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Abstract

State-of-the-art methods assessing pathogenic non-coding variants have mostly been characterized on common
disease-associated polymorphisms, yet with modest accuracy and strong positional biases. In this study, we curated
737 high-confidence pathogenic non-coding variants associated with monogenic Mendelian diseases. In addition
to interspecies conservation, a comprehensive set of recent and ongoing purifying selection signals in humans is
explored, accounting for lineage-specific regulatory elements. Supervised learning using gradient tree boosting on
such features achieves a high predictive performance and overcomes positional bias. NCBoost performs consistently
across diverse learning and independent testing data sets and outperforms other existing reference methods.
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Background

To date, more than 4000 Mendelian diseases have been
clinically recognized [1], collectively affecting more than
25 million people in the USA only [2]. However, around
50% of all known Mendelian diseases still lack the iden-
tification of the causal gene or variant [3]. Moreover,
every year, approximately 300 new Mendelian diseases
are described, whereas the pace for discovery of the
causal molecular mechanisms fluctuates at around 200
yearly [3]. Despite the progress achieved through whole
exome sequencing (WES)-based studies, recent reviews
show highly heterogeneous diagnostic rates across
disease types [4, 5], ranging from <15% (such as con-
genital diaphragmatic hernia or syndromic congenital
heart disease) to >70% (e.g., ciliary dyskinesia). In those
scenarios, a common working hypothesis is that non-
coding variants could explain the etiology of many of
the unresolved cases [5]. Whole genome sequencing
(WGS) allows expanding the survey of pathogenic
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variants to non-coding genomic regions in an unbiased
way. Such possibility generates great expectations, as
most trait/disease-associated single-nucleotide variants
(SNVs) identified by genome-wide association studies
(GWAS) map to non-coding regions, suggesting a
prominent role of regulatory elements in genetic dis-
eases [6, 7]. Nevertheless, the large amount of rare and
singleton variants in non-exonic positions shown by
large-scale WGS projects in humans [8, 9] makes com-
putational predictions a fundamental step to prioritize
candidate variants for further clinical and experimental
follow-up.

A number of machine learning methods have been
developed in the last years to predict the regulatory
consequences of non-coding SNVs [10-16]. Two com-
plementary perspectives have been exploited: first, from
an evolutionary standpoint, genomic positions under
non-neutral evolution are expected to have a functional
role. Consequently, position-based purifying selection
scores determined at different timescales (i.e., from ver-
tebrates, mammals, and primates sequence alignments)
have been successfully used by reference methods. Sec-
ond, from a mechanistic view, phenotypic consequences
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of genetic variants are thought to result from their
impact on non-coding functional elements, defined as
those having reproducible biochemical features
associated with regulatory roles, such as promoters, en-
hancers, silencers, and repressors. Thus, computational
methods have exploited diverse sets of chromatin and
epigenetic characteristics (including histone marks,
chromatin states, DNase I-hypersensitivity sites, and
transcription factor binding sites) obtained from hetero-
geneous sets of cell lines, primary cell types, and tissues
by Consortia such as ENCODE, FANTOMS5, the Road-
map Epigenomics, and BluePrint projects [17-19]. While
the ability of state-of-the-art methods to discriminate
functionally relevant non-coding variants is remarkable,
the value of such scores as a proxy of pathogenic poten-
tial in the context of Mendelian diseases is still unclear.
This stems from the fact that functional scores of
non-coding SNVs were mostly evaluated by their ability
to identify trait-associated (e.g., quantitative trait loci,
QTLs) and disease-associated loci from GWAS of com-
mon diseases. Yet, even in those contexts, predictive ac-
curacy is modest and mainly driven by position-based
interspecies conservation signals, with chromatin and
epigenetic features providing only a marginal contribu-
tion [11, 14, 16]. More recently, Smedley et al. developed
the Regulatory Mendelian Mutation Score (ReMM) [20],
which—to our knowledge—is the only method
specifically developed to score pathogenic non-coding
variants in the context of Mendelian disease studies.
Their approach trained a random forest classifier on a
curated set of 406 SNVs, including long non-coding
RNA SNVs. Twenty-six features were considered, in-
cluding 8 interspecies conservation scores, 4 GC/CpG-
based characteristics, and 8 epigenetic features. Despite
the simplicity of the model, ReMM scores proved
valuable to prioritize Mendelian disease variants when
integrated in a more comprehensive framework consid-
ering candidate regulatory regions and the phenotypic
relevance of the associated genes [20].

In this work, we hypothesized that the computational
prediction of pathogenic non-coding variants in Mendel-
ian diseases would benefit from a more comprehensive
set of natural selection signals, notably regarding recent
and ongoing selective constraints in humans. In this re-
gard, evolutionary and functional evidence support a
rapid turnover of functional non-coding elements across
species that would limit the capacity of interspecies con-
servation to pinpoint recently acquired regulatory se-
quences in the human lineage [21-24]. Moreover, it has
been suggested that lineage-specific and ongoing natural
selection in humans could help further understanding
the partial overlap observed among the fraction of the
genome inferred to be functional from evolutionary,
biochemical, and genetic evidences [25, 26]. The use of

Page 2 of 22

recent and ongoing purifying selection signals to
prioritize pathogenic variants has been historically
challenged by a number of confounding factors shaping
patterns of human genomic variation. Thus, random
genetic drift, population structure, and demographic
processes, such as rapid expansions, migrations, and
population bottlenecks, have played a major role in gov-
erning changes in allele frequency within and between
populations [26—28]. In addition, uneven recombination
rates across the genome and heterogeneous neutral mu-
tation rates [29, 30] associated with sequence context
[31, 32] or to different types of non-coding elements
[33] further complicate the distinction of neutral versus
non-neutral evolution.

Notwithstanding, the increasing sample size of current
large-scale whole genome sequencing projects of the
general population is providing a better resolution of re-
cent and ongoing purifying selection signals in humans
[9, 34—36], which could improve their utility in scoring
systems of pathogenic variants. In addition, machine
learning methods have shown ability to detect complex
patterns associated with functional variants combining
different types of selective constraints that would
otherwise be missed by classical approaches [11-16]. A
supervised learning approach could thus help in better
exploiting recent natural selection features in spite of
the confounding factors. To test both previous possibil-
ities, we first extracted a comprehensive set of recent
and ongoing natural selection features determined from
recent large-scale WGS projects in humans, together
with interspecies conservation scores assessed on
different evolutionary timescales. We then trained
NCBoost, a classifier of non-coding SNVs based on
gradient tree boosting, on a curated set of high-confi-
dence pathogenic non-coding SNVs associated with
monogenic Mendelian disease genes and on common
non-coding SNVs without clinical assertions. The ap-
proach outperformed reference state-of-the-art methods
under multiple training and testing scenarios, while
overcoming gene and positional bias.

Results

Curation of a high-confidence set of pathogenic non-coding
variants associated with monogenic Mendelian disease
genes

Pathogenic non-coding variants from the Human Gene
Mutation Database [37] (HGMD-DM), ClinVar [38], and
Smedley'2016 [20] were manually curated to obtain a
high-confidence set of pathogenic variants associated to
monogenic Mendelian diseases. The number of high-con-
fidence pathogenic non-coding variants obtained from
each resource is represented in Fig. 1 (“Methods” section).
The majority of causal variants were assigned to the clos-
est protein-coding gene in the reference source (94%, 98%,
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Fig. 1 Curation of high-confidence pathogenic non-coding SNVs associated with monogenic Mendelian disease genes. a Number of high-confidence
pathogenic non-coding SNVs obtained from the Human Gene Mutation Database [37] (HGMD-DM), ClinVar [38], and Smedley2016 [20], after filtering
out SNVs overlapping exonic and splice sites of protein-coding genes and SNVs associated with non-coding RNAs ("“Methods” section). Only high-
confidence pathogenic non-coding variants associated with the same protein-coding gene by both the original resource and the annotation process
done in this work (depicted in orange) were retained for downstream analysis. b Retained variants in a were further classified according the OMIM
category of the associated gene, i.e, non-Mendelian disease gene, Mendelian disease gene associated with a disease phenotype differing from the
one reported in the original resource (i.e, presenting a conflicting disease description), complex Mendelian disease genes, and monogenic Mendelian
disease genes. Only high-confidence pathogenic non-coding SNVs associated with monogenic Mendelian diseases with no homozygous individuals in
GnomAD database [35] (depicted in green) were finally retained for downstream analyses. ¢ Distribution of the high-confidence pathogenic non-
coding SNVs associated with monogenic Mendelian disease genes according to the type of gene region they overlap: intronic, 5'UTR, 3'UTR, upstream,

downstream, and intergenic regions. d Distribution of the high-confidence pathogenic non-coding SNVs associated with monogenic Mendelian
disease genes according to the original annotation source, i.e, HGMD-DM, ClinVar, and Smedley'2016. e Corresponding number of monogenic
Mendelian disease genes collectively involved by SNVs in d. The number of SNVs in each category is indicated inside the barplots and Venn diagrams
together with the number of genes collectively involved (in parenthesis in a—c; totals are reported above each barplot)

and 89%, respectively). Thus, the available set is mostly
constituted of proximal cis-regulatory variants (Fig. 1la),
with distal cis-regulatory and trans-acting variants scarcely
represented. Our curation effort allowed further refining
this set to retain the fraction of pathogenic variants
confidently associated with monogenic Mendelian
diseases genes (84%, 87%, and 98%, respectively; Fig. 1b).
In addition, a small though non-negligible fraction of
variants for which homozygous individuals were detected
in recent large-scale whole exome and genome sequen-
cing (GnomAD) were excluded for downstream analysis
(5%, 7%, and 4% respectively, Fig. 1b). After all filtering
steps, a total of 737 pathogenic non-coding SNVs collect-
ively associated with 283 genes were retained (Fig. 1lc;
Additional file 1: Table S1). Variants were distributed in
intronic (23%), 5'UTR (36%) and 3'UTR (12%), and 1 kb
upstream TSS (26%), with a minority of them in 1kb

downstream TSE (<1%) and in intergenic regions (1%).
The three resources mined in this work (HGMD-DM,
ClinVar and Smedley’2016) showed varying degrees of
overlap regarding causal SNVs (Fig. 1d) and their associ-
ated genes (Fig. le). Notably, the set of 283 monogenic
Mendelian disease genes collectively affected by patho-
genic non-coding SNVs is enriched in haploinsufficient
genes (odds ratio OR = 2.93, one-sided Fisher test p value
=1.279e-09) and in genes intolerant to heterozygous
truncation (OR =1.21; p value = 0.041) as compared to a
background set of 3354 monogenic Mendelian disease
genes (Additional file 2: Figure S1; “Methods” section).

Distribution of state-of-the-art pathogenicity scores
across pathogenic and non-pathogenic SNVs

We explored the distribution of six state-of-the-art patho-
genicity scores (CADD, DeepSEA, Eigen, Eigen-PC,
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FunSeq2, and ReMM; “Methods” section) across the 737
high-confidence non-coding pathogenic variants and
4,960,178 common SNVs without clinical assertions. All
evaluated scores showed marked differences depending on
the type of gene region involved (i.e., intergenic, intronic,
3'UTR, 5'UTR, upstream, and downstream regions of as-
sociated genes; Additional file 2: Figure S2). Thus, the dis-
tributions of median scores per gene for pathogenic SNVs
in 5'UTR and for SNVs within 1kb upstream TSS were
shifted towards more severe values than those of patho-
genic SNVs in 3'UTR, intronic, and intergenic regions.
Bias per gene region was also observed across common
SNVs without clinical assertions, suggesting that the regu-
latory region where a variant maps systematically biases
the scores (Additional file 2: Figure S2). More strikingly,
the distributions of median scores per gene for common
SNVs in 5"UTR were not significantly different than those
of pathogenic SNVs in 3'UTR and were significantly dif-
ferent (with more severe scores) than those of pathogenic
SNVs in intronic regions for the six scores evaluated
(two-sided Wilcoxon test p values for all pair-wise com-
parisons are reported in Additional file 3: Table S2). As a
corollary, the previous observations warn about (1) the
need of matching the relative composition of pathogenic
and non-pathogenic SNVs across different gene regions in
predictive benchmarks and (2) the relative differences in
region distribution across data sets (Fig. 1c) which could
compromise the generality of data set-specific
benchmarks.

Ability of natural selection signals to predict pathogenic
non-coding SNVs when considered independently

Table 1 summarizes the set of natural selection features
extracted for both pathogenic non-coding SNVs and
common SNVs without clinical assertions. First, gath-
ered features covered different evolutionary scales and
were classified as interspecies natural selection (consid-
ering vertebrates, mammals, and primates, excluding
human), or recent and ongoing natural selection in
humans. Second, features were categorized either as
“position-based” when they refer to the specific genomic
position where the variant occurred, “window-level”
when they refer to a given sequence interval centered in
the SNV, or “gene-level” when they refer to the global
characteristics of the closest protein-coding gene.

For the purpose of this work, features were grouped
under three main sets (Table 1): (A) interspecies se-
quence conservation features at position and window
level, (B) recent and ongoing natural selection signals in
humans at position and window level, and (C)
gene-based features. Furthermore, we included two add-
itional sets of features: (D) the sequence context, i.e., GC
and CpG content as well as information of the type of
gene region where SNVs overlap (intronic, 5'UTR, 3’
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UTR, upstream, downstream, and intergenic region);
and (E) epigenetic features such as histone modification
marks, nucleosome position, open chromatin profiles,
and transcription factor binding site (TFBS) profiles gen-
erated by the ENCODE project [17].

We first investigated the predictive ability of each indi-
vidual feature to classify the high-confidence set of 737
pathogenic non-coding SN'Vs associated with monogenic
Mendelian disease genes from a “negative set” of 7370
randomly sampled common SNVs without clinical asser-
tions and matched by region (Additional file 4: Table S3;
“Methods” section). Figure 2 shows the area under the
receiver operating characteristic curve (AUROC) and the
area under the precision-recall curve (AUPRC) obtained
for each feature. A random classification would be char-
acterized by AUROC values close to 0.5 and by AUPRC
values close to 0.1 (corresponding to the fraction of
“positive” SN'Vs among the total SNVs considered). On
the other extreme, a perfect classification would show
an AUROC =1 and an AUPRC = 1. The ranking of fea-
tures according to both AUROC and AUPRC showed
that predictive ability was dominated by interspecies se-
quence conservation features at position and window
level (category A), while only poor performances were
observed for the rest of the features when considered in-
dependently (AUROC < 0.6 and AUPRC < 0.2).

Supervised learning based on a comprehensive set of
ancient, recent, and ongoing purifying selection signals in
humans: the NCBoost method

Supervised learning was performed in this work using
XGBoost [39, 40], a machine learning approach based
on gradient tree boosting (GTB; “Methods” section).
GTB performs predictions based on an ensemble of
regression trees. Unlike random forest, where the com-
ponent trees are trained independently, in GTB, trees
are built in a stepwise manner, where each successive
tree is optimized on the residuals of the prediction of
the preceding tree. XGBoost was trained on a “positive
set” of 283 high-confident set of pathogenic non-coding
SNVs associated with monogenic Mendelian disease
genes (randomly selecting one variant per gene out of
the total 737 initially obtained to avoid gene-level con-
tamination of the training/testing sets; Fig. 1c) and a
negative set of 2830 randomly sampled common SNVs
without clinical assertions, matched by region and allow-
ing a maximum of one negative variant per gene
(“Methods” section).

The method implemented in this work, called
NCBoost, is thus a bundle of 10 independently trained
XGBoost models, consecutively excluding in each of
them 1 out of 10 genome partitions where “positive” and
“negative” variants are evenly distributed. In such a way,
each non-coding variant in a putative cis-regulatory
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Table 1 Natural selection features associated with non-coding single-nucleotide variants mined in this work. Features are classified
under different categories depending on the sequence context (i.e., position level, window level, and gene level) and evolutionary
scale: interspecies (vertebrates, mammals, and primates, excluding humans), or recent and ongoing natural selection in humans. We
note here that the query variant was excluded from the calculations involving mean allele frequencies and mean heterozygosity of
a given region and that the variant allele frequency itself was not used as a feature in any training or pathogenicity prediction
throughout the study

Category Sequence context Evolutionary Model Feature abbreviation Definition References
scale used in this work
Position-level and Position-level Interspecies A GerpS Base-wise Rejected Substitution (RS) [63]
window-level features (mammals) score defined by Genomic Evolutionary
Rate Profiling (GERP++ scores) from
mammalian alignments, excluding
humans
Interspecies A GerpN Neutral evolution score defined by [63]
(mammals) GERP++, excluding humans
Recentand B bStatistic b Statistic: background selection score  [20]
ongoing in indicating the expected fraction of
humans neutral diversity that is present at a site,
with values close to 0 representing
near complete removal of diversity as a
result of selection and values near 1
indicating little effect. B-statistic was
based on human single-nucleotide
polymorphism data from Perlegen Sci-
ences, HapMap phase I, the Seat-
tleSNPs NHLBI Program for Genomic
Applications, and the NIEHS Environ-
mental Genome Project
Interspecies A priPhCons Primate PhastCons conservation score,  [42, 43]
(primates) excluding humans
Interspecies A mamPhCons Mammalian PhastCons conservation [13,14]
(mammals) scores, excluding humans
Interspecies A verPhCons Vertebrate PhastCons conservation [42, 43]
(vertebrates) score, excluding humans
Interspecies A priPhyloP Primate PhyloP conservation score, [44]
(primates) excluding humans
Interspecies A mamPhyloP Mammalian PhyloP conservation score,  [44]
(mammals) excluding humans
Interspecies A verPhyloP Vertebrate PhyloP conservation score, [44]
(vertebrates) excluding humans
1000-bp window Recentand B meanDaf1000G Mean derived allele frequency of [11]
ongoing in variants in 1-kb window region calcu-
humans lated from the 1000 Genomes Project
(excluding the query variant)
Recentand B meanHet1000G Mean heterozygosity of 1-kb window [11]
ongoing in region calculated from the 1000 Ge-
humans nomes Project (excluding the query
variant)
Recentand B meanMAF1000G Mean minor allele frequency of variants  [35]
ongoing in in 1-kb flanking region calculated from
humans 1000 Genomes Project (excluding the
query variant)
Recentand B meanMAFGnomAD Mean minor allele frequency of variants  [35]
ongoing in meanMAF_AFRGnomAD in 1-kb window region calculated from
humans meanMAF_AMRGnomAD GnomAD genome data (excluding the

meanMAF_EASGnomAD
meanMAF_FINGnomAD
meanMAF_NFEGnomAD
meanMAF_OTHGnomAD
meanMAF_ASJGnomAD

query variant from the calculation).
Mean MAF was assessed for the global
population and for population-specific
frequencies: Africans and African Ameri-
cans (AFR), Admixed Americans (AMR),
East Asians (EAS), Finnish (FIN), non-
Finnish Europeans (NFE), Ashkenazi
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Table 1 Natural selection features associated with non-coding single-nucleotide variants mined in this work. Features are classified
under different categories depending on the sequence context (i.e, position level, window level, and gene level) and evolutionary
scale: interspecies (vertebrates, mammals, and primates, excluding humans), or recent and ongoing natural selection in humans. We
note here that the query variant was excluded from the calculations involving mean allele frequencies and mean heterozygosity of
a given region and that the variant allele frequency itself was not used as a feature in any training or pathogenicity prediction

throughout the study (Continued)

Category Sequence context Evolutionary Model Feature abbreviation Definition References
scale used in this work
Jewish (ASJ), and other populations
(OTH)
30-kb window Recentand B TajimasD_CHB_pvalue Tajima’s D p value: neutrality test that [65]
ongoing in TajimasD_CEU_pvalue compares estimates of the number of
humans TajimasD_YRI_pvalue segregating sites and the mean pair-
wise difference between sequences.
The test is performed within 3 subpop-
ulations of the 1000 Genome Project,
producing population-specific scores.
30-kb window Recentand B FuLisD_CEU_pvalue Fu and Li's F* p value: neutrality test [35]
ongoing in FulisD_CHB_pvalue that compares the number of
humans FuLisD_YRI_pvalue singletons with the average number of
FulisF_CEU_pvalue nucleotide differences between pairs of
FuLisF_CHB_pvalue sequences. Fu and Li's D* p value:
FulisF_YRI_pvalue neutrality test that compares the
number of singletons with the total
number of mutations in a genomic
region within a group. These tests are
performed within 3 subpopulations of
the 1000 Genome Project, producing
population-specific scores.
10-bp window Recentand B CcDTS The Context-Dependent Tolerance [36]
ongoing in Score (CDTS) represents the difference
humans between observed and expected varia-
tions in Humans. The expected vari-
ation is computed for each nucleotide
genome-wide as the probability of vari-
ation of each nucleotide depending on
its heptanucleotide context. CDTS was
computed on 11,257 unrelated
individuals.
75-bp flanking region N/A D GC Percent GC in a window of + 75 bp [63]
N/A D CpG Percent CpG in a window of + 75 bp [63]
Gene-level features Non-coding region of Recentand C ncRVIS Non-coding RVIS is a measure of the [72]
the closest gene (@)  ongoing in departure from the genome-wide aver-
humans age number of common variants found
in the non-coding sequence of genes
with a similar amount of non-coding
mutational burden in humans. ncRVIS
was computed on an in-house collec-
tion of whole genome sequencing of
690 individuals.
Interspecies  C ncGERP Average GERP++ score across a gene's  [46]
(mammals) non-coding sequence
Coding region of the Interspecies C dN/dS Primate dN/dS ratio, providing a [68]
closest gene (primates) measure of the coding-sequence con-
servation across primates
Recentand C pLI Probability of being loss-of-function in-  [35]
ongoing in tolerant (intolerant of heterozygous and
humans homozygous loss-of-function variants),
assessed from the EXAC database.
Recentand C RVIS percentile Residual Variation Intolerance Score [71]
ongoing in (RVIS) percentile, a measure of the
humans departure from the average number of

common functional mutations in genes
with a similar amount of mutational
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Table 1 Natural selection features associated with non-coding single-nucleotide variants mined in this work. Features are classified
under different categories depending on the sequence context (i.e, position level, window level, and gene level) and evolutionary
scale: interspecies (vertebrates, mammals, and primates, excluding humans), or recent and ongoing natural selection in humans. We
note here that the query variant was excluded from the calculations involving mean allele frequencies and mean heterozygosity of
a given region and that the variant allele frequency itself was not used as a feature in any training or pathogenicity prediction

throughout the study (Continued)

Category Sequence context Evolutionary Model Feature abbreviation Definition References
scale used in this work
burden in humans. RVIS was assessed
on sequence data from 6503 whole
exome from the NHLBI Exome
Sequencing Project (ESP)
Recentand C GDI Gene Damage Index, a gene-level [70]
ongoing in metric of the mutational damage that
humans has accumulated in the general popula-
tion, based on CADD scores and on the
1000 Genomes Project data
Phylo-genetic gene  N/A C familyMemberCount Number of human paralogs of the [74]
features gene: Family member count (FMC) in
OGEE database
N/A C gene_age The gene age is estimating the [73]

origination time of genes from the
presence or absence of orthologs in
the vertebrate phylogeny.

bp base pairs, GERP Genomic Evolutionary Rate Profiling, RS Rejected Substitution, N/A not applicable
(a) Non-coding region of the closes gene defined in the original publication of ncRVIS and ncGERP as the collection of 5'UTR, 3'UTR, and an additional non-exonic

250 bp upstream of transcription start site (TSS)

region of a protein-coding gene can be scored in
NCBoost by the model that excluded from its training
all variants—either pathogenic or non-pathogenic—asso-
ciated with the same gene. This strategy permits to
reduce overfitting as well as to avoid biasing the score of
newly seen variants by the fact that they mapped in the
vicinity of variants and genes initially presented to the
classifier. Therefore, NCBoost may be applied to score
any set of non-coding variants in cis-regulatory regions
with no contamination with the training set. Interest-
ingly, the 10 models proved to be largely equivalent
among them, as shown by the high correlation of their
scores when applied to an independent set of variants
excluded from their training (average Spearman correl-
ation 0.96 £ 0.0111 of all pair-wise comparisons among
the 10 models; “Methods” section).

Six feature configurations were evaluated, including the
following combinations of feature categories: A, B, A+B,
A+B+C, A+B+C+D, and A+B+C+D+E (Table 1;
“Methods” section). The different NCBoost configurations
were first tested mimicking a tenfold cross-validation on
the same 283 high-confidence pathogenic non-coding
SNVs and 2830 common variants. Figure 3 shows the
receiver operating characteristic curve (ROC) and the
precision-recall curve (PRC) obtained for each of the six
feature configurations. In these figures, a perfect predic-
tion would be represented by the (0,1) corner in ROC
space (AUROC=1) and the (1,1) corner in PRC space
(AUPRC = 1). In our case, best performance was reached

by the model including ABCD features: AUROCapcp =
0.84 and AUPRCpcp = 0.47. The figures represent a rela-
tive improvement of 9% (AUROC) and 42% (AUPRC)
over a model based purely in interspecies sequence con-
servation features at position and window level. Results
were consistent when NCBoost was trained and tested on
positive variants from each of the three resources taken
independently, ie, HGMD-DM, ClinVar, and Smed-
ley’2016 (Additional file 2: Figure S3A, S3B and S3C,
respectively). Of note, ABCD and ABCDE models showed
a similar performance in terms of AUROC and AUPRC
across the different settings evaluated (Fig. 3 and
Additional file 2: Figure S3A, S3B and S3C).

The feature importance analysis of NCBoost revealed
a balanced contribution of interspecies sequence conser-
vation features at position and window level (feature cat-
egory A, cumulative importance Clajapcp =42% in the
ABCD configuration) and recent and ongoing natural
selection signals in humans at position and window level
collectively considered (category B, Clgjapcp =33%;
Additional file 2: Figure S4A and S$4B). Such balance is
observed in spite of the sharp differences in predictive
ability observed across features when considered inde-
pendently (Fig. 2). The collective feature importance of
recent and ongoing natural selection signals in humans
is in turn much higher than what could be expected
from the observed incremental performance obtained in
the joint model AB (interspecies and intraspecies selec-
tion) as compared to A (interspecies selection; Fig. 3).
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Fig. 2 Performance of individual features mined in this work to classify high-confident set of n =737 pathogenic non-coding SNVs associated
with monogenic Mendelian disease genes from a negative set of n=7370 randomly sampled common SNVs without clinical assertions matched
by region. The area under the receiver operating characteristic curve (AUROGC; left panel) and the area under the precision-recall curve (AUPRG;
right panel) obtained for each feature is represented. Features are gathered according to five categories (A-E; “Methods” section) and ranked
within category by decreasing AUROC and AUPRC. AUROC values < 0.5 (anti-classifiers) were transformed in 1-AUROC values for the purpose of
this figure and are indicated with an asterisk (*). Accordingly, AUPRC values for anti-classifiers were assessed on the basis of the — 1 product
transformation. Of note, population-specific GnomAD MAFs ("“Methods” section) are not shown for simplicity. One hot-encoded SNV region
features (i.e, “intronic,” "UTR5,” “UTR3," “upstream,” “downstream,” and “intergenic”) are gathered as a single feature labeled as “region”
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Both previous observations, however, are not merely a
straightforward consequence of the correlation structure
across features (Additional file 2: Figure S5). These
results show the capacity of a supervised learning
approach using regression trees to extract complex pat-
terns of natural selection signals distinguishing patho-

genic versus non-pathogenic non-coding variants.

Notably, in contrast with the state-of-the-art methods
evaluated (Additional file 2: Figure S2), the per-region
distribution of NCBoost scores showed a clearer separ-
ation between high-confidence non-coding pathogenic
variants and common SNVs for all types of regions
evaluated (Additional file 2: Figure S6). Thus, the distri-
bution of median scores per gene for common SNVs in
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Fig. 3 Comparative performance of NCBoost models trained upon different sets of features. The figure represents the area under the receiver
operating characteristic curve (AUROG; a) and the area under the precision-recall curve (AUPRC; b) obtained for each of the six feature configurations
evaluated (feature categories A, B, A+B, A+B+C, A+B+C+D, and A+B+C+D+E) when tested mimicking a tenfold cross-validation on n = 283 high-
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5'UTR was significantly lower (i.e., less severe) than that
of pathogenic SNVs in all evaluated regions (ie., in-
tronic, 3'UTR, 5'UTR, and upstream regions; two-sided
Wilcoxon test p values < le-10; Additional file 3: Table
S2), with the exception of intergenic region, where low
sample size undermined statistical power (Fig. 1c).

Comparative benchmark against state-of-the-art methods
The NCBoost performance observed in Fig. 3 (configur-
ation ABCD) was compared against the results of the six
state-of-the-art methods considered in this work
(CADD, DeepSEA, Eigen, Eigen-PC, FunSeq2, and
ReMM) when applied on the same positive and negative
set of SNVs (Fig. 4). NCBoost outperformed all evalu-
ated methods both regarding AUROC and AUPRC, with
a relative improvement of 10% and 34% respectively over
the second ranked method (ReMM) and of 13% and
104% over the third ranked method (Eigen). Figures
were consistent when the benchmarking was performed
on positive variants from each of the three resources
taken independently, ie, HGMD-DM, ClinVar, and
Smedley’2016 (Additional file 2: Figure S7A, S7B and
S7C, respectively).

The comparative benchmark was then focused on
scoring methods that—like NCBoost—are based on su-
pervised learning on non-coding pathogenic variants
that are highly enriched in Mendelian diseases. To that
aim, we considered (i) GWAVA, trained on HGMD vari-
ants [11]; (ii) the more recent ncER score, trained both
on HGMD-DM and ClinVar variants [41]; and (iii)
ReMM, trained on Smedley’2016 variants [20]. Contrary
to NCBoost and ReMM scores, in which a given SNV is
never scored by a model that used it for learning,

GWAVA and ncER methods could not be included in
the benchmark represented in Fig. 4 because of the large
overlap of their training set with the pathogenic variants
evaluated therein. To overcome this issue, we performed
a dedicated comparative benchmark for GWAVA and
ncER on the non-overlapping part of their training set
with the high-confidence pathogenic SNVs curated in
this work. NCBoost outperformed reference methods in
both settings (Additional file 2: Figure S8).

We then assessed the ability of the different methods
to discriminate pathogenic variants seemingly uncon-
strained across mammalian evolution. Thus, we selected
234 of the 737 high-confidence pathogenic variants from
the initial set that presented PhastCons [42, 43] and
PhyloP [44] scores for mammals which were below the
median value of the 7370 common variants sampled for
training (0.001 and - 0.014, respectively). As expected,
the performance of all evaluated methods decreased for
this subset of pathogenic variants (Additional file 2:
Figure S9). Despite the more challenging scenario,
NCBoost still remained as the best performing method,
with relative improvements of 17% and 57% in AUROC
and AUPC over the second best ranked method (Eigen
PC). NCBoost’s superior performance to discriminate
pathogenic variants that are seemingly unconstrained
across mammalian evolution highlights its ability to ex-
ploit more recent signals of purifying selection, both in
primates and in humans.

The outperformance of NCBoost over reference
methods was also observed when testing on the same
positive set of 283 high-confident set of pathogenic
non-coding SNVs as in Fig. 4 and on a negative set
that—rather than of common variants—is composed of
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Fig. 4 Comparative performance of NCBoost against state-of-the-art methods. The figure shows the area under AUROC (a) and the AUPRC (b)
obtained for NCBoost (configuration of features ABCD) together with the six state-of-the-art methods (CADD, DeepSEA, Eigen, Eigen-PC, FunSeq2,
and ReMM; “Methods” section) when tested on the same set of positive and negative variants described for Fig. 3
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2830 randomly selected rare variants (allele frequency <
1%) matched by region (Additional file 2: Figure S10;
“Methods” section). This test allows ruling out the possi-
bility that figures obtained in Fig. 4 are merely explained
by the capacity to discriminate rare from common vari-
ants, rather than to discriminate pathogenic from
non-pathogenic variants.

In a more stringent setup, we further explored the
capacity of the different methods to discriminate
pathogenic and non-pathogenic variants within the
same non-coding region of a given gene. For this pur-
pose, we restricted the previous test to a set of 149 re-
gion-matched pairs of pathogenic and random
common variants associated with 54 unique genes
(Additional file 2: Figure S11). Results obtained were
consistent with those previously observed in Fig. 4 and
in Additional file 2: Figure S10, further supporting the
superior ability of NCBoost to discriminate pathogenic
variants as compared to reference methods. We note
that in Additional file 2: Figures S8, S9, S10, S11 no
re-training of NCBoost was done, but the same
NCBoost agcp bundle trained as described in the pre-
vious section was applied.

Independent training and testing across all possible
configurations of the three sources of high-confidence
non-coding pathogenic SNVs

To characterize the performance of the NCBoost approach
upon different training and testing scenarios, we evaluated
all possible configurations of the training and testing sets
upon the three sources of high-confidence non-coding
pathogenic SNVs, ie, HGMD-DM, ClinVar, and Smed-
ley’2016. Thus, the positive set of 283 high-confident set of
pathogenic non-coding SNVs and the associated negative
set of 2830 common SNVs matched by region (“Methods”
section) were each split in two non-overlapping sets in
three different ways according to the annotation source
(Table 2). Accordingly, we trained on the pathogenic vari-
ants reported in one source and tested on those in the
other two sources not overlapping with the first one. In
addition, we explored two additional configurations: train-
ing on variants reported in at least two sources and testing
on those reported only in one single source, and vice
versa. For each different training set, we retrained
NCBoost as a bundle of 10 independently trained
models, consecutively excluding in each of them 1
out of 10 genome partitions as previously done for

Table 2 AUROC and AUPRC values obtained by NCBoost upon different configurations of the training and independent testing sets.
The figures obtained by the six state-of-the-art methods evaluated on the same testing sets are shown together with NCBoost

Positive set used for  Positive set used for  AUROC AUPRC

NCBoost training testing

Source # SNVs  Source # SNVs  CADD DeepSEA Eigen Eigen PC FunSeq2 ReMM NCBoost CADD DeepSEA Eigen Eigen PC FunSeq2 ReMM NCBoost
HGMD-DM 186 IHGMD-DM 97 067 076 078 070 067 074 082 016 024 023 013 0.15 026 036

v 107 Icv 176 072 074 073 063 068 077 078 027 031 024 011 0.15 037 038
Smedley 78 ISmedley 205 069 072 073 065 0.66 075 078 024 025 021 011 0.14 031 0.36

>2 sources 73 1 source 210 068 072 073 064 0.66 075 078 023 024 021 011 0.14 031 031

1 source 210 22 sources 73 08 0.81 082 069 0.77 0.82 0.85 031 043 029 0.16 0.24 048 052
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Fig. 5 Testing of NCBoost against a fully independent set of recently reported pathogenic variants. The figure shows the area under AUROC (a)
and the AUPRC (b) obtained for NCBoost (configuration of features ABCD) together with the eight reference methods (CADD, DeepSEA, Eigen,
Eigen-PC, FunSeq2, ReMM, GWAVA, and ncER; “Methods” section) tested on a fully independent set of 70 positive and 700 negative variants
matched per genomic region (“Methods” section). Only the GWAVA Region version is depicted for the sake of visualization. GWAVA Unmatched
and TSS versions led to AUROC of 0.59 and 0.58 and to AUPRC of 0.02 and 0.02, respectively. Notice that GWAVA and ncEM methods were
considered here assuming no overlap of their training sets with the recently reported pathogenic non-coding variants evaluated in these figures.
There was no re-training of NCBoost, but the same NCBoost ABCD bundle used in Figs. 3 and 4 was applied
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the entire sets. We note again that a maximum of
one positive and one negative variant per gene was
allowed within the positive and negative sets used for
training. In addition, in all previous training/testing
configurations, we further required that there was no
overlap between the genes associated with SNV vari-
ants in the training set and those of the independent
testing set, regardless of their positive and negative
classification. Table 2 shows the AUROC and AUPRC
values obtained on each of the independent testing
sets when applying the corresponding NCBoost
model. Consistent with previous results, NCBoost
outperformed the reference state-of-the-art methods
under all training and testing evaluated scenario.

Validation on a set of recently discovered non-coding
pathogenic variants

We evaluated NCBoost’s performance in a fully inde-
pendent validation set of non-coding pathogenic
variants. For this, we retrieved 70 SNVs in non-coding
regions of protein-coding genes newly reported in recent
updates of the HGMD and ClinVar databases. The new
pathogenic SNVs collectively associated with 47 genes
and involve a total of 45 human diseases (details pro-
vided in Additional file 5: Table S4; “Methods” section).
For the purpose of this analysis, each pathogenic SNV
was associated with a unique set of ten randomly sam-
pled negative common human variants, matched to the
positive set to maintain the same fraction of variants per

type of region (Additional file 5: Table S4). Figure 5
shows the predictive ability of NCBoost in such valid-
ation test in terms of AUROC and AUPRC values. As in
previous settings, NCBoost outperformed reference
methods, including GWAVA and ncER. Importantly,
NCBoost values on the validation set (AUROC =0.90
and AUPRC=0.53; Fig. 5) were similar to those ob-
served in the independent test performed by mimicking
a tenfold cross-validation (AUROC =0.84 and AUPR =
0.47; Fig. 4). The consistency of values observed between
the test and validation datasets supports the lack of
overfitting in the training process.

Prioritization of non-coding pathogenic variants within
individual genomes

In a more realistic setting for the study of monogenic
Mendelian diseases, the efficacy of scoring methods
should be given by their ability to prioritize the causal
pathogenic non-coding variant among the variants found
in a patient’s genome. To mimic such scenario, we simu-
lated disease genomes by adding a specific pathogenic
variant to the variants found in healthy individuals from
the 1000 Genomes Project [8]. For this purpose, we re-
stricted the analysis to the 37 pathogenic variants in the
validation set that mapped to autosomal chromosomes (to
avoid a gender effect of the background genomes) and
that could be associated with a randomly sampled nega-
tive common SNV mapping within the same non-coding
region of the affected gene. Such negative variants are
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Fig. 6 Prioritization of non-coding pathogenic variants within individual genomes. The median across the 100 simulated disease genomes of the
within-individual rank percentile of a variant (y-axis) is shown for 37 recently reported pathogenic variants evaluated (red dots) and their
corresponding 37 randomly sampled negative common SNVs mapping within the same non-coding region of the associated genes (blue dots).
Boxplots represent the distributions for the different evaluated scores (x-axis). NCBoost scores offered the highest within-individual rank
percentiles of pathogenic variants (median 97.04%), with a statistical significant difference (one-sided paired Wilcoxon test p value) as compared
to all evaluated reference methods: ReMM (median 96.34%; p value = 3.75e—2), Eigen (median 96.00%, p value = 9.55e—2), DeepSEA (95.3%; p
value = 1.96e-3), CADD (median 93.50; p value =4.03e-3), FunSeq2 (median 89.92; p value = 5.88e—4). All scores showed a statistically significant
difference between the median rank percentile distribution of pathogenic and their internal control negative variants (one-sided paired Wilcoxon
test): NCBoost p value = 8.04E-07, ReMM p value = 9.71E-05, Eigen p value = 2.28E—-05, DeepSEA p value = 7.51E-06, CADD p value = 3.88E-04,
and FunSeq2 p value = 6.13E—03. Complete details are provided in Additional file 6: Table S5. An alternative graphical representation pairing each

pathogenic variant with is provided in Additional file 2: Figure S12

intended to serve here as internal negative controls, ac-
counting thus for eventual biases both at the level of the
region type (Additional file 2: Figure S2) and of the af-
fected gene. Each pathogenic variant and its associated
“negative variant” were independently spiked in 100
randomly sampled individual genomes. Their scores were
ranked against those of non-coding variants in proximal
cis-regulatory regions per individual (median per individ-
ual of 1,031,931 SNVs, collectively affecting a median of
16'378 protein-coding genes per individual; “Methods”
section). Median values across the 100 simulated disease
genomes of the within-individual rank percentile are indi-
cated in Fig. 6 and Additional file 2: Figure S12 for each of
the 37 pathogenic variants independently evaluated and
for their corresponding 37 negative variants used as in-
ternal controls. NCBoost scores provided the highest
within-individual rank percentiles of pathogenic variants
(median 97.04%), with a statistical significant difference as
compared to all reference methods evaluated (one-sided
paired Wilcoxon test p value < 0.05), with the exception of
Eigen for which a p value = 0.095 was obtained. No statis-
tical differences were observed among the NCBoost scores
of the negative control variants and those of the evaluated
methods (one-sided paired Wilcoxon test p value > 0.05 in
all cases), permitting to exclude systematic biases. Notably,
all scores showed a statistically significant difference be-
tween the median rank percentile distribution of

pathogenic and their corresponding internal control
negative variants. However, NCBoost’s score leads to
the strongest separation of pathogenic and internal
control variants, as reflected by the one-sided paired
Wilcoxon test with p value = 8.04e-7. Exact p values
of the previous tests are reported in Fig. 6 legend,
and complete details per variant are provided in Add-
itional file 6: Table S5. GWAVA and ncER scores
were not evaluated in this section because of the in-
trinsic bias of their publicly available genome-wide
scores as a consequence of the contamination with
the corresponding training set. Thus, the class labels
presented for training the classifier will bias the
genome-wide scoring of variants in the vicinity of
such training set.

Case study: NCAPD3 intron variant
NC_000011.9:9.134086816T>C associated with autosomal
recessive primary microcephaly-22

Here, we present the variant NC_000011.9:g.134086816T>C,
a recently reported pathogenic SNV to illustrate the added
value of assessing recent and ongoing purifying selection
signals in humans through a supervised machine learning
approach. This is an intronic variant of the NCAPD3 gene
(non-SMC condensin II complex subunit D3) and was
found in compound heterozygous state in combination
with the frameshift mutation NC_000011.9:g.134063
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952del in a patient with autosomal recessive primary
microcephaly-22 (MCPH22 [45]). Mutations were de-
tected by whole exome sequencing, confirmed by
Sanger sequencing, and segregated with the disease in
the family. In the patient’s fibroblasts, the NC_00001
1.9:8.134086816T>C mutation leads to skipping exon 3
which, in combination with the frameshift variant in
trans, resulted in markedly reduced NCAPD3 protein
expression. Low levels of normally spliced transcript
and wild-type protein were nevertheless detected. Thus,
the mutation caused a decrease in NCAPD3 function
but was not considered functionally null [1, 45]. This
variant was poorly scored by all reference methods
evaluated, with a median of within-individual rank
percentiles ranging between 90.69% (ReMM) and
35.11% (FunSeq2) (Additional file 2: Figure S12). In
contrast, NCBoost scored the g.134086816T>C variant
as highly pathogenic, i.e., in the top 99.26% percentile
(Additional file 7: Table S6). Detailed inspection of the
purifying selection features associated to this SNV
showed that the affected genomic position is weakly
conserved across vertebrates and mammals and mildly
conserved across primates (Additional file 7: Table S6).
When considered globally, however, the non-coding se-
quence of the NCAPD3 gene is constrained, as
reflected by high non-coding GERP values [46].
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Interestingly, complementary genomic position features
suggest high levels of recent and ongoing purifying se-
lection in humans, as reflected by low mean derived al-
lele frequency, mean heterozygosity, Tajima’s D and Fu
and Li’s F* and D* values (Additional file 7: Table S6).
Despite the fact that none of the features are conclusive
when considered independently, NCBoost’s model
managed to incorporate the complex pattern they con-
vey and assign a high pathogenicity score.

Scoring of non-coding genomic regions associated with
monogenic Mendelian disease genes

We applied NCBoost to 189,829,714 genomic positions
overlapping intronic, 5'UTR or 3'UTR, upstream and
downstream regions associated with 3223 monogenic Men-
delian disease protein-coding genes (MMDGs) for which
annotations were retrieved (“Methods” section). Among
them, a total of 261,507 and 980,219 genomic positions pre-
sented an NCBoost score higher than the top 5% and the
top 10%, respectively, of the high-confidence pathogenic var-
iants curated in this work. These values translate in a total
of 1715 and 2699 MMDGs having at least one potentially
pathogenic non-coding variant per gene with an NCBoost
score higher than the top 5% and the top 10% of the
high-confidence pathogenic variants, respectively (Fig. 7).
These results represent a significant enrichment of MMDGs
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Fig. 7 The figure represents the number of monogenic Mendelian disease genes (MMDGs, in blue, y-axis) bearing at least one (solid curves) or
ten (dashed curves) potentially pathogenic non-coding variants as a function of the top NCBoost scoring positions considered (x-axis), ranked
from left (more pathogenic) to right (less pathogenic). A total of 857,825,085 positions overlapping intronic, 5'UTR or 3'UTR, and upstream and
downstream regions collectively associated with 18,404 protein-coding genes was used as a reference background. For the sake of visualization,
the x-axis was cut at 10 Million top-scoring genomic positions. Vertical bars represent the thresholds at which left positions display NCBoost
scores higher than the corresponding top percentage of the high-confidence pathogenic variants curated in this work. Top 5%, 10%, 15%, and
20% thresholds are represented. The horizontal dotted lines represent the total of 3223 MMDGs (in blue) and 18,404 protein-coding genes (in
black) for which NCBoost scores were obtained. Genes bearing potentially pathogenic non-coding variant per gene within the top 5% and the
top 10% are highly enriched in MMDGs as compared to the background of protein-coding genes used (see text)
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among the protein-coding genes bearing at least one highly
pathogenic variants, with gene-based odds ratio ORrop, 59, =
1.27, Fisher's test p valueroy, 54 = 3.78e-13; and ORrqyp, 10% =
1.18, p valuerop 10% = 8.81e-09, respectively, based on a
reference background of 18,404 protein-coding genes col-
lectively associated with 857,825,085 non-coding positions.
In a more stringent setting, a total of 1146 and 2199
MMDGs were found with at least ten potentially pathogenic
non-coding variants per gene with an NCBoost score higher
than the top 5% and the top 10%, respectively, of the refer-
ence set of high-confidence pathogenic variants. Here, the
corresponding gene-based enrichments increase with
ORrop 5% = 1.4 and Fisher’s test p valueroy, 594 = 6.2e~18 and
ORrop 10% = 1.23 and p valuer,y, 10% = 6.48e—12. Besides the
283 MMDG currently showing high-confidence pathogenic
non-coding variants (as curated in this work, Fig. 1), our es-
timates suggest that an additional number of 1040 MMDGs
have the potential to cause a disease on the basis of highly
pathogenic SN'Vs in proximal cis-regulatory regions.

Discussion

In this study, we implemented a supervised learning ap-
proach, called NCBoost, to classify pathogenic SNVs
based on a comprehensive set of features at the position,
flanking region, and gene level, associated with interspe-
cies, recent and ongoing selection in humans. When
trained and tested on multiple configurations of
high-confidence sets of pathogenic non-coding SN'Vs as-
sociated with monogenic Mendelian disease genes, this
approach showed superior performance than the
reference methods. Notable improvements were ob-
served on precision-recall rates. The context-specific as-
sessment of natural selection signals permitted to
overcome the pervasive regional bias observed in all
evaluated reference methods, which, e.g., tend to provide
scores to non-pathogenic common SNVs in 5'UTR not
significantly different from the scores assigned to
high-confident pathogenic SNVs in 3'UTR and signifi-
cantly different (with more severe scores) than those of
pathogenic SNVs in intronic regions.

The rigorous curation process showed that current
sets of high-confidence large-effect pathogenic non-cod-
ing SN'Vs associated with monogenic Mendelian diseases
are mostly constituted of proximal cis-regulatory vari-
ants associated with the closest protein-coding gene, in
line with previous reports [20]. Such distribution most
probably reflects a historical ascertainment bias towards
such regions in previously described Mendelian genes,
which is expected to be steadily overcome by unbiased
WGS approaches [5]. However, for the time being, the
current status poses limits to the supervised learning
and benchmarking on distal cis- and trans-acting patho-
genic regulatory variants with clinical implications in
Mendelian diseases. Additionally, it warns about the
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applicability and expected performance of our approach
and reference state-of-the-art methods for such scope.
On the other extreme, the use of common variants as a
surrogate of non-pathogenic variants for the supervised
training process cannot rule out their potential contribu-
tion to disease susceptibility and modifier effects, mostly
in the context of polygenic diseases and complex traits.
In the scope of monogenic Mendelian diseases addressed
by this work, however, such limitation is expected to
have a minor impact.

The implementation of NCBoost allowed us to evalu-
ate the ability to prioritize pathogenic non-coding SNVs
of recent and ongoing natural selection features in
humans when considered independently, collectively,
and in combination with interspecies conservation.
While none of the evaluated features showed individual
predictive strength (Fig. 2), supervised learning per-
formed through gradient tree boosting found complex
patterns associated with pathogenic SNVs, reaching a
significant performance combining multiple features
(Fig. 3). Detailed feature importance analysis showed a
prominent contribution of recent and ongoing natural
selection signals under all evaluated feature configura-
tions. However, their final impact in the global perform-
ance of the classifier, while remarkable, is attenuated by
the fact that some signals may be redundant with select-
ive constrains already accounted for by interspecies con-
servation. The best results were, nonetheless, obtained
when the collective assessment of interspecies and intra-
species natural selection features was performed taking
into consideration the sequence context where SN'Vs oc-
curred, as informed by the selective signals accumulated
by the associated gene and by the type of non-coding
element involved.

This work represents a proof-of-concept of the added
value of incorporating a large and heterogeneous set of re-
cent and ongoing natural selection features in humans
under a supervised machine learning approach for the de-
tection of pathogenic non-coding SNVs associated with
Mendelian diseases. The rapidly increasing sample size of
current large-scale WGS projects in the general popula-
tion is expected to have a major impact in the capacity to
detect additional and more accurate recent and ongoing
natural selection signals in humans, with a consequent re-
percussion in their use to identify pathogenic non-coding
variants, as recently illustrated [36, 47, 48].

In the last years, different large-scale projects have iden-
tified an important fraction of regulatory elements of the
human genome, and the epigenetic insights are proving
valuable to understand the functional consequences of
disease-associated variants in those regions [17-19]. How-
ever, in the setting of this work, the small set of evaluated
epigenetic features had only a minor contribution to the
classification of pathogenic SNVs associated with
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Mendelian diseases, in line with the results of previous
analyses [11, 14, 16]. On the one hand, this may suggest
that the epigenetic signals evaluated here are partially re-
dundant with natural selection features; a more exhaustive
extraction of epigenetic features was however beyond the
scope of this work. On the other hand, it may reflect a lack
of specificity in regard to the cell types and tissues relevant
for the heterogeneous set of Mendelian diseases consid-
ered here. In this line, recent studies are consolidating a
view of regulatory mechanisms that is highly cell
type-specific, where gene expression, DNA methylation,
histone modifications, promoter interaction networks, and
transcription factor binding sites may substantially vary
across tissues and developmental stages [49-52]. Thus,
the assessment of non-coding variants in the context of
Mendelian diseases may largely benefit from the integra-
tion of purifying selection signals with the epigenetic in-
formation derived on the particular cell types, tissues,
and/or developmental time relevant for the onset and
progression of a disease, as illustrated by recent successful
examples [48, 53]. Recently, a computational approach
based on a latent Dirichlet allocation model modeling data
from multiple cell types and tissues (FUN-LDA) was
shown to predict functional impact of non-coding variants
in a cell type- and tissue-specific manner [54]. Notwith-
standing, the identification of the specific cell type and tis-
sue to be considered may be a challenging task, especially
in the case of largely uncharacterized rare Mendelian dis-
eases and syndromes with pleiotropic clinical signs.
Recently, it was shown that the number of singleton
variants found on each newly sequenced genome stabi-
lizes on average at ~ 8,500, with regulatory elements
highly enriched in the relative amount of SNVs found
per kilobase of sequence [9]. The large amount of rare
variants in each individual genome, together with the
typically low number of participants in the study of spe-
cific rare diseases, challenges the statistical power of
downstream statistical association and/or linkage studies
to relate a genotype with a phenotype. The scoring ap-
proaches evaluated in this work may help filtering vari-
ants to increase power, although they often need to be
integrated within more comprehensive frameworks in
order to reach the necessary sensitivity and specificity to
identify causal variants in disease cohorts [20]. In
addition to the use of epigenetic information previously
discussed, variant filtering strategies include focusing on
SNVs associated with genes of phenotypic relevance for
the disease under consideration [20, 55]. From a
complementary perspective, gene-based or region-based
aggregation tests of multiple variants (a class of rare
variant association tests) have been developed to evalu-
ate cumulative effects of multiple genetic variants in a
gene or region. The aim of such aggregation strategies is
to increase the statistical power when multiple variants
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may be associated with a disease [56], e.g., in the case of
burden tests and variance component tests implemented
in popular software such as PLINK/SEQ, SEQSpark, and
SKAT. In these approaches, a continuous weight func-
tion can be used in the aggregation of rare variants in
order to up-weight those predicted to have more dam-
aging consequences. A similar weighting strategy can be
proposed for rare variant extensions of the transmission
disequilibrium test in the analysis of parent-child trio
data [57]. In both previous families of statistical tests for
rare variant analysis of WGS from Mendelian disease
studies, the pathogenic scores led by the supervised
learning approach implemented in this work, NCBoost,
may be used to weight the aggregation of candidate
pathogenic SNVs across heterogeneous cis-regulatory
elements in a consistent way overcoming position and
region biases.

Conclusions

Current large-scale WGS projects on the general popu-
lation are increasingly providing the necessary sample
size to detect recent and ongoing purifying selection sig-
nals in humans. The results obtained in this work shows
that, when integrated in a supervised learning frame-
work, the assessment of a comprehensive set of such
signals improves the prediction of large-effect patho-
genic non-coding variants associated to Mendelian
diseases. Through the evaluation of interspecies and hu-
man-specific natural selection features at the affected
position, the flanking region, and the associated gene,
the NCBoost method outperformed reference methods
under multiple scenarios. Notably, the scores produced
by this supervised approach overcome positional bias,
thus permitting a consistent weighting and aggregation
of candidate variants across diverse non-coding regions
for downstream statistical analyses.

Methods

High-confidence pathogenic variants

Three sets of high-confidence pathogenic variants in
non-coding regions were obtained: (1) regulatory
disease-causing mutations (“DM” set) from the Human
Gene Mutation Database (HGMD, professional version,
accessed on 2018/01/03 [37]), manually annotated as in-
volved in conferring the associated clinical phenotype;
(2) pathogenic SNVs from ClinVar [38] manually anno-
tated as “pathogenic” with no conflicting assertions
(GrCh37 release from [58]); and (3) a manually curated
set compiled from the medical literature of non-coding
SNVs associated with Mendelian diseases and validated
by experimentation or co-segregation studies, or for
which other convincing evidence of pathogenicity was
available.
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Variant mapping and annotation of non-coding SNVs
Only single-nucleotide variants (SN'Vs) where considered
through the study. Variants were annotated using
ANNOVAR software [59] (downloaded from [60]) using
the gene-based annotation option based on RefSeq (as-
sembly version hgl9) in order to obtain (i) the gene
region affected by intragenic variants or (ii) the nearest
flanking gene in the case of intergenic variants. Exonic
variants and variants within 10 base pairs (bp) of a spli-
cing junction of protein-coding genes were removed
(ANNOVAR  splicing_threshold =10). At this stage,
variants from HGMD-DM, ClinVar, and Smedley’2016
overlapping non-coding RNAs within an exon (n =143,
2, and 68, respectively), intron (n=24, 3, and 13, re-
spectively), or 10bp from a splicing junction (n=1, 0,
and 0, respectively) were filtered out. In the case of
SNVs overlapping several types of regions associated
with different genes or transcripts, the following three
criteria were consecutively adopted: (A) the default
ANNOVAR precedence rule for gene-based annotation
was applied, i.e., exonic = splicing > ncRNA > UTR5 =
UTR3 > intronic > upstream = downstream > intergenic.
(B) if after the previous step a SNV could still be associ-
ated with several neighbor/overlapping genes (e.g., in the
intergenic region between two genes, or in the intronic
region of two overlapping genes, etc.), the SNV’s nearest
protein-coding gene was kept as a reference for the
annotation of the variant. The SNV’s nearest gene was
determined by the shortest distance to either the TSS or
TSE. (C) Pathogenic SNVs with two or more genes with
identical shortest distance to TSS/TSE were tagged as
“conflicting” and filtered out from the analysis. After all
previous filtering steps, a total of 18 disease-causing
SNVs overlapping upstream (7 =9), 3'UTR (n=7), and
downstream regions (n=2) of non-coding RNAs were
filtered out. Thus, for the purpose of this study, the set
of non-coding variants was constituted of SNVs
associated with protein-coding genes and overlapping in-
tronic, 5'UTR or 3'UTR, upstream and downstream re-
gions—i.e,, closer than 1kb from the transcription start
site (TSS) and the transcription end site (TSE) respect-
ively—and intergenic regions.

Curation of high-confidence pathogenic non-coding SNVs
associated with monogenic Mendelian disease genes

Among the set of high-confidence pathogenic SN'Vs, we
manually supervised a total of 71 cases showing a dis-
agreement between the gene associated with the variant
in the original resource (i.e, HGMD-DM, ClinVar, and
Smedley’2016) and the gene associated by the previously
described annotation procedure. The original gene as-
signment was kept for 17 SNVs where conflict originated
due to straightforward exceptions of the ANNOVAR’s
precedence rule or the assignment to the nearest
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upstream or downstream gene (criteria A and B de-
scribed in the previous section). The number of variants
retained at this stage is represented in Fig. la. Only
high-confidence pathogenic non-coding variants associ-
ated with the same gene by both the original resource
and the annotation process done in this work were
retained for downstream analyses.

We then evaluated whether the genes associated with
high-confidence pathogenic non-coding SNVs were re-
ported as Mendelian disease genes in OMIM [1]. A list
of 3695 Mendelian disease genes was obtained following
Chong et al. [3]: OMIM raw data files were downloaded
from [61]. Phenotype descriptions containing the word
“somatic” were flagged as “somatic,” and those contain-
ing “risk, ”

» o«

quantitative trait locus,” “QTL,” “{,” “[,” or
“susceptibility to” were flagged as “complex.” Mendelian
genes were then defined as those having a supporting
evidence level of 3 (i.e., the molecular basis of the dis-
ease is known) and not having a “somatic” flag. Two
main categories of Mendelian disease genes were de-
fined: monogenic Mendelian disease genes (n=3354)
and complex Mendelian disease genes (n=596), ie.,
those presenting mutation risk factors and quantitative
trait loci (QTL) or contributing to susceptibility to
multifactorial disorders or to susceptibility to infection
[3]. Two hundred fifty-five genes were associated with
both monogenic and complex Mendelian disease genes.

High-confidence pathogenic non-coding SNVs associ-
ated with monogenic Mendelian disease genes were fur-
ther inspected manually to check consistency between
the disease phenotype reported in the original source
(i.e., HGMD-DM, ClinVar, and Smedley’2016) and the
ones described in OMIM database for the same gene. A
total number of 138 variants for which the agreement
was unclear or non-existent were filtered out for down-
stream analyses. In the remaining set of pathogenic
non-coding SNVs, we then inspected whether variants
were detected as heterozygous or homozygous among
the individuals included in the GnomAD database [35]
(version 12.0.2), using both WES and WGS data.
Variants present as homozygous in at least one carrier
were filtered out for downstream analysis. Thus, only
high-confidence pathogenic non-coding SNVs associated
with monogenic Mendelian diseases, with no homozy-
gous individuals in GnomAD and overlapping intronic,
5'UTR, 3'UTR, upstream, downstream, and intergenic
regions, were finally retained for downstream analysis
(Additional file 1: Table S1).

Common and rare human variants without clinical
assertions

Common and rare human variants without clinical as-
sertions where obtained from dbSNP [62]. Variants la-
beled as common (“COMMON =1") and with minor
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allele frequency (MAF) > 0.05 were considered as “com-
mon variants,” while those labeled as non-common
(“COMMON = 0”) and with MAF < 0.01 were annotated
as “rare variants.” Variants with no MAF information
(no “CAF” field reported in the “INFO” field of the vari-
ant) as well as multi-allelic variants were filtered out.
Common and rare human variants without clinical as-
sertions were first annotated by ANNOVAR and filtered
as described above. For consistency in the comparison
against the pathogenic set of SNVs, the set of common
and rare human variants without clinical assertions was
restricted to SNVs associated with protein-coding genes
and overlapping intronic, 5'UTR, 3'UTR, upstream,

downstream, and intergenic regions. The list of
protein-coding genes was extracted from Ensembl Bio-
mart [63] (human genome assembly version
GrCh37.p13).

Pathogenicity scores of non-coding SNVs

Pre-computed pathogenicity scores of non-coding SNVs
were extracted from the following state-of-the-art
methods: CADD non-coding score (version v1.3 [10]),
DeepSEA functional significance score (version v0.94
[14], a -logl0 transformation was used throughout this
work), Eigen and Eigen-PC scores (version v1.1 [16]),
FunSeq2 score (version v1.2 [12]), ReMM scores (version
v0.3.1 [20]), GWAVA scores (version 1,0 [11]), and ncER
scores (ncER_10bpBins_percentile_versionl created on
August 13, 2018 [41]).

Feature extraction of non-coding SNVs
Extracted features are summarized in Table 1 and can be
classified in five main categories.

Interspecies sequence conservation features at position and
window level

To evaluate evolutionary conservation at a given site,
the following scores evaluating non-neutral rates of sub-
stitution from multiple species alignments (excluding
humans) were used: PhastCons [42, 43] and PhyloP [44]
scores for three multi-species alignment (vertebrates,
mammals, and primates) and GerpN and GerpS
single-nucleotide scores from mammalian alignments
[64], all of them obtained from CADD (version v1.3
[10]). PhyloP scores measure neutral evolution at
individual sites. The score corresponds to the -log p
value of the null hypothesis of neutral evolution. Positive
values (up to 3) represent purifying selection, while
negative values (up to -14) represent acceleration.
PhastCons scores estimate the probability that the locus
is contained in a conserved element. GerpN and GerpS
single-nucleotide scores assess respectively the neutral
substitution rate and the rejected substitution rate of the
locus. A high GerpN value indicates high homology of
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the locus across species. Positive values of GerpS indi-
cate a deficit in substitutions, while negative values con-
vey a substitution surplus.

Recent and ongoing natural selection signals in humans at

position and window level

Three human population-specific natural selection
scores based on the allele frequency spectrum on a
30-kb sequence window region centered around the
SNV were obtained from The 1000 Genomes Selection
Browser 1.0 [65]: Tajima’s D [66], Fu and Li’s D*, and Fu
and Li’s F* [67]. Tajima’s D is a neutrality test comparing
estimates of the number of segregating sites and the
mean pair-wise difference between sequences. Fu and
Li’s D* is a neutrality test comparing the number of sin-
gletons with the total number of nucleotide variants
within a region. Fu and Li’s F* is a neutrality test com-
paring the number of singletons with the average num-
ber of nucleotide differences between pairs of sequences.
The three tests were performed within three populations
of the 1000 Genome Project phase 1 data, producing
population-specific scores [65]: Yoruba in Ibadan,
Nigeria (YRI); Han Chinese in Beijing, China (CHB); and
Utah Residents with Northern and Western European
Ancestry (CEU). Negative logarithmic percentiles associ-
ated with each of these scores were used with values
ranging from O (indicating positive selection) to 6 (indi-
cating purifying selection).

The background selection score (B statistic [68]),
assessing the expected fraction of neutral diversity that
is present at a site, was obtained from CADD annota-
tions (version v1.3). B statistic values close to 0 represent
nearly complete removal of diversity as a result of selec-
tion whereas values near 1 indicate no conservation. The
B statistic is based on human single-nucleotide polymor-
phisms from Perlegen Sciences, HapMap phase II, the
SeattleSNPs NHLBI Program for Genomic Applications,
and the NIEHS Environmental Genome Project.

Context-dependent tolerance score (CDTS) for 10-bp
bins of the human genome computed on 11,257
unrelated individuals was obtained from [36]. CDTS rep-
resents the difference between observed and expected
variations in humans. The expected variation is
computed genome-wide for each nucleotide as the prob-
ability of variation of each nucleotide based on its hepta-
nucleotide context. Low CDTS indicates loci that are
intolerant to variation.

Mean heterozygosity and mean derived allele frequency
of variants in a 1-kb window region centered on the SNV
and calculated from the 1000 Genomes Project (excluding
the query variant) were obtained from GWAVA v1.0
source data [69]. Mean minor allele frequency (MAF) of
variants in a 1-kb window were calculated from GnomAD
genome data [35], excluding the query variant from the
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calculation. Mean MAF was assessed for the global popu-
lation and for population-specific frequencies: Africans
and African Americans (AFR), Admixed Americans
(AMR), East Asians (EAS), Finnish (FIN), non-Finnish
Europeans (NFE), Ashkenazi Jewish (AS]), and other pop-
ulations (OTH). Additionally, we extracted mean MAF of
variants in a 1-kb window calculated from the 1000 Ge-
nomes Project (excluding the query variant). MAFs both
from GnomAD and the 1000 Genomes Project were ex-
tracted from GnomAD release r2.0.2.

Gene-based features
The following gene-level features associated with natural
selection were obtained:

Primate dn/ds ratios (i.e., the ratio between the num-
ber of nonsynonymous substitutions and the number of
synonymous substitutions) were taken from [70]. Low
dn/ds values reflect purifying selection, while high dn/ds
values are indicative of positive selection.

The gene probability of loss-of-function intolerance
(pLI [35]), estimating the depletion of rare and de novo
protein-truncating variants as compared to the expecta-
tions drawn from a neutral model of de novo variation
on ExXAC exomes data, was obtained from the ExAC
Browser (release 0.3.1 [71]). pLI values close to 1 repre-
sent gene intolerance to heterozygous and homozygous
loss-of-function mutations.

Gene damage index (GDI), a gene-level metric of the
mutational damage that has accumulated in the general
population, based on CADD scores, was taken from
[72]. High GDI values reflect highly damaged genes.

The Residual Variation Intolerance Score (RVIS
percentile, provided in [73]) assesses the gene departure
from the average number of common functional
mutations in genes with a similar amount of mutational
burden in humans. High RVIS percentiles reflect genes
which are highly tolerant to variation.

The non-coding version of the RVIS score (ncRVIS, as
calculated in [46]) measures the departure from the
genome-wide average of the number of common variants
found in the non-coding sequence of genes with a similar
amount of non-coding mutational burden in humans.
Negative values of ncRVIS indicate a conserved proximal
non-coding region, while positive values indicate a higher
burden of SNVs than expected under neutrality.

The average non-coding GERP (ncGERP) is the aver-
age GERP score [64] across a gene’s non-coding se-
quence [46]. Both in the case of ncRVIS and ncGERP,
the non-coding sequence was defined in the original
publication as the collection of 5'UTR, 3'UTR, and an
additional non-exonic 250 bp upstream of the transcrip-
tion start site (TSS).

Gene age, estimating the gene time of origin based
on the presence/absence of orthologs in the
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vertebrate phylogeny, was taken from [74]. It varies
from O (oldest) to 12 (youngest, corresponding to
human-specific genes). The number of human para-
logs for each gene was collected from the OGEE
database [75].

For all scores, gene names were mapped to approved
gene symbols from HUGO Gene Nomenclature Commit-
tee (HGNC [76]). Missing values were imputed through
the median value computed over all protein-coding genes.

Sequence context

The percentage of GC and CpG in a window of 150 bp
around the variant of interest was taken from CADD v1.3
annotations. In addition, we obtained the non-coding gen-
omic region overlapping the SNV using ANNOVAR and
encode it as binary features: intronic, 5’'UTR, 3'UTR, up-
stream, downstream, and intergenic regions.

Epigenetic features

Epigenetic features such as histone modification marks,
nucleosome position, open chromatin profiles, and tran-
scription factor binding site (TFBS) profiles generated by
the ENCODE project [17] were extracted from CADD
v1.3 annotations.

DNA accessibility was assessed using the following
sets of features: (1) the open chromatin evidence com-
ing from the open chromatin super track, containing
peak signal and Phred-scaled p values of evidence for
five open chromatin assays: DNase-seq (EncOCDNase-
Sig and EncOCDNasePVal), FAIRE-seq (EncOCFaireSig
and EncOCFairePVal), and ChIP-seq using CTCF
(EncOCctcfSig and EncOCctcfPVal) and Polll (EncOC-
pollISig and EncOCpollIPVal) and Myc (EncOCmycSig
and EncOCmycPVal); (2) The Phred-scaled combined p
value of both DNase-seq and FAIRE-seq assays
(EncOCCombPVal); (3) The Open Chromatin Code
(EncOCC), a metric integrating DNasel, FAIRE, and
ChIP-seq peak evidence of open chromatin; and (4) the
maximum nucleosome position score obtained through
MNase-seq (EncNucleo), indicating packed chromatin
states.

Potential transcription factor activity was assessed
using (i) the number of different overlapping TFBS
(TFBS), (ii) the number of overlapping TFBS peaks
summed over cell types (TFBSPeaks), and (iii) the high-
est value of the overlapping TFBS peaks across cell types
from ChIP-seq (TFBSPeaksMax). In addition, the follow-
ing histone modification marks were used: the maximum
methylation peak at H3K4 (EncH3K4Mel, enhancers-as-
sociated), maximum trimethylation peak at H3K4
(EncH3K4Me3, promoter-associated), and maximum
acetylation peak at H3K27 (EncH3K27Ac, associated
with active enhancers).
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NCBoost training strategy

NCBoost training was performed with XGBoost, a ma-
chine learning technique based on gradient tree boosting
(also known as gradient boosted regression tree [39,
40]). XGBoost R implementation (version 0.71.1) from
[39] was used with parameters: eta =0.01, max_depth =
25, and gamma = 10, selected to avoid overfitting and
after parameter optimization through a prior tenfold
cross-validation step. All features evaluated (Table 1) are
quantitative or binary and were presented to XGBoost
without normalization or standardization. To train
NCBoost, we first randomly split the complete list of
protein-coding genes in 10 genome partitions of equal
size, with the same distribution across all chromosomes
and keeping in each of them the same proportion of
monogenic Mendelian disease genes presenting high-
confidence pathogenic non-coding variants (see above).
Throughout the work, each pathogenic SNV (that is, a
positive variant) was associated with a unique set of 10
negative variants, randomly sampled from the set of
common human variants without clinical assertion
described above and associated with genes within the
same genome partition. Random sampling of common
variants was matched to the positive set to keep the
same fraction of variants per type of region: intronic, 5°
UTR, 3'UTR, upstream, downstream, and intergenic
regions. A maximum of one positive and one negative
variant associated with the same gene was allowed, al-
though no minimum per gene was required. For the
training step, a maximum of one pathogenic non-coding
variant was randomly sampled per gene (Additional file 4:
Table S3). We then trained NCBoost as a bundle of 10
independently trained XGBoost models, consecutively
excluding in each of them 1 of the 10 genome partitions
described above. We note here that each SNV received
one single score—and not 10 different scores—which
was provided by the model that did not contain the gen-
ome partition where the SNV overlapped.

Correlation between independently trained 10 XGBoost
models within the NCBoost bundle

To assess the correlation among the scores led by the in-
dependently trained 10 XGBoost models, we established
11 genome partitions in order to create 11 independent
sets of positive and negative variants, randomly sampled
in an analogous way as described above. One partition
was randomly selected and reserved for validation while
the other 10 were used for training. Ten XGBoost
models were then independently trained using the set of
features A+B+C+D described above, by consecutively
excluding in each of them 1 of the 10 genome partitions.
Then, each model was used to score variants in the 11th
partition. In this specific context and only for the pur-
pose of this evaluation, each SN'Vs overlapping with the
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11th partition received 10 different scores generated by
the 10 models, respectively. Correlation among the
scores of the 10 models was assessed through Spearman
rank correlation.

Random sampling of rare human variants without clinical

assertion

Each disease-causing variant was associated with a
unique set of 10 rare variants, randomly sampled from
the set of rare human variants without clinical assertion
described above. Random sampling of rare variants was
matched to the positive set to keep the same fraction of
variants per type of region: intronic, 5'UTR, 3'UTR, up-
stream, downstream, and intergenic regions. A max-
imum of one positive and one rare variant associated
with the same gene was allowed, although no minimum
per gene was required.

Region-based random sampling of common variants

To constitute a “region-context” matched set of positive
and negative variants, each disease-causing variant was
associated—when available—with one common variant,
randomly sampled from the set of common human vari-
ants without clinical assertion associated with the same
gene and mapping to the same region (intronic, 5'UTR,
3'UTR, upstream, downstream, and intergenic regions).
Disease-causing variants with no matching common var-
iants in the same region of the same gene were excluded
from the region-context matched set of positive and
negative variants. Multiple positive-negative variant pairs
per gene were allowed in this setting. A total of 149
region-matched pairs of pathogenic and random com-
mon variants, collectively, associated with 54 unique
genes, were sampled.

Independent set of newly discovered non-coding
pathogenic variants

Recently reported pathogenic variants in non-coding re-
gions were obtained from (1) Regulatory disease-causing
mutations (“DM” set) from the Human Gene Mutation
Database (HGMD, professional version, accessed on
2018/10/08 and not previously reported on 2018/01/03
[37]) and (2) pathogenic SNVs from ClinVar [38]
manually annotated as “pathogenic” with no conflicting
assertions (GrCh37 release from 2018/09/30 not previ-
ously reported in [58]). Variant mapping and annotation
of non-coding SNVs was performed as described above.
No further curation was performed on this set.

Simulated disease genomes

One hundred individuals with population code EUR
were randomly sampled from the 1000 Genome Project
Phase 3 (2013/05/02 release [8]). Individual codes were
HGO01708, HG00311, HGO01524, HG01509, HGO01784,
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NA20516, NA12546, NA12414, NA20581, HG00251,
HGO00181, HGO01707, NA20803, NA20507, HG02238,
HGO00373, HGO01686, HGO01631, HG00281, NA11831,
HGO01702, HGO00186, NA20525, HG01334, HG00145,
NA11832, NA12282, NA20799, HG00123, HG00245,
NA12234, HG00246, HG01624, NA20502, NA20514,
NA20509, HG00351, NA20754, HG00269, HG01762,
NA20588, HG00100, NA20762, HG01608, NA20585,
HGO01527, HGO01618, HG01704, NA20538, NA12813,
NA12400, NA20811, HGO00255, HG00338, NA20512,
HGO00148, NA10847, HGO02223, NA20800, HG02221,
HG00320, NA20755, HG01537, HG00097, HG00182,
HG00239, HGO00371, HGO00258, HG02236, NA12154,
HGO00242, HG00304, HG00315, HG00331, HGO01679,
HGO01528, NA12751, NA10851, HG00357, HG00325,
HGO01670, NA20806, HG00106, HG00368, HG00237,
HGO00238, NA20826, NA12890, HG00263, HG00120,
NA20770, NAO07051, HG00278, NA20535, NA12761,
NA07056, HGO01531, HGO01771, HGO00250, and

NA12716. Multi-allelic loci were expanded and treated
as independent variants. Variant mapping, annotation,
and filtering of non-coding SNVs were performed as
described in the corresponding section above. In order
to analyze simulated disease genomes, the set of non-
coding variants was restricted to SNVs associated with
protein-coding genes and overlapping intronic, 5'UTR
or 3'UTR, and upstream and downstream regions as
previously defined. Standard competition ranking was
used to estimate within-individual rank percentiles.

Annotation of haploinsufficient genes

A list of 299 haploinsufficient genes was obtained from
[77]. Genes intolerant to heterozygous truncation (pLI >
0.9 [35]) were obtained from ExAC Browser (release
0.3.1 [71]; file fordist_cleaned_exac
_nonTCGA_z_pli_rec_null_data.txt).
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