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Cutaneous melanoma (CM) is known as an aggressive malignant cancer; some of which are directly derived frommelanocytic nevi,
which have been attracting growing attention from the last decades. This study focused on comprehensive identification, validation,
and functional annotations of prognostic differentially expressed genes (DEGs) between melanocytic nevus and malignant
melanoma in genome-wide profiles. DEGs were obtained using three chip datasets from GEO database to identify after
standardization annotation. A total of 73 DEGs were identified as possible candidate prognostic biomarkers between
melanocytic nevus and malignant melanoma. In addition, survival curves indicated that six hub genes, including FABP5, IVL,
KRT6A, KRT15, KRT16, and TIMP2, were significant prognostic signatures for CM and of significant value to predict
transformation from nevi to melanoma. Furthermore, immunohistochemistry staining was performed to validate differential
expression levels and prognostic implications of six hub genes between CM tissue and nevus tissues from the First Affiliated
Hospital of Soochow University cohort. It suggested that significantly elevated FABP5, IVL, KRT6A, KRT15, KRT16, and TIMP2
proteins expressed in the CM than in the nevus tissues. Functional enrichment and significant pathways of the six significant
hub genes indicated that the mostly involved hallmarks include the P53 pathway, K-ras signaling, estrogen response late, and
estrogen response early. In summary, this study identified significant DEGs participating in the process of malignant
transformation from nevus to melanoma tissues based on comprehensive genomic profiles. Transcription profiles of FABP5,
IVL, KRT6A, KRT15, KRT16, and TIMP2 provided clues of prognostic implications, which might help us evaluate malignant
potential of nevus and underlying carcinogenesis progress from melanocytic nevus to melanoma.

1. Introduction

Cutaneous melanoma (CM) is an aggressive tumor that is the
fifth and sixth most common malignant tumor of men and
women, respectively [1]. Worldwide, cutaneous melanoma
accounts for 55,500 cancer deaths (0.7% mortality rate) every

year [2]. Further, an elevated incidence and aggressive prog-
nosis of melanoma are associated with the metastatic phase,
accounting for the 15% 5-year survival rate [3]. The preferred
treatment regimen for melanoma is surgical resection of the
primary tumor, while metastatic melanoma is much more
difficult to treat with radiotherapy and chemotherapy [4].
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Recently developed immunotherapies and targeted therapies
show promise for improving the prognosis of patients with
advanced melanoma [5]. Identification of melanoma-
associated oncogenes informs different therapeutic strategies,
and small molecule inhibitors are available to target specific
proteins involved in the pathogenesis of melanoma [3]. For
example, the outcome of a phase II randomized clinical trial
suggests that the BRAF inhibitor vemurafenib prolongs the
survival of patients with advanced melanoma carrying the
BRAFV600E mutation [6].

Melanocytic nevus, the most common benign skin tumor
of humans, is caused by an increase inmelanocyte populations
in the epidermis and dermis [7]. The growth of melanocyte
nevus is regulated by genetic profiles. For example, evidence
indicates that clonal melanocyte tumors are triggered by
specific oncogenic mutations in components of the mitogen-
activated protein kinase (MAPK) signal transduction
pathway, most commonly the BRAFV600E that constitutively
activates the protein kinase activity of BRAF [8, 9]. According
to the Clark model, the pathogenesis of melanoma assumes
that numerous steps are required for the progression from
melanocytes to malignant melanoma [10], including forma-
tion of banal nevi, dysplastic nevi, melanoma in situ, and inva-
sive melanoma.

Approximately 25% of cutaneous melanomas arise from
nevi [11], which may approach 50% in potentially high-risk
patients with numerous nevi [12]. Also, ultraviolet radiation
will increase melanoma risk, especially among persons with a
high nevus count [9]. In melanomas arise from preexisting
nevi, the residual original nevi are usually histologically
apparent [7]. The results of genetic analysis of benign nevus-
melanoma pairs that are consistent with histological findings
support the hypothesis that melanoma cells are directly derived
from nevus cells [9, 13]. Thus, there is an urgent need to under-
stand the molecular mechanisms involved in the pathogenesis,
progression, and recurrence of melanomas. Such efforts are
enhanced through the identification of genes that are differen-
tially expressed (DEGs) in melanocytic nevus vs. malignant
melanoma. This information will help guide the development
of precise diagnostic and therapeutic strategies.

As a rapidly emerging discipline, bioinformatics studies
the collection, processing, storage, dissemination, analysis,
and interpretation of biological information, to integrate life
sciences and computer sciences. Bioinformatics mainly
focuses on genomics and proteomics to identify genotypes
and phenotypes associated with immune infiltration, tumor-
igenesis, and progression of melanoma to guide the develop-
ment of targeted therapy [14]. Here, we analyzed three
mRNA microarray datasets from the Gene Expression
Omnibus (GEO) data repository to distinguish between mel-
anocytic nevi and melanomas. Subsequently, we performed
functional pathway enrichment analysis to further identify
the mechanisms underlying malignant transformation.
Protein-protein interaction (PPI) network analysis revealed
the specific functions of the proteins to evaluate the impor-
tance of their interactions potentially associated with the
malignant phenotype [15–17]. Furthermore, immunohisto-
chemistry staining was performed to validate differential
expression levels and prognostic implications of six hub

genes between CM tissue and nevus tissues from the First
Affiliated Hospital of Soochow University cohort.

Here, we focused on determining gene expression profiles
to identify candidate diagnostic and prognostic biomarkers
that may improve the treatment of patients with melanoma
as well as illuminate the underlying biological interaction
networks. Our findings led us to hypothesize that six signifi-
cant hub genes, which may contribute to oncogenic activity,
are significantly associated with poor prognosis of mela-
noma. These findings will facilitate efforts to develop new
prognostic markers and therapeutic targets that distinguish
high-risk nevi.

2. Materials and Methods

2.1. Patients and Variables. A total of 31 nevus and 31 CM
tissues were obtained from 62 patients at the Department of
Burn and Plastic Surgery, the First Affiliated Hospital of Soo-
chow University (FAHSU, Suzhou, China) from March 2016
to August 2019. None of the patients had received radiother-
apy or chemotherapy before operation. Tissue samples,
including nevus and melanoma tissue, were collected during
surgery and fixed in 4% paraformaldehyde, available from
FAHSU tissue bank. Clinical data was available to obtain
from hospital records. This research was supported by the
Independent Ethics Committee (IEC) of the FAHSU, and
all patients were well informed of storing and upcoming
use of their resected specimens for further research purposes.

2.2. Acquisition and Standardization of Raw Microarray
Dataset. mRNA microarray datasets were screened and
obtained from GEO (http://www.ncbi.nlm.nih.gov/geo) [18]
testing mRNA expression in melanoma and nevus patients
including three chip datasets GSE3189 [19], GSE12391
[20], and GSE46517 [21] (18 nevus and 45 melanoma
samples in GSE3189, 18 nevus and 23 melanoma samples
in GSE12391, and 9 nevus and 31 melanoma samples in
GSE46517) in Affymetrix GPL96 platform. Significant DEGs
distinguishing between melanoma and nevus tissues were
identified using the limma R package across background
correction of probe annotations. Adjusted p values (adj. p),
false discovery rate (FDR), and fold change were used for
filtering of DEGs and applying to balancing statistically algo-
rithm. ∣log2FCðfold changeÞ ∣ >1:00 and adj. p value < 0.01
were considered of statistical significance.

2.3. Functional Enrichment of DEGs. The Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/) was utilized to perform functional
and pathway enrichment analysis. It can provide systematic
and integrative functional annotation tools for users to
unravel biological meaning behind the list of genes. Gene
ontology (GO) analysis including the biological process
(BP), cellular component (CC), and molecular function
(MF) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were conducted for
the selected DEGs by DAVID [22, 23]. p value < 0.05 was
considered statistically significant.
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2.4. PPI Network Construction and Analysis. In this study,
STRING (http://string-db.org; version 11.0) was used to
describe protein coregulation of DEGs and measure func-
tional interactions among nodes [24]. The interaction speci-
ficity score > 0:4 (the default threshold in the STRING
database) was considered statistically significant.

Cytoscape (version 3.5) was utilized to visualize interac-
tion networks obtained from STRING [25]. MCODE (ver-
sion 1.4.2) of Cytoscape is a plug-in to cluster a given
network to identify densely connected regions based on
topology [26]. It was utilized to find the most related module
network with selection threshold as follows: MCODE scores
> 5, degree cut‐off = 2, node score cut‐off = 0:2, Max depth
= 100 , and k score = 2. The hub nodes of network with con-
nectivity degrees > 10 were selected. Network of 10 genes and
neighbor nodes were obtained using cBioPortal (http://www
.cbioportal.org/) tool [27]. GO: BP, CC, MF, and KEGG func-
tional enrichment were analyzed and plotted using ClueGO
(version 2.5.3) and CluePedia (version 1.5.3) [28].

2.5. TCGA Database. A total of 481 CM patients with clinical
profiles, among which 475 CM patients with available RNA
sequence data downloaded from UCXC (https://xenabrowser
.net/datapages/) [29], were consecutively recruited in analyses.
Phenotype and transcriptional expression profiles in 481 mel-
anoma patients from TCGA were analyzed and displayed.
Clinical and pathological parameters of the cohort were sum-
marized. The 6 prognostic hub genes were identified as dichot-
omous variables with the median expression.

Gene Expression Profiling Interactive Analysis (GEPIA,
http://gepia.cancer-pku.cn/) is a web tool that can provide fast
and customizable functionalities based on data from The Can-
cer Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/)
and the Genotype-Tissue Expression project (GTEx; https://
www.gtexportal.org/home/index.html) [30]. GEPIA performs
survival analysis based on gene expression levels, using log-
rank test for the hypothesis evaluation. The horizontal axis
(x-axis) represented time in days, and the vertical axis (y
-axis) showed the probability of surviving or the proportion
of people surviving. The dotted lines represented the 95% con-
fidence interval information in the survival plots, with high
expression marked in red and low expression marked in blue.
The lines presented survival curves of two groups.

Multivariate analysis was applied with Cox regression
models using BACK-LR methods to identify the variables,
including Clark level (ref. I–III), pT stage (ref. T1–T2), pN
stage (ref. N0), pM stage (ref. M0), pathological stage (ref.
I–II), FABP5 expression (ref. Low), IVL expression (ref.
Low), KRT6A expression (ref. Low), KRT15 expression (ref.
Low), KRT16 expression (ref. Low), TIMP2 expression (ref.
Low), and two known prognostic biomarkers of CM: S100B
expression (ref. Low) and WNT5A expression (ref. Low). p
values less than 0.05 were considered significant in all tests.

2.6. Immunohistochemistry (IHC). Protein expression levels
of significant six hub genes were measured using IHC staining
and mouse monoclonal anti-FABP5 antibody (ab84028), anti-
involucrin antibody [SY5] (ab68), anti-cytokeratin 6 antibody
[Ks6.KA12] (ab18586), anti-cytokeratin 15 antibody

[EPR1614Y] (ab52816), anti-cytokeratin 16/K16 antibody
[EP1615Y] (ab76416), and anti-TIMP2 antibody (ab180630).
Positive or negative staining of a certain protein in one FFPE
slide was independently assessed by two experienced patholo-
gists and supervised by a clinician. Based on the staining inten-
sity level (no staining, weak, moderate, and strong staining),
the score was ranging from 0 to 3, as previously described
[31]. The staining extent was graded from 0 to 4 for the cover-
age percentage of immunoreactive tumor cells (0%, 1–25%,
26–50%, 51–75%, 76–100%). The overall IHC score grading
from 0 to 12 was evaluated according to the multiply of the
staining intensity and extent score. Negative staining repre-
sented grade 0 to 4 and positive staining from 5 to 12 for each
sample.

2.7. Transcription Factor Network and Data Processing of Gene
Set Enrichment Analysis (GSEA). Transcription factor regula-
tion networks were constructed in FABP5, IVL, KRT6A,
KRT15, KRT16, and TIMP2 using R software (version 3.3.2).
Significant nodes involved in coregulation of FABP5, IVL,
KRT6A, KRT15, KRT16, and TIMP2 were described in circle
plots (including transcription factor regulation-DNA binding,
transcription factor regulation-activation, related lncRNA,
targeted miRNA, and protein-protein interaction). Based on
data from the TCGA database, GSEA tool (version 2.10.1
package) was used to predict associated up- and downregu-
lated genes and their significantly involved hallmark pathways
[32]. For each separate analysis, Student’s t-test statistical
score was performed in consistent pathways and the mean of
the differential expression genes was calculated. A permuta-
tion test with 1000 times was used to identify the significantly
changed pathways. The adj. p using the Benjamini and Hoch-
berg (BH) false discovery rate (FDR) method by default was
applied to correct for the occurrence of false positive results.
Significant related genes were defined with an adj. p less than
0.01 and FDR less than 0.25.

3. Results

3.1. Clinical and Pathologic Characteristics Baseline of CM
Patients from TCGA and FAHSU. 481 CM patients were
enrolled from TCGA cohort and 31 from FAHSU cohort.
Clinicopathological parameters of both nevus and CM
patients from two cohorts, including age at surgery, gender,
location, Clark level, Breslow’s depth, TNM stage, and path-
ologic stage, are shown in Table 1.

3.2. Screening and Identification of DEGs between Melanoma
and Nevus. DEGs (2,482 in GSE3189, 885 in GSE12391, and
1,218 in GSE46571) were selected after screening and stan-
dardization by using the limma package of R. Among the
three datasets, 73 genes were overlapped in the Venn algo-
rithm (Figure 1(a)) (Supplementary Table 1) between
melanocytic nevus and malignant melanoma. The flowchart
is presented in Figure 2.

3.3. Functional Enrichment Assessment. As shown in Supple-
mentary Figure 1, GO analysis indicated that changes in
biologic processes significantly enriched in ectoderm
development, epidermis development, negative regulation of
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signal transduction, and negative regulation of cell
communication. Changes in cellular components were
mainly enriched in the non-membrane-bounded organelle
and intracellular non-membrane-bounded organelle.
Function annotations were mostly enriched in structural
molecule activity and structural constituent of cytoskeleton.

3.4. PPI Network Establishment. We constructed the coregu-
lated network of DEGs (Figure 1(b)) and subsequently found
the most significant module panel by using plug-in MCODE
of Cytoscape (Figure 1(c)). With DAVID functional analysis
of 10 hub genes, enrichment profiles suggested that hub
genes in this module were primarily enriched in ectoderm
development, epidermis development, structural molecule
activity, structural constituent of cytoskeleton, and cytoskel-
eton (Table 2).

3.5. Hub Gene Selection and Analysis. After statistical selec-
tion, SPRP1A, S100A8, S100A9, CTSB, FABP5, IVL, KRT6A,
KRT15, KRT16, and TIMP2 were verified as hub genes. Tran-
scriptional coregulation of the ten hub genes and their neigh-
bor nodes was set up visually (Figure 3(a)). GO: BP and
KEGG functional annotation is displayed in Figure 3(b), with
detailed function annotations listed in pie charts (Supple-
mentary Figure 2). 55.56% terms belonged to cornification,
33.33% to vesicle lumen, and 11.11% to intermediate
filament cytoskeleton. Heat map, based on TCGA cohort
(n = 475), showed that potential coexpression relationship
may be found in the 6 significant hub genes, which could
suggest basic value in prognostic prediction (Figure 3(c)).

3.6. Clinicopathological Statistical Analysis and Survival
Outcomes in CM Patients from TCGA. Significant survival
outcomes (OS: p < 0:05) were found in Figures 4(a)–4(f).
FABP5, IVL, KRT6A, KRT15, KRT16, and TIMP2 expression
profiles suggested relatively significant elevated expression in
tumor tissues compared with the corresponding normal
tissues. In addition, multivariate Cox regression analysis of
OS and PFS in TCGA cohort using BACK-LR methods was
performed (Supplementary Table 2). In the COX models, we
recruited two known prognostic biomarkers of melanoma,
S100B, and WNT5A, to better identify the prognostic value
of the hub genes. As shown in OS analysis, KRT6A along
with S100B and WNT5A was considered statistically
significant. FABP5 and S100B showed significant prognostic
value in PFS analysis.

Except FABP5, elevated expression patterns of IVL,
KRT6A, KRT15, KRT16, and TIMP2 were significantly associ-
ated with T stage (T1-T2 vs. T3-T4). In addition, six prognos-
tic hub genes are highly expressed in primary than metastatic
sites, plotted in Figure 5.

3.7. IHC Staining Analyses in 62 Patients from FAHSU
Cohort. Next, to validate differential expressions of six prog-
nostic hub genes between CM tissues and nevus tissues, we
performed IHC analysis and found significantly elevated
FABP5, IVL, KRT6A, KRT15, KRT16, and TIMP2 protein
expressions in the CM than in the nevus tissues. The results
and the scatter plots of IHC score are illustrated in Figure 6.

3.8. Significant Genes and Pathway Obtained by GSEA. Tran-
scriptional regulation networks among FABP5, IVL, KRT6A,
KRT15, KRT16, and TIMP2 are displayed in Figure 7. Signifi-
cantly involved nodes (including transcription factor
regulation-DNA binding, transcription factor regulation-acti-
vation, related lncRNA, targeted miRNA, and protein-protein
interaction) were marked in different colors. Subsequently, a

Table 1: Clinicopathological characteristics of the patients from
two cohorts.

Characteristics
FAHSU cohort

TCGA cohort
(N = 481)Nevi

(N = 31)
Melanoma
(N = 31)

N (%)

Age

≤60 years 23 (74.2) 13 (41.9) 258 (54.7)

>60 years 8 (25.8) 18 (58.1) 214 (45.3)

Gender

Male 14 (45.2) 20 (64.5) 297 (61.9)

Female 17 (54.8) 11 (35.5) 183 (38.1)

Location

Extremity 21 (67.7) 24 (77.4) —

Trunk 10 (32.3) 7 (22.6) —

Clark level

I — 13 (41.9) 6 (1.8)

II — 15 (48.4) 18 (5.5)

III–IV — 3 (9.7) 246 (75.5)

V — 0 (0) 56 (17.2)

Breslow’s depth (mm)

≤0.75 — 5 (16.1) 36 (10.2)

0.76-1.50 — 10 (32.2) 65 (18.4)

1.51-4.00 — 13 (41.9) 106 (30.0)

>4.00 — 3 (9.8) 146 (41.4)

pT stage

T1-T2 — 19 (61.3) 121 (32.7)

T3-T4 — 12 (38.7) 249 (67.3)

pN stage

N0 — 31 (100) 236 (65.0)

N1 — 0 (0) 75 (20.7)

N2 — 0 (0) 52 (14.3)

pM stage

M0 — 31 (100) 424 (94.4)

M1 — 0 (0) 25 (5.6)

Pathologic stage

I-II — 31 (100) 233 (53.9)

III-IV — 0 (0) 199 (46.1)

Persistent distant metastasis

No — 31 (100) 217 (46.1)

Yes — 0 (0) 254 (53.9)

Cell atypia/atypical hyperplasia

No 31 (100) — —

Yes 0 (0) — —

FAHSU: the First Affiliated Hospital of Soochow University; TCGA: The
Cancer Genome Atlas.
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Figure 1: Venn diagram, PPI network, and the most significant module of DEGs. DEGs were selected with ∣log2FC ∣ >1 and adj. p value < 0.01
among the mRNA expression profiling chip datasets GSE3189, GSE12391, and GSE46517. (a) The three datasets showed an overlap of 73
genes in Venn diagram. (b) The PPI network of DEGs was constructed by using Cytoscape. (c) The most significant module was obtained
from PPI network with 10 nodes.
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total of 100 significant genes were obtained from GSEA, and
the genes with positive correlation were plotted. GSEA analy-
sis, including FABP5, IVL, KRT6A, KRT15, KRT16, and
TIMP2, suggested that the most involved hallmarks included
the P53 pathway, K-ras signaling, estrogen response late, and
estrogen response early. The details are illustrated in Figure 8.

4. Discussion

Melanoma is an aggressive and devastating cancer directly
derived from melanocytic nevus, characterized by a typically
high incidence in people with the BRAFV600E/K mutation
[33]. Alterations in the activity of the MAPK signal transduc-

tion pathway are associated with metastasis in melanoma
patients [34, 35]. Specifically, constitutively activated compo-
nents of the MAPK pathway serve as targets for therapy of
melanoma [5]. However, available evidence is insufficient
for developing management or diagnostic strategies to
improve the survival of patients with melanoma. For example,
a study of the expressions of PD-L1, PD-L2, PD-1, and CYT in
melanomas found that mutation density contributes signifi-
cant prognostic value [36]. Unfortunately, most patients with
melanoma, which are initially diagnosed with highly aggres-
sive and progressive disease, are therefore not candidates for
curative therapies [2]. Hence, highly effective biomarkers for
diagnosis and treatment are urgently required.

GEO datasets

GSE3189 GSE12391 GSE46517

73 DEGs

KEGG pathwayProtein-protein 
interactionGene ontology

Selected 10 hub genes 

6 prognostic hub genes

Survival analysis

GSEAImmunohistochemistryClinical profiles 
from TCGA and FAHSU

Figure 2: Flowchart of bioinformatics analysis. DEGs: differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes;
GSEA: gene set enrichment analysis.

Table 2: GO enrichment analysis of DEGs in the most significant module.

Term Description Count in gene set p value

GO:0007398 Ectoderm development 6 7:87E − 08
GO:0008544 Epidermis development 5 3:96E − 06
GO:0005198 Structural molecule activity 5 5:83E − 04
GO:0005200 Structural constituent of cytoskeleton 3 1:12E − 03
GO:0005856 Cytoskeleton 5 3:62E − 03
GO:0005882 Intermediate filament 3 4:08E − 03
GO:0045111 Intermediate filament cytoskeleton 3 4:26E − 03
GO:0043228 Non-membrane-bounded organelle 6 5:00E − 03
GO:0043232 Intracellular non-membrane-bounded organelle 6 5:00E − 03
GO:0001533 Cornified envelope 2 1:20E − 02
GO:0018149 Peptide cross-linking 2 1:71E − 02
GO:0031424 Keratinization 2 2:82E − 02
GO: Gene Ontology; DEGs: differentially expressed genes.
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Aberrant genetic and epigenetic regulation of key meta-
bolic pathways is known to contribute towards the develop-
ment and progression of CM. Here, our analysis of the
expression profiles of melanocytic nevus and melanomas
identified 73 DEGs and 10 hub genes, as well as the func-
tional enrichment and significant pathways. GO and KEGG
enrichment indicated significant associations with the terms
ectoderm development, epidermis development, negative
regulation of signal transduction, and negative regulation of
cell communication. In addition, GSEA analysis showed that
the most involved hallmarks included the P53 pathway, K-ras
signaling, estrogen response late, and estrogen response
early. Increasing evidence supports a role for P53 in the
progression of melanoma, particularly in NRAS-driven
melanomas, which grow more aggressively compared with
those with BRAF mutations [37]. P53 mutations occur in
15% of melanomas with NRAS mutations [37]. We suggest
therefore that reactivating P53 expression in melanoma
may be potentially important for enhancing therapy. Consti-
tutive activation of KRAS stimulates cell proliferation and
inhibits apoptosis. Increasing evidence showed that KRAS

mutations are closely associated with multiple cancers,
including non-small-cell lung cancer, colorectal cancer, and
pancreatic cancer, and NRAS mutations are present in mela-
nomas [38]. Therefore, role of KRAS signaling in melanoma
must be evaluated. Moreover, evidence shows significant
protective roles for estrogen signaling in the pathogenesis
and progression of melanoma [39]. Although the mechanism
is unknown, this clinical association suggests the importance
of estrogen signaling in the progression of the malignant
phenotype of melanoma.

Further, among the 6 prognostic hub genes, differential
expressions of the genes encoding fatty acid-binding protein
5 (FABP5); involucrin (IVL); keratins 6A, 15, and 16
(KRT6A, KRT15, and KRT16); and tissue inhibitor of metal-
loproteinases 2 (TIMP2) was significantly associated with
prognosis of patients with melanoma based on the survival
analysis and COX models.

FABP5 plays an important role in binding free fatty acids,
as well as in the regulation of lipid metabolism and transport.
Urinary excretion of FABP5 is detected in patients with
stages II and III cutaneous melanoma but not those with
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Figure 3: Interaction network and biological process analysis of the hub genes. (a) Hub genes and their coexpression network were analyzed
by using cBioPortal. Nodes with bold black outline represent hub genes. Nodes with thin black outline represent the coexpression genes. (b)
The biological process analysis of hub genes was constructed by using ClueGO. Different colors of nodes refer to the functional annotation of
ontologies. Corrected p value < 0.01 was considered statistically significant. (c) Hierarchical partitioning of 6 significant hub genes was
obtained from DNA microarrays (n = 475). It represented the level of expression of 6 genes across a number of comparable samples with
high expression samples marked in red and low in blue.
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stage IV melanoma [40]. Insufficient information is available
concerning the role of FABP5 in melanomas vs. its associa-
tion with prognosis [41, 42]. In the present study, FABP5
was found with significant prognostic value not only in
survival analysis by GEPIA but also in multivariate Cox
models by BACK-LR methods. Hence, further research is
required to confirm our hypothesis.

IVL is a component of the human skin that contributes to
the formation of the envelope that protects corneocytes [43].
IVL is produced in a free form during the early stages of the
terminal differentiation of keratinocytes. Increased expression
of IVL correlates with undesirable outcomes of squamous cell
carcinoma [44], and IVL contributes to inflammatory skin
diseases such as psoriasis [45]. Our present findings therefore
likely will encourage further investigations of the clinical
significance of IVL in human disease, although few reports
address its value for predicting the prognosis of melanoma.

Keratin (KRT), which is a constituent of the hair, nails,
and the outer layer of the human skin, protects epithelial cells
from damage or pressure [46]. The gene encoding KRT6A,
which is located within the type II keratin gene cluster on
human chromosome 12q [47], is closely associated with the
prognosis and diagnosis of lung and breast cancers; however,
few studies address its role in melanoma [48, 49]. In our
study, KRT6A showed significant prognostic value among
all the hub genes according to the multivariate Cox models
by BACK-LR methods, indicating it might act unique role
in CM patients’ survival outcomes. The type I cytokeratin
KRT15 is expressed by certain progenitor basal cells within
the epithelium [50]. For example, KRT15 is present in the
adult and fetal human skin of hair-bearing, non-hair-bear-
ing, and palmoplantar regions and is coordinately expressed
with melanoma-associated chondroitin sulfate proteoglycan
[51]. The type I cytokeratin KRT16 forms a complex with
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Figure 4: Univariate survival analysis of the hub genes was performed using the Kaplan-Meier curve. The horizontal axis (x-axis) represented
time in days, and the vertical axis (y-axis) showed the probability of surviving or the proportion of people surviving. The dotted lines
represented the 95% confidence interval information in the survival plot, with high expression marked in red and low expression marked
in blue. The lines presented survival curves of two groups. Each elevated expression in 6 hub genes showed markedly significant worse OS
in melanoma samples (p < 0:05).
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Figure 5: (a) Except FABP5, elevated expression patterns of IVL, KRT6A, KRT15, KRT16, and TIMP2 were significantly associated with T
stage (T1-T2 vs. T3-T4) (n = 475). (b) Six hub genes are highly expressed in primary than metastatic sites (n = 475) (FABP5 presents in
light blue, IVL in light green, KRT6A in red, KRT15 in orange, KRT16 in purple, and TIMP2 in dark green).
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Figure 6: (a) IHC staining indicated significantly elevated FABP5, IVL, KRT6A, KRT15, KRT16, and TIMP2 expressions in terms of density
and intensity in melanoma tissues compared with nevus tissues. All melanocyte contents were shown in red arrows. (b) Scatter plots of IHC
score between melanoma and nevus tissues were illustrated (p < 0:0001).
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KRT6 in numerous epithelial tissues. Mutations in KRT6 are
associated with hereditary skin diseases, and KRT16
contributes to the immune response to tumors and in tumor
cell development [52]. Moreover, the levels of KRT16 expres-
sion may discriminate metastasis from primary melanoma
[53]. These findings demonstrate the significant role of kera-
tins in melanoma.

Evidence indicates that TIMP2 functions as a suppressor
of metastasis. For example, elevated expression of TIMP2 sup-
presses the proliferation of melanoma cells via the Wnt/?-
catenin signal transduction pathway, indicating that TIMP2
contributes to the pathogenesis and progression of melanoma

[54]. In the current study, TIMP2 was found elevated in pri-
mary CM, which is consistent with previous studies. Further
studies are needed to elucidate underlying potential carcino-
genesis progressive nevus and melanoma.

This study is the first to our knowledge that has attempted
to construct a gene regulatory network incorporating DEGs
between nevus and melanoma, as well as to functionally anno-
tate hub genes in melanoma. Further, alterations in the expres-
sion profiles of FABP5, IVL, KRT6A, KRT15, KRT16, and
TIMP2were significantly associated with worse prognosis, indi-
cating that these hub genes may participate in the aggressive
transformation from a nevus to malignant melanoma. While
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Figure 7: Transcription factor regulation network was constructed in FABP5 (a), IVL (b), KRT6A (c), KRT15 (d), KRT16 (e), and TIMP2 (f).
Significant nodes were marked in different colors in line with hub genes (transcription factor regulation-DNA binding, transcription factor
regulation-activation, related lncRNA, targeted miRNA, and protein-protein interaction).
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merely expression level of hub genes was identified in this study,
thus further functional works, as well as validated cohorts, were
needed to verify the absoluteness of these findings.

5. Conclusion

In summary, this study identified significant DEGs partici-
pating in the process of malignant transformation from
nevus to melanoma tissues. Expression profiles of FABP5,
IVL, KRT6A, KRT15, KRT16, and TIMP2 provide clues of
prognostic implications, which might help us evaluate
malignant potential of nevus and underlying carcinogenesis

progress from melanocytic nevus to melanoma. These hub
genes are associated with major biological pathways such as
the P53 pathway, K-ras signaling, estrogen response late, and
estrogen response early. However, further studies are required
to elucidate molecular pathogenesis and alteration in signaling
pathways of these hub genes in melanoma.

Data Availability

The datasets analyzed for this study can be found in the GEO
(https://www.ncbi.nlm.nih.gov/geo) and TCGA (https://
www.cancer.gov).
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Figure 8: A total of 100 significant genes were obtained from GSEA with positive and negative correlations. GSEA was used to perform
hallmark analyses in FABP5, IVL, KRT6A, KRT15, KRT16, and TIMP2, respectively. The most involved significant pathways included the
P53 pathway, estrogen response late, estrogen response early, and K-ras signaling.
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