraction of the genome across
individuals. The general idea of this method is to assess genome
wide levels of methylation in a reduced fraction of the genome
that is not biased toward CpG islands, using a restriction enzyme
unrelated to CpG sites. With our method, we first digest the
genome with the PstI restriction enzyme (Thermo Scientific;
Waltham, MA, United States) in a suitable range (∼450 bp)
for Illumina (San Diego, CA, United States) sequencing (Pértille
et al., 2016). Illumina sequencing barcodes are then ligated to
each end of the digested DNA fragments, allowing the pool
of DNA samples to be immunoprecipitated together. Each
pooled DNA sample contained different barcodes identifying
each individual. The methylated fraction of the sampled DNA is
then captured by an anti-methyl-cytosine antibody (Diagenode;
Sparta, United States) (Guerrero-Bosagna and Jensen, 2015).
After this step, the methylated DNA is amplified using PCR,
which is followed by a clean-up of the primer dimers and
unbound adapters (Elshire et al., 2011; Poland et al., 2012). The
samples are then sent for sequencing. A detailed description of
the protocol related to this combination of methods is currently
being prepared for publication elsewhere. In BR samples, after
connecting the DNA to adapters and barcodes, and pooling
the samples, a 50 ng fraction of the DNA pool was taken
for immediate amplification by PCR. This portion represents
the genetic background of the libraries, which we call inputs.
Moreover, after library prep, for the BR samples, each library
was quantified by quantitative PCR using the KAPA Library
Quantification Kit (Roche; Basel, Switzerland). Sequencing
libraries were diluted to 16 pM and clustered using the cBOT
(Illumina; San Diego, CA, United States) equipment. Paired-end
sequencing with a read length of 100 bp was performed using
the HiSeq2500 instrument from Illumina in the BR lab facility. In
SW samples, we sent out the libraries to be quantified, clustered,
and paired-end sequenced in the Illumina HiSeq2500 platform
with a read length of 125 bp at the SNP&SEQ facilities of the
SciLifeLab (Uppsala, SE).

Bioinformatic Analyses
The CASAVA (Illumina) program was used for the initial
processing of the samples by converting the “.bcl” (base
call files) to “.fastq” extensions, which is compatible with
programs used for read alignment. The quality of the reads
was checked using FastQC v.0.11.3 (Andrews, 2010). Quality
trimming was performed in short read sequences during the
data processing using default parameters. For both SNP calling
and methylation analyses, quality-trimmed reads were aligned
against the chicken reference genome (Gallus_gallus 5.0, NCBI)
using the Bowtie2 tool v.2-2.3.4.2 (Langmead and Salzberg, 2012)
default parameters. The coverage depth of each sequenced file
was determined using Samtools v.0.1.19 (Li et al., 2009) with
the “depth” option. A TASSEL-GBS Discovery Pipeline was used
to process the data and for SNP calling by employing default
Tassel v.3.0 (Glaubitz et al., 2014) parameters. For SNP calling,
default filtering parameters were applied except for the use of
5% for mnMAF, 70% of mnTCov, and 70% for mnScov. These
parameters were applied in accordance with similar studies
(Pértille et al., 2016, 2017a,b). An Archaeopteryx tree (Han and
Zmasek, 2009) was then plotted using a cladogram generated by a
Neighbor Joining distance matrix using the Tassel v.3.0 software.
For the identification of differential methylation regions (DMR),
uncalled and low quality score bases were eliminated using the
process_radtags function in the Stacks v.1.39 (Catchen et al.,
2011) program.

After the alignment, the .bam files from each individual
were then assigned to one of the experimental groups (S or
C). DMRs were then calculated between the two experimental
conditions using the MeDIPS package within R (Lienhard
et al., 2014) for basic data processing, quality controls,
normalization, identification of differential methylated regions
(DMRs), and the calculation of fold-changes methylation values
among experimental groups. We used MeDIPS with default
parameters and the BSgenome.Ggallus.UCSC.galGal5 (package
from Bioconductor). In addition, to identify confounding factors
related to the input (i.e., copy number variations, CNVs), we
tested for differential coverage between the inputs of S and
C samples in BR individuals. MeDIPs allows us to include
the following parameters: two methylation enriched DNA sets
(named MSet S and C) and two input sets (named ISet S and
C). When the two methylation-enriched DNA sets are included,
MeDIPs calculates DMRs. In addition, when two input sets
are included, MeDIPs will identify CNVs between the inputs
and match the results to the DMRs identified between the
two methylation-enriched sets1. This gives an output containing
only the DMRs that do not match with the CNVs calculated
from the inputs.

Quality control was carried out to confirm the enrichment
of the methylated fraction of the genome. This was performed
by calculating the average enrichment score. Enrichment
scores > 1 are recommended in the literature to denote
methylated DNA enrichment, with values around 2 being optimal
(Lienhard et al., 2014).

1https://www.bioconductor.org/packages/release/bioc/vignettes/MEDIPS/inst/
doc/MEDIPS.pdf
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We followed the same specific parameters for the MeDIPS
package previously used (Pértille et al., 2017a). However, to call
DMRs we used two different approaches in which the parameter
P = 0.01 was used as the threshold for the detection of stacked
reads. The first approach was the MeDIPS default in which
the genome is divided into ADJW of a pre-defined length size
of 100 bp. This differential methylation analysis then uses a
weighted trimmed mean of the log expression ratios (TMM)
(Robinson and Oshlack, 2010). In the second approach, a pre-
selection of the regions later tested in MeDIPS was obtained
by comparing the methylation enriched sets (Msets S and C)
using the MACS2 peak calling program2 (Zhang et al., 2008)
with default parameters. In MeDIPs, differences between the
methylation enriched sets (Msets), or between the input sets
(Isets), were tested only on these MACS2-generated regions.
MACS2 is a recommended tool to identify sample-wise ‘peak
specific’ methylated regions of variable sizes in experiments using
paired controls to determine enrichment against background
(Feng et al., 2012; Niazi et al., 2016; Cavalcante et al., 2019).
The use of MACS2 contrasts to the division of the genome into
small subsequent windows performed by the ADJW approach.
Importantly, these peaks, called ‘regions of interest’ (ROI),
were obtained after passing FDR correction (≤0.1). After ROIs
were identified, MeDIPs used them to test for DMR. ROIs
found differentially methylated by MeDIPS were called ROI-
DMRs (P ≤ 0.05). MACS2 improves the spatial resolution
of the predicted sites, uses a dynamic parameter to capture
local biases in the genome, and improves the robustness and
specificity of the prediction, that are strongly indicated for
fold-enrichment experiments (Zhang et al., 2008). Considering
that in the BR individuals the sequencing covered a ∼3.5
times larger region than the sequencing of SW individuals, we
performed differential weighting of default parameter thresholds
for a minimum sum of counts across all samples per window.
Therefore, for SW individuals we used the default parameter
(minRowSum = 10) and for BR individuals we used a 3.5 times
higher value (minRowSum = 35). As a consequence of this
differential weighting, a similar number of windows between
individuals from Brazil and Sweden were tested using both the
ADJW and ROI approaches. For a general visualization of the
experimental and bioinformatic workflow see Figure 1, and
Supplementary Figure 1.

The differential genomic windows obtained by the ADJW
and ROI analyses were considered as DMRs based on three
significance thresholds: P ≤ 0.0005 DMRs were used for
describing genes related to significant DMRs; P ≤ 0.005 DMRs
were used for visualization purposes and to describe overlapping
DMRs between the ROI and ADJW approaches; and P ≤ 0.05
DMRs were used for enrichment pathway analyses, for the
detection of overlapping DMRs between the BR and SW lineages,
and to calculate distance among neighboring DMRs and between
DMRs and their nearest TSS. ROIs that passed a significance
threshold level of 0.05 were considered ROI-DMRs. The idea
behind using datasets with different levels of significance was
to obtain different levels of information. For example, more

2https://github.com/taoliu/MACS/

stringent p-values will give a better idea of specific sites to
be tested in the future as putative epigenetic biomarkers of
stress in RBCs. Less stringent p-values will give information
of which biological pathways could be influenced by the early
stress applied, and also provide DMRs to be tested later as
common epigenetic regions altered by the stress in different
populations. All DMRs obtained were annotated against the
chicken reference genome (Gallus_gallus 5.0, NCBI) using the
VEP tool (McLaren et al., 2010).

In addition to the VEP annotation, we performed an
annotation with R in order to obtain information about the
distance between each ROI-DMR and their nearest TSS. For
this, we extracted the coordinates from each ROI (from the
BR and SW populations) and from the annotated genes from
the chicken genome (using the org.Gg.eg.db package). Then,
we overlapped the identified ROI with these annotated genes
using the Genomic Ranges R package. Next, we performed a
functional genomic annotation of the ROIs overlapping with
genes. For this, we used the annotatePeak function from the
ChIPseeker package (Yu et al., 2015). In this function, we forged
a gg_txdb object using the GenomicFeatures and org.Gg.eg.db
packages. The latter is the functional annotation database for
the chicken genome (BSgenome.Ggallus.UCSC.galGal5). This
gg_txdb for Gallus gallus was extracted from the transcript
metadata TxDB, which contains all the functional annotations
available at the UCSC genome browser. For this, we used
the function makeTxDBFromUCSC (using the parameter:
genome = “galGal5”).

After identifying specific features related to DMRs found in
each population (BR and SW) we checked the distribution of
the identified ROI-DMRs in relation to (i) the nearest ROI-
DMR, and (ii) the nearest gene’s TSS locations. For this, we
considered different chromosomal data subsets: all, autosomal,
and Z chromosomes. These distances were categorized in ten,
hundred, thousand, and million numerical magnitudes. The
analysis includes every distance that was counted at least once. At
continuation, we tested whether transcription factor binding site
(TFBS) motifs could map to the ROI-DMRs associated to specific
peaks of distance in relation to the TSS. This test was performed
with the web-based tool PhysBinder3 (Broos et al., 2013) using
the threshold of ‘Max. Precision (PPV)’ and selecting all the
85 transcription factors available4, which included all ‘Direct
Evidence’ and ‘Putative Associated’ factors. The motifs selected
as of special interest were those that passed two criteria: TFBS
should have hits in all DMRs longer than 100 bp tested (even if
non-significant) and should have hits above the threshold (i.e.,
considered significant) in at least 50% of the DMRs tested.

An overlap analysis to identify DMRs obtained by both
methods, i.e., ADJW and ROI (in the two different experiments)
was performed by permutation tests (N = 100) that determined
which peak overlaps were significant. For this, we used the
findOverlapsOfPeaks function from the ChIPpeakAnno v3.6.5 R
package with default parameters. Venn diagrams were plotted
using the makeVennDiagram function within the same package.

3http://bioit.dmbr.ugent.be/physbinder/index.php
4http://bioit.dmbr.ugent.be/physbinder/models.php
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FIGURE 1 | Scheme depicting the general experimental workflow of the genetic and methylomic analyses employed and the datasets used for the bioinformatic
analyses.

TABLE 1 | Average sequencing and alignment statistics for the White Leghorn SW and BR lineages.

Lineages Samples Sample
number

Depth ± SD Number of bp sequenced ± SD Breadth (bp
sequenced/depth) ± SD

% of the Gal.gal genome
v.5.0 covered ± SD

SW MeDIP average 14 54.7 ± 5.5 313,562,292.1 ± 112,051,857.5 5,786,017.2 ± 2,201,546.4 0.54 ± 0.20

BR MeDIP average 32 30.2 ± 3.1 597,344,785.8 ± 294,204,155.2 20,026,886.1 ± 10,085,067.7 1.9 ± 0.9

Input average 32 23.0 ± 3.4 741,551,215 ± 186,608,136 31,947,116.0 ± 3,230,589.0 2.97 ± 0.30

The internet-based tool used to identify over-represented
pathways related to our gene list was Reactome v72 (Croft et al.,
2011). This is an open-source curated bioinformatic database
of pathways and reactions from human and other animals5.
Reactome is capable of accessing a variety of databases that
contain previously described biological pathways (e.g., Kegg,
Biocarta, Reactome, and Wikipathways).

RESULTS

Sequencing and Alignment
The average sequencing and alignment statistics for the
individuals investigated in the SW (N = 14) and BR (N = 32)
experiments are shown in Table 1. More details can be found in
Supplementary Tables 1, 2. For BR White Leghorn chickens, we
sequenced both the reduced genome (N = 32 and 16/treatment)
and its methylated fraction (N = 32 and 16/treatment). The
reduced genome, obtained through the GBS approach, was used
as the input for genetic background analyses. The individually
reduced genomes were used to verify the relatedness among
individuals. For SW White Leghorn chickens (N = 14 and
8/treatment) we did not use input DNA, because the idea with
this population was only to compare their RBC methylomic
response (to social isolation) with BR chickens.

5www.reactome.org

DNA Background
Based on the input DNA of all BR individuals, we identified
93,215 SNPs among them (Supplementary VFC File 1 online).
From these SNPs, a tree showing genetic relatedness was plotted
using a cladogram generated by a Neighbor Joining distance
matrix (Figure 2). The cladogram in Figure 2 shows that
individuals are grouped by family, which is expected because
we controlled the genetic background by separating the full
siblings between S and C groups. Each individual analyzed was
categorized within the expected family cluster (tree branch)
according to their genetic relationship. The .bam files generated
by the genomic sequences of the individuals were later used for
methylomic coverage normalizations.

CpG Enrichment
For BR individuals, an enrichment score of 1.59 (±0.13) was
obtained and, in average, 3.94% of the CpG regions on the Gallus
gallus genome were covered (Supplementary Table 3). For SW
individuals we obtained an enrichment score of 2.87 (±0.10) and,
in average, 1.18% of the CpG regions on Gallus gallus genome
were covered (Supplementary Table 4). This indicates that in
BR genomes approximately 3.33 × (3.94/1.18) more CpG regions
were covered than in SW genomes. This difference could be
explained by a different procedure conducted in the SW library
construction compared to the BR library. In SW libraries, the
protein beads containing immunoprecipitated DNA were washed
once more than what was previously recommended (Guerrero-
Bosagna and Jensen, 2015). Concomitant with the fact that the
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FIGURE 2 | Cladogram tree generated by a Neighbor Joining distance matrix from SNPs identified across individuals from input 1 (group C) and 2 (group S).

TABLE 2 | Total number of genomic windows sequenced and tested in the BR and SW lineages and number of DMRs identified using different p-value thresholds.

Test BR SW BR SW BR SW BR SW

minRowSum 35 10 P ≤ 0.0005 P ≤ 0.005 P ≤ 0.05

ADJW (100 bps windows) Total 10,188,209 10,188,209 6 7 38 57 359 561

Tested 14,040 14,522

ROI (FDR ≤ 0.1) Total 73,825 12,019 4 1 17 6 154 91

Tested 5,058 994

Genomic windows were tested when they passed a “minimum sum read count” parameter of 10 for SW and of 35 for BR experiments.
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number of covered regions were lower in SW samples, coverage
depth was higher. Consequently, a reduction in false positive and
an increase in false negative DMRs is expected to be observed in
the SW population.

Analysis of Differentially Methylated
Regions (DMRs)
Three levels of significance were used to identify DMRs between
the S and C groups (P ≤ 0.05, P ≤ 0.005, and P ≤ 0.0005). These
were then used for different analyses. The number of DMRs
obtained with each significance level used is shown in Table 2.
Windows obtained with the less stringent values of P ≤ 0.005 and
P ≤ 0.05 were used to investigate overlaps among the different
methodologies employed, i.e., ROI and ADJW (Supplementary
Spreadsheet 1). Additionally, DMRs obtained with P ≤ 0.05 were
selected to identify common DMRs between the two different
experiments, since no overlap was obtained with more stringent
p-values. Although P ≤ 0.05 will generate more false positives, it
can also provide a set of putative regions to be further investigated
with other methodologies. Windows obtained with P ≤ 0.0005
when using the ADJW approach were considered of special
relevance in terms of significance and the ADJWs fulfilling this
criterion were merged (Table 3).

With ADJW we investigated relative DNA methylation
changes between experimental groups in 10,188,209 ADJW of
100 bps across the chicken genome. A total of 359 and 561 of
these windows were obtained with a threshold of P ≤ 0.0005
for BR and SW experiments, respectively (Table 3). Merging
of these adjacent differentially covered windows identified by
ADJW between the S and C groups produced 3 DMRs in the
SW experiment and 3 DMRs in the BR experiment. Of all DMRs
identified by ADJW one passed FDR ≤ 0.05 (FDR = 0.02), which
was identified in the BR population (Table 3).

In parallel, with MACS2 we identified 14,040 regions with
differential coverage in the methylation enriched genomes
between S and C groups in the BR experiment, and 14,533 in
the SW experiment (Table 2). After testing these regions with
the MeDIPS package, 4 and 1 ROI-DMRs were obtained with
a threshold of P ≤ 0.0005 for the BR and SW experiments,
respectively (Table 3). Of all ROI-DMRs one passed FDR ≤ 0.05
(FDR = 0.0000034), which was identified in the BR population
(Table 3). Importantly, this is the same region that was previously
identified to pass FDR ≤ 0.05 with ADJW.

Additionally, in the BR population we tested for artifacts
potentially caused by differential coverage of the input between
the S and C groups using the inputs as the Iset parameter in
the MeDIPs package (Lienhard et al., 2014). These coverage
differences could mask or enhance DMR identification. The
results were unchanged after using the inputs to control for
eventual pre-existing coverage differences. In addition to the
ROI-DMRs obtained between the S and C groups with a
threshold of P ≤ 0.0005 (1 in SW and 4 in BR), using a less
stringent p-value (P ≤ 0.05) we identified 359 ROI-DMRs in the
BR experiment and 561 ROI-DMRs in the SW experiment. About
50% of these ROI-DMRs overlapped with DMRs identified with
AJDWs (P ≤ 0.05). Detailed information of the DMRs above the

two thresholds depicted in Figure 3 are shown in Tables 3, 4.
All ROI-DMRs were annotated using the VEP tool. Additionally,
“consequences” were plotted using pie charts for a general view
of their location in relation to the annotated genes in the chicken
genome (including those overlapping test) (Figure 4).

With both of these approaches more DMRs reached the
defined significance thresholds in BR individuals compared to
SW. However, more DMRs had higher fold change values in
SW compared to BR individuals. When comparing the two
approaches used to call DMRs (Figure 3), we observed that the
number of DMRs identified with ADJW was 4 times larger than
with ROI (Table 2). This was probably due to the fragment size
analyzed, since with ADJW a fixed 100 bp window was used,
while with ROI the average fragment sizes in BR and SW groups
were 323 ± 256 and 427 ± 479 bps, respectively (according to the
peak calling). Expectedly, ROI-DMRs tend to encompass larger
regions than ADJW-DMRs (fixed in 100 bps). Not surprisingly,
when using the ADJW method some DMRs were identified that
had no CpGs. The reason for this is that DMRs larger than 100 bp
identified by ADJW will be arbitrary divided into 100 bp sub
windows and not all of these sub-windows will have a CpG in
their composition. Due to this, the ADJWs were merged (see
Table 3). Additionally, CpG count can equal zero when the CpG
is present in the analyzed population but not in the reference
genome (see Table 4). Another difference is that ROI tended
to detect more hypermethylated DMRs in the S vs. C groups
than ADJW. With a stringent p-value threshold (p ≤ 0.0005) no
overlaps were found. With a less stringent threshold of P ≤ 0.005,
47.1% of the DMRs identified by ROI overlapped with DMRs
identified by ADJW in the BR experiment, while 62.3% of the ROI
and ADJW DMRs identified overlapped in the SW experiment.
Considering P ≤ 0.05, this overlap corresponds to 66.7 in BR,
and 49.5%, in SW.

To verify the distribution of the DMRs throughout the
chicken genome we first constructed a Manhattan plot (right
side of Figure 3) with the three above-mentioned thresholds of
significance. Additionally, we plotted a distribution expectancy
of 100,000 random windows across the chicken genome to
compare with the observed distribution of the 5,058 and
994 peaks called between S and C groups in BR and SW
(ROI peaks) populations, respectively. For this, we used
237.7 ± 184 bps mean length, which was the average length
of all windows used in our study (ROI peaks for BR and
SW). An inverse distribution of the observed DMRs was
identified in relation to their random expectation corrected
by chromosome size (Figure 5). This distribution of DMRs
increases toward microchromosomes. We analyzed the sex
ChrZ separately because even though it is considered a
macrochromosome in chicken (Habermann et al., 2001), it
presented the greater proportion of DMRs. Interestingly, the
ChrZ was enriched to 2.38× (BR) and 4.47× (SW) above
expectancy for the presence of DMRs (Figure 5). Additionally,
to eliminate any remaining possibility of this being an artifact
of our technique, we assessed the number of expected CpGs
and PstI-digested fragments (ranging from 200 to 600 bps –
compatible with our library size) per chromosome in relation
to their size. Neither the number of CpGs nor the number of
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TABLE 3 | Putative stress-induced DMR descriptive statistics and gene annotations for the DMRs found with the ADJW and ROI (P ≤ 0.0005) analyses in BR and SW populations (SvsC groups).

S vs. C Test Location Width logFC P-value FDR
p-value

CpGs % of
CpG

Position regarding
gene

Gene symbol ENSEMBL name Gene
strand

BR ADJW chr1:61077901-61078200 300 3.4 2.24E-05 1.05E-01 19 6% Intron/intron LRTM2/NA ENSGALG00000026214/ 1/−1

ENSGALG00000036964

chr6:17299601-17299700 100 2.1 4.77E-04 1.00E+00 1 1% Intergenic – – –

*chr28:3263201-3263400 200 3.5 2.33E-06 1.64E-02 7 7% Upstream
gene/downstream gene

ADAMTSL5/THOP1 ENSGALG00000024298/ −1/−1

ENSGALG00000041934

ROI chr9:3693375-3694655 1281 1.4 4.76E-04 5.84E-01 44 3% Coding sequence,
intron

KY ENSGALG00000044975 −1

chr26:3262317-3263255 939 1.6 5.91E-05 1.49E-01 30 3% Downstream gene – ENSGALG00000001480 −1

*chr28:3263299-3263412 114 3.4 3.40E-06 1.72E-02 9 8% Upstream
gene/downstream gene

ADAMTSL5/THOP1 ENSGALG00000024298/ 1

chrZ:7337093-7337617 525 1.5 4.76E-04 5.84E-01 6 1% Intron UBE2R2 ENSGALG00000041934 1

SW ADJW chr14:12337401-12337500 100 3.2 1.93E-04 4.00E-01 3 3% Downstream
gene/downstream gene

CLCN7/NA ENSGALG00000030826/
ENSGALG00000032279

−1/1

chr20:49301-49600 300 −4.4 4.18E-05 2.03E-01 24 8% Intergenic – – –

chrZ:70400401-70400700 300 −.5.4 1.46E-04 3.53E-01 2 1% Intergenic – – –

ROI chr2:66704195-66704415 221 5.5 3.56E-04 3.53E-01 4 2% Intron IRF4 ENSGALG00000012830 1

*overlaps among methodologies (ROI and ADJW); “/” separate genes that are associated to the same DMR; NA means information not available. DMRs shown for ADJW represent merged consecutive windows
significantly altered.
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FIGURE 3 | Volcano and Manhattan plots showing stress-induced DMRs found in BR and SW lineages using (A) ADJW and (B) ROI. Thresholds shown correspond
to p-values 0.05 (red), 0.005 (yellow), and 0.0005 (green). Overlapping windows in Volcano plots are marked in red. Light colors represents ADJW and dark colors
represent ROI.

PstI-generated fragments was statistically different than expected
(t-test P ≤ 0.05).

In relation to the distances among ROI-DMRs, we found
that most distances were concentrated at 1–2 Kbps, 20–
30 Kbps, 200–300 Kbps, and 10 Mbps in both populations
(Supplementary Spreadsheet 2 online). Altogether, these peaks
represent 52.9% (BR) and 57.9% (SW) of all ROI-DMRs within
the respective population.

In relation to the distribution of distances from ROI-DMRs
to their nearest TSS, we observed high similarity between the
two populations (BR and SW) studied (r ≥ 0.94). The same
trend was observed between the chromosome subsets analyzed
(all vs. autosomal and all vs. ChrZ) within each population
studied (r ≥ 0.93). Both distributions of distances between either
ROI or ROI-DMRs and their nearest TSS presented a trimodal
pattern (Figure 6 and Supplementary Spreadsheet 2 online).
The highest peaks of these trimodal distributions were located at
−10 Kbps, 0 Kbps, and +20 Kbps from the TSS. The exception
was the largest distance peak between ROI-DMRs and TSS in the
SW population, located at 40 Kbps.

The observation of these peaks of ROI-DMRs in relation to the
TSS together with the fact that these peaks were located in regions
of potential regulation by transcription factors prompted us to
investigate, with the web tool PhysBinder (Broos et al., 2013), the
possibility that these peaks could be enriched for specific TFBS.
We investigated potential hits of our ROI-DMRs to 85 TFBS

motifs (all that were available in PhysBinder). For the ROI-DMR
peaks of 10 kb upstream TSS and 20–40 kb downstream the TSS
we combined the ROI- DMRs obtained in the BR and in the SW
experiment, since the peaks were the same. For the peak at the
TSS we performed independent analyses for the BR and the SW
experiment since their peaks were slightly different. Interestingly,
we found the following TFBS motifs with a high presence (>50%)
in these ROI-DMRs: Tfcp2l1, Esrrb, RELA, and Zfx in the peak of
−10 kb; Tfcp2l, Esrrb, KLF4, RELA in the peak at the TSS SW;
Tfcp2l and Zfx in the peak at the TSS BR; and Tfcp2l1, Esrrb,
RELA, and KLF4 in the peak of +20 to 40 kb (Supplementary
Spreadsheet 3). Of particular interest is the Tfcp2l1 motif, which
mapped against nearly 100% of these ROI-DMRs.

After performing an overlap test based on permutations test
(N = 100) between the SW and BR ROI-DMRs, we identified
two common DMRs with the ADJW approach and one with
the ROI approach (Figure 3). These three overlapping DMRs
between BR and SW were located in Chr 2, 11, and 20. The first
was located in an intronic region of a novel gene, the second
was located in an intronic region of the DBNDD1 gene and
at the 5-prime UTR of the CDHI gene, while the third was
in an intergenic position (Table 5). In addition, we plotted the
results of the DMR overlapping test considering a maximum
gap of 1 kb for each two peak ranges (Figure 7). For better
visualization of DMR locations, three Manhattan plots were
constructed (Supplementary Figures 2–4).

Frontiers in Genetics | www.frontiersin.org 10 November 2020 | Volume 11 | Article 508809

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-508809
O

ctober26,2020
Tim

e:16:58
#

11

P
értille

etal.
E

pigenetic
B

iom
arkers

ofLong-Term
S

tress

TABLE 4 | Descriptive statistics and gene annotations for ROI DMRs found (P ≤ 0.005) in BR and SW populations (S vs. C groups).

S vs. C ROI ∼

DMR
Location Width LogFC P-value FDR

p-value
CpGs % of

CpG
Position regarding gene Gene symbol ENSEMBL name Gene

strand

BR T chr1:61077945-61078198 254 2.9 1.23E-03 8.91E-01 16 6% Intron/intron LRTM2/NA ENSGALG00000026214/ 1/−1

ENSGALG00000036964

T chr2:189007-189224 218 1.4 2.32E-03 1.00E+00 11 5% Downstream gene – ENSGALG00000043576 −1

T chr4:740034-740180 147 1.5 4.36E-03 1.00E+00 1 1% Intergenic – –

F chr4:1212081-1212352 272 −1.3 3.15E-03 1.00E+00 6 2% coding sequence/3 prime
UTR

– ENSGALG00000004475 1

Upstream gene/upstream
gene

WNT11B/gga-
mir-6658

ENSGALG00000004401/
ENSGALG00000028208

1/−1

T chr4:85246930-85247063 134 1.5 3.36E-03 1.00E+00 0 0% Intron CTBP1 ENSGALG00000039942 1

T chr6:17299560-17299780 221 2 6.93E-04 5.84E-01 4 2% Intergenic – – –

F chr8:5191540-5191738 199 1.8 2.10E-03 1.00E+00 18 9% Coding sequence, intron LMX1A ENSGALG00000003424 1

F chr9:3693375-3694655 1281 1.4 4.76E-04 5.84E-01 44 3% Coding sequence, intron KY ENSGALG00000044975 −1

F chr11:1715302-1715998 697 1.5 2.47E-03 1.00E+00 9 1% Coding sequence, intron VAC14 ENSGALG00000002458 1

F chr12:2700294-2700543 250 −1.1 6.30E-04 5.84E-01 11 4% Coding sequence, intron – ENSGALG00000046133 1

Downstream gene – ENSGALG00000046133 1

F chr12:16285799-16286230 432 1.4 4.99E-03 1.00E+00 7 2% Intron, non -coding
transcript

– ENSGALG00000035037 1

T chr12:16763013-16763444 432 1.4 3.27E-03 1.00E+00 16 4% Upstream gene PDZRN3 ENSGALG00000007819 −1

T chr14:4134485-4134909 425 1.3 2.09E-03 1.00E+00 45 11% Start lost, start retained, 5
prime UTR

TNRC18 ENSGALG00000040770 −1

F chr18:10291116-10291837 722 1.6 1.54E-03 9.71E-01 41 6% Coding sequence, intron CACNA1G ENSGALG00000007623 −1

F chr26:3262317-3263255 939 1.6 5.91E-05 1.49E-01 30 3% Downstream gene – ENSGALG00000001480 −1

T chr28:3263299-3263412 114 3.4 3.40E-06 1.72E-02 9 8% Upstream
gene/downstream gene

ADAMTSL5/
THOP1

ENSGALG00000024298/ 1

ENSGALG00000041934

F chrZ:7337093-7337617 525 1.5 4.76E-04 5.84E-01 6 1% Intron UBE2R2 ENSGALG00000001668 1

SW F chr2:66704195-66704415 221 5.5 3.56E-04 3.53E-01 4 2% Intron IRF4 ENSGALG00000012830 1

T chr5:5717497-5717944 448 3.9 4.23E-03 4.79E-01 9 2% Intergenic – –

F chr5:48281849-48282123 275 4.5 4.61E-03 4.79E-01 16 6% Intergenic – –

T chr14:12337347-12337639 293 3.2 9.29E-04 4.62E-01 10 3% Downstream
gene/downstream gene

CLCN7/NA ENSGALG00000030826/
ENSGALG00000032279

−1

T chr26:3554060-3554373 314 4.2 1.85E-03 4.79E-01 15 5% intron RHOC ENSGALG00000001569 −1

Downstream
gene/downstream gene

MOV10/PPM1J ENSGALG00000001558/
ENSGALG00000001605

1

T chr26:4552858-4553138 281 4.8 2.18E-03 4.79E-01 0 0% Downstream gene OPN1MSW ENSGALG00000002848 –

T (true) and F (false) when the ROI is overlapped or not, respectively, by an AJDW identified using the same P-value threshold; “/” separate genes that are associated to the same DMR; NA means information not
available.
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FIGURE 4 | Pie charts representing the functional annotation of stress-induced ROI-DMRs in relation to genes in the reference chicken genome. The left pie
represents ROI-DMRs identified in the BR experiment and the right pie represents ROI-DMRs found in the SW experiment. The middle pie chart shows the
ROI-DMRs overlapping between lineages.

FIGURE 5 | Distribution expectancy of random 100,000 windows of 237 ± 184 bps across the Gallus gallus chromosomes compared with the observed distribution
of 5,058 and 994 peaks called between the S and C groups of the BR and SW populations, respectively (ROI).

Next, we performed pathway gene enrichment analysis
using ROI-DMR related genes. We identified 285 and 162
enriched pathways for BR and SW, respectively (Supplementary
Spreadsheet 4). Considering an entities ratio of 0.05, which
was calculated from the number of genes from a DMR-
responsive gene list over the total number of genes involved in

a particular canonical pathway, we found 47 pathways identifiers
in common between the lineages. The pathway analysis considers
the connectivity among molecules, which is represented by
pathway steps. This information provides a better indication of
the proportion of pathways in common between the analyzed
data. All these 47 common pathways exhibit steps in common
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FIGURE 6 | Distribution of (A) the ROI peaks and, (B) the ROI-DMRs for each analyzed population (BR and SW) in relation to the nearest TSS location.

with other pathway identifiers (ratio > 0.072) (Croft et al., 2011).
From these, we selected two pathways as being of special interest:
cardiac conduction (FDR = 0.08) from the pathways obtained
with the SW DMRs list, and Laminin interactions (FDR = 0.05)
from the pathways obtained with the BR DMR list (Table 6 and
Supplementary Spreadsheet 4).

DISCUSSION

The present study compared the RBC methylome of chickens
subjected to social isolation to controls across different biomes
to detect whether a common stress-related epigenetic profile
(in DNA methylation) could be identified. For this, the RBC
methylomic differences among lineages from different breeding
programs and biomes were investigated. We performed a
combined GBS + MeDIPs approach (Pértille et al., 2017a)
to interrogate a reduced fraction of the RBC methylome of
each individual in a pool of barcoded DNA samples. For
the analysis, we used two approaches: in the first approach,
a DMR call across 100 bp windows (named ADJW) was
used, while in the second, pre-determined windows were
used for the DMR call based on previous peak calling
between the treatments (named ROI). In addition, the
reduced genome of BR individuals was sequenced using
the GBS approach (Pértille et al., 2016) for analysis of the
genetic background.

The observation of differential methylation between
treatments in specific genomic regions can sometimes be
caused by confounding factors unrelated to differential
immunoprecipitation (Lentini et al., 2018). To correct for

this, we compared the relative differences in coverage of
the inputs before immunoprecipitation. We did not identify
sequencing coverage effects that interfered with the proper
identification of DMRs.

Due to the massive omics data generated by NGS approaches,
it is quite challenging to choose the appropriate statistic
aiming to convert the data gathered into biologically relevant
information. For epigenetic data, for example, commonly used
software employed for obtaining DMR between treatments
rely on t-statistics (Smyth, 2005; Luo et al., 2018), followed
by statistical corrections for multiple tests. However, there
is no consensus to date on which set of statistics would
be the most appropriated (Korthauer et al., 2019). Many
researchers have chosen to be more flexible regarding the
statistical analysis, by accepting false positives but carrying
out a posteriori analyses to integrate biological evidence into
the statistics (Hoops et al., 2006; Mi et al., 2013; Croft
et al., 2014; Krämer et al., 2014). In the present study, we
investigated DMRs emerging from different p-value thresholds
between S and C within each lineage (i.e., BR and SW).
This was performed using the two above mentioned different
approaches.

An interesting general parameter was that the distance among
ROI-DMRs identified between the S and C groups (in both BR
and SW populations) presented a multi-modal distribution with
an exponential growth of the distances from 1–2 K to 20 K, 200 K,
and up to 10 M. This is an unexpected pattern that deserves
further investigation. We also analyzed the distance of ROI-
DMRs in relation to the closest TSS and identified a trimodal
distribution of the distances. Interestingly, in both populations
one of the peaks of this trimodal distribution was located at the
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TSS, while the other two peaks were located at −10 and +20 Kbps
from the TSS, (Figure 6). These distributions were consistent
across chromosome types (autosomal or sexual).

The most frequent DMR peaks identified in this study were
located around a gene TSS (Figure 6). This finding may have
important functional consequences, since methylation levels in
TSS are reported to be highly predictive of gene expression
activity (Teschendorff and Relton, 2018). The peak found 10 Kbps
upstream of the TSS suggests the presence of TFBS. Although
studies, in general, focus on promoter-proximal regulatory
regions, the influence of TF binding distant to TSS (even as far
as >20 kb) to gene expression is also of relevance (McCord et al.,
2011). The dynamic binding of transcription factors to TFBS is
known to be affected by DNA methylation, but the specific ways
this interaction occurs is still a matter of investigation (Héberlé
and Bardet, 2019). Another peak identified was spread between
20 and 40 Kbps downstream of the TSS. This corresponds to
terminal or downstream regions in genes. Downstream gene
regions are associated with complex genetic networks in living
cells, mainly at the protein regulation and degradation level
(Moriya et al., 2014). The downstream boundary is also near
to the downstream core promoter element (DPE), which has a
particularly important role in transcription regulation by RNA
polymerase II (Kadonaga, 2002).

The observation of specific peaks with a high presence of ROI-
DMRs in relation to the TSS and the fact that these peaks were
located in regions of potential regulation by transcription factors
prompted us to investigate the possibility that these peaks could
be enriched for a specific TFBS. The following TFBS motifs were
highly present (>50%) in these ROI-DMRs: Tfcp2l1 and Esrrb
in all ROI-DMR peaks, RELA in all but the TSS BR peak, KLF4
in the 20–40 kb downstream and TSS SW peaks, and Zfx in the
10 kb upstream and TSS BR peaks. Of particular interest is the
fact that nearly 100% of these ROI-DMRs had hits against the
Tfcp2l1 motif. Thus, some sequence variations of the Tfcp2l1
TFBS motif that contain CpGs could be transversal indicators
of DNA methylation changes in relation to stress. Interestingly,
recent research shows, in mouse and humans, that Esrrb and Klf4
are regulatory targets of Tfcp2l1 (Wang et al., 2019). Our results
suggest that these effects could be mediated by DNA methylation.
These are interesting findings that deserve further investigation,
particularly in relation to the role of these transcription factors in
the stress response.

Most of the ROI-DMRs identified in this study were located
in intronic regions (36%), followed by downstream to genes
(28.5%), intergenic regions (21.5%), upstream to genes (7%),
and coding sequences (7%). Exon–intron boundaries have a well
characterized role in guiding the splicing machinery (Schwartz
and Ast, 2010). DMRs between exons, splice sites, and flanking-
intronic regions are reported to be involved in the regulation
of alternative splicing (Lev Maor et al., 2015). Moreover, it is
known that methylation in regulatory regions (e.g., promoters)
are usually associated with transcriptional repression, while in
gene bodies, DNA methylation is associated with high levels of
gene expression (Jones, 1999; Meissner et al., 2008; Deaton and
Bird, 2011). Indeed, independent of the threshold used, most
of our DMRs (including the ones overlapping between lineages)
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FIGURE 7 | Venn diagram showing the number of ROI-DMRs overlapping between (A) lineages within each DMR detection method employed, and (B) DMR
detection methods employed within each lineage.

TABLE 6 | Pathways overlapping between BR and SW lineages after pathway enrichment performed with Reactome in each population using p < 0.05 DMRs.

Lineage DMR location Related gene GENE NAME Consequence Pathway

Identifier Name

BR 12:11592836-11593728 ENSGALG00000006802 LAMB2 Coding sequence, intron R-GGA-3000157 Laminin interactions

SW 7:6634619-6634980 ENSGALG00000038311 COL18A1 Intron

BR chr1:61077944-61078198 ENSGALG00000036964 Novel gene Intron R-GGA-5576891 Cardiac conduction

SW chr26:1304953-1305335 ENSGALG00000000329 AHCYL1 Coding sequence, intron

Functional annotation of the entities used to identify these pathways are also shown.

were primarily located in intronic regions, followed by down- and
upstream gene regions, and coding sequences (exons) (Figure 4).
Up- and downstream gene regions contain insulator elements
that “protect” genes from inappropriate signals emanating from
neighboring genes (Blackwood, 1998).

Differentially methylated regions were preferentially located
in microchromosomes and in ChrZ in both lineages studied
(Figure 5). ROI-DMRs in the sex ChrZ were present at a rate
2.38× (BR) and 4.47× (SW) higher than randomly expected.

Therefore, this strongly suggests that ChrZ is a hotspot of DMRs
induced by stress in RBCs. Ten ROI-DMRs were identified in the
ChrZ of the BR population, while 13 ROI-DMRs were identified
in the ChrZ of the SW population (P ≤ 0.05). Most of these DMRs
were located within intronic regions of novel genes. Studies have
shown an important role for sex chromosomes in the stress
response (Seney et al., 2013). In humans, the sex chromosome
is reported to be involved in regulating the expression of
mood-related genes (Seney et al., 2013), and in mice the Y
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chromosome has been shown to affect several neurobehavioral
traits (Sluyter et al., 1999).

In relation to specific DMRs that could be putative markers
of stress, we identified 7 DMRs in the BR and 4 DMRs in the
SW lineages when using a stringent threshold (P ≤ 0.0005)
(Table 3). The only DMR that passed FDR correction (≤0.05)
in both ROI and ADJW analysis was identified in the BR
population. This DMR is located in Chr28 and 1,994 bps
upstream the TSS of the ADAMTSL5 gene, at its promotor
region. In addition, this DMR is located downstream (≤3 kb)
of the THOP1 gene ADAMTSL5 (thrombospondin type-1
domain-containing protein 6), is involved in the degradation of
the extracellular matrix, has antiangiogenic properties, and plays
an important role in inflammatory processes. Hypermethylation
of the ADAMTSL5 gene is associated with chemoresistance to
acute lymphoblastic leukemia in humans (Abdullah et al., 2017).
THOP (thimet oligopeptidase 1) is important in metabolism
regulation, being broadly expressed in testis (Pineau et al.,
1999). THOP1 codes a kinase protein that uses zinc as a
cofactor in humans (Gene ID: 7064). One of the mechanisms of
downregulation of this gene is suggested to be hypermethylation
of its promoter region (Nomoto et al., 2014). In our study, this
region downstream of the THOP1 gene was hypermethylated in
the stressed group. Two significant DMRs (P ≤ 0.0005) were
identified in ChrZ (ROI: chrZ: 7,337,093–7,337,617 and ADJW:
chrZ: 70,400,401–70,400,700). One of them was in an intergenic
position in SW animals and the other was located in an intron
of the UBE2R2 gene in BR animals. The UBE2R2 gene is related
to protein ubiquitination of many processes (R4GIV8_CHICK),
and is reported to be one of the 14 Z-linked zebra-finch genes that
has likely diverged from the Galliform lineage (Itoh et al., 2006).

We compared the DMRs obtained across our two experiments
to find common DMRs emerging after social isolation stress
between lineages. We were able to identify 3 DMRs (P ≤ 0.05,
see Figure 7 and Table 5) overlapping between the BR and SW
individuals. These overlapping DMRs were located on Chr2,
11, and 20 and in intronic (ENSGALG00000031276, DBNND1
and CDH1 genes), upstream (URAH and CDH1 genes), and
intergenic regions in these chromosomes, respectively. The genes
associated to these DMRs are involved in cancer diseases in
vertebrates. Downregulation or inactivation of the CDH1 gene
is involved in cancer progression and metastasis (Beavon, 2000).
Interestingly, its regulation is dependent on many mechanisms
(Acs et al., 2001) including germline mutations (Guilford et al.,
1998; Pharoah et al., 2001) and promotor hypermethylation
(Yoshiura et al., 1995; Stevenson et al., 2010). The URAH gene
is associated with hepatomegaly and hepatocellular carcinoma
in mice. The ArfGAT gene (ENSGALG00000031276) is part
of the Arf family of proteins, which are involved in cancer
progression, through cell–cell adhesion, integrin internalization
and recycling, and actin cytoskeleton remodeling (Casalou et al.,
2016). These genes can be considered strong candidates for future
studies aiming at diagnosing long-term stress in the production
environment by tracking epigenetic changes in RBCs of chickens.

Using subsets of gene-related DMRs (P ≤ 0.05) we performed
gene enrichment analyses in SW and BR lineages. We selected
two overlapping pathways found between these lineages to be
discussed: “Laminin interactions” (R-HSA-3000157), which

describes the action of multi-domain trimeric basement
membrane proteins contributing to the structure of the
extracellular matrix, thereby influencing the behavior of
associated cells, such as adhesion, differentiation, migration,
phenotype stability, and resistance to anoikic (Domogatskaya
et al., 2012); and “cardiac conduction” (R-GGA-5576891),
which involves the mechanism of the normal sequence of
contraction of atria and ventricles of the heart activated by
a groups of cardiac cells. The genes participating in these
common pathways are mostly related to cancer and other
diseases in vertebrates. Mutations in the LAMB2 gene cause
autosomal recessive Pierson syndrome, a congenital nephrotic
disorder syndrome that culminates in ocular and neurologic
abnormalities (Matejas et al., 2010). The COL18A1 gene is
associated with neovascularization and vascular permeability in
atherosclerosis in mice (Moulton et al., 2004) and is also reported
to inhibit angiogenesis and tumor growth (Arvanitidis and
Karsdal, 2016). The AHCYL1 gene is a estrogen-stimulated gene
expressed in the chicken oviduct affecting growth, development,
and calcium metabolism of the mature oviduct of hens (Jeong
et al., 2012b). AHCYL1 expression is associated with ovarian
carcinogenesis as an oncogene in chickens, however, has a
paradoxical effect as a tumor suppressor in human epithelial
ovarian cancer (Jeong et al., 2012a).

These findings are relevant for the future identification of
epigenetic markers of stress in RBCs, a tissue that is subjected to
systemic hormonal fluctuations caused by a centrally produced
stress response. Curiously, all levels of analyses performed in this
study showed that basically all genes related to stress-responsive
DMRs in RBCs (caused by the environmental effect) have
already been studied and related to abnormalities or disorders.
These abnormalities are often considered to be inherited or
represent idiopathic etiologies but are not generally associated
with epigenetic alterations caused by detrimental exposures such
as long-term stress.

CONCLUSION

This paper describes potential candidate genes for stress
diagnosis across layer populations of chickens reared in different
biomes. With a P ≤ 0.05 we found 4 genes related to 3 DMRs
observed in both populations analyzed here. Among the gene-
related DMRs obtained, we also found 4 genes related to the top
two biological pathways enrichedin both BR and SW populations.
These DMRs were within or nearby (3 ≤ kb far) genes. In
addition, we provide a robust list of DMRs related to an
experimental condition that is well known to generate stress
response and consequently, compromise the animals’ health.
Interestingly, the sexual ChrZ had a DMR rate higher than
randomly expected, indicating that this chromosome is a strong
candidate for screening for epigenetic changes caused by stress.
The biological functions of the genes associated to the DMRs
found in our study, and their related enriched pathways, are
relevant for the function of the tissue investigated (RBC). Our
results suggest that most of the identified DMRs are enriched near
TSS, DPE, and specific TFBS. These DMRs could be tested more
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extensively as markers for long-term stress diagnosis in order to
monitor good practices in real life animal production setups.
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