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Abstract: Oxidative stress is considered as an important
mechanism underlying the pathology of neurodegenera-
tive disorders. In this study, we utilized an in vitro model
where oxidative stress process was evoked by exogenous
hydrogen peroxide (H2O2) in HT22 murine hippocampal
neurons and evaluated the neuroprotective effects of
geissoschizine methyl ether (GME), a naturally occurring
alkaloid from the hooks of Uncaria rhynchophylla (Miq.)
Jacks. After a 24 h H2O2 (350 μM) insult, a significant
decrease in cell survival and a sharp increase in intracel-
lular reactive oxygen species were observed in HT22 cells.
Encouragingly, GME (10–200 μM) effectively reversed these
abnormal cellular changes induced by H2O2. Moreover,
mechanistic studies using Western blot revealed that GME
inhibited the increase of phospho-ERK protein expression,
but not phospho-p38, caused by H2O2. Molecular docking
simulation further revealed a possible binding mode that
GME inhibited ERK protein, showing that GME favorably
bound to ERK via multiple hydrophobic and hydrogen
bond interactions. These findings indicate that GME provide

effective neuroprotection via inhibiting ERK pathway and
also encourage further ex vivo and in vivo pharmacological
investigations of GME in treating oxidative stress-mediated
neurological disorders.
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1 Introduction

Oxidative stress is widely accepted as a critical mechanism
that underlies the pathology of neurological disorders,
the best known of which are Alzheimer’s and Parkinson’s
conditions [1,2]. Excess reactive oxygen species (ROS), over-
generated during oxidative stress process, results in progres-
sive neuronal death in a variety of brain regions particularly
hippocampus, cortex, and substantia nigra [3,4], as these
areas have relatively larger amount of active oxygen but lower
levels of antioxidant enzymes. Hydrogen peroxide (H2O2) gen-
erates superoxide and hydroxyl radicals, the major compo-
nents of ROS, and has thus been widely employed to mimic
oxidative stress in different cellular paradigms including HT22
murine hippocampal neurons and differentiated PC12 cells
[5–7]. It is believed that H2O2-mediated oxidative stress in
neuronal cells triggers possible molecular mechanisms that,
through the over-stimulation of mitogen-activated protein
kinases (MAPKs) [8,9] and/or glycogen synthase kinase-3β
(GSK3β) [10,11], lead to cell injury. Since there is an imbalance
between the generation and clearance of ROS under the
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pathophysiology of neurodegenerative conditions, small
molecules that could protect H2O2-induced toxicity may
have therapeutic significance in treating these devastating
diseases [12].

Geissoschizine methyl ether (GME, Figure 1a) is an
indole alkaloid originally isolated from the hooks of the
Chinese medicine Gouteng (Uncaria rhynchophylla) and
has been well characterized as a multifunctional com-
pound in vitro and in vivo. For instance, GME effectively
inhibited acetylcholinesterase with an IC50 of 3.7 μg/mL
[13], suggesting that GME may enhance the amount of neu-
rotransmitter acetylcholine in synaptic cleft to improve
memory. GME has also been identified as a potent inhibitor
of multiple neuronal channels [14] and as an agonist of
serotonin 1A receptor [15]. Encouragingly, a research group
analyzed the brain distributions of GME in rats injected
intravenously with GME and found that in the 15 min-brain,
GME signals were diffusely observed throughout the brain
[16], indicating that GME could readily penetrate the blood
brain barrier and has the potential to be developed as a neu-
roprotectant in treating neurodegenerative diseases. However,
little is known about the neuroprotection and molecular
mechanisms of GME against neurotoxins, H2O2 in particular. In
this study, we reveal that GME protects HT22 neurons from
H2O2-mediated damage possibly via inhibiting ERK pathway.

2 Materials and methods

GME was from Tauto Biotech (Shanghai, China). High-glu-
cose Dulbecco’s modified Eagle’s medium (DMEM) and fetal
bovine serum (FBS) were purchase from Gibco (Grand
Island, NY, USA). Penicillin-Streptomycin solution (100×),

Trypsin-EDTA solution was from Biosharp (Hefei, China).
RIPA lysis buffer was from New Cell & Molecular Biotech
(Suzhou, China). 2′,7′-Dichlorodihydrofluorescein diacetate
(DCFH-DA) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide (MTT) were from Sigma (St. Louis,
MO, USA). Dimethyl sulfoxide (DMSO) was from Macklin
(Shanghai, China). Primary antibodies for phospho-ERK
(p-ERK), ERK (t-ERK), phospho-p38, p38, GAPDH, and
β-actin were from Cell Signaling Technology (Danvers,
MA, USA).

2.1 Culture of HT22 cells

HT22mouse hippocampal neurons were from iCell Bioscience
Inc. (Shanghai, China). Neurons were maintained in 100mm
petri dishes using DMEM that contained 10% FBS and
penicillin–streptomycin (1×) in a 37°C CO2 incubator.

2.2 Measurement of neuronal survival

Neuronal viability was examined with MTT colorimetric
method according to our earlier publication [17] based on
the phenomenon that MTT could be transformed into for-
mazan by succinic dehydrogenase in viable cells. HT22
cells were added into each well of 96-well microplates at
a density of 1 × 104 cells/well. On the next day, to test the
toxicity of GME itself, cells were incubated with increasing
dosages (3–300 μM) of GME for 24 h. To establish an oxida-
tive stress model, HT22 cells were treated with increasing
concentrations (50–500 μM) of H2O2 for 24 h. To test the
protective effects of GME, cells were pre-incubated with

Figure 1: The possible toxic effect of GME on HT22 hippocampal neuronal cells: (a) chemical structure of GME and (b) HT22 neurons were
incubated for 24 h by gradually increasing the dosages of GME (3–300 μM) or 0.1% DMSO (Control group), then examined with MTT assay.
**, p < 0.01 versus Control group (n = 3).
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GME (1–200 μM) for 2 h, and then treated with 350 μM H2O2

for 24 h. Thereafter, MTT solution was introduced into indi-
vidual wells. The culture media were discarded after 3–4 h
and the resulted formazan was suspended in DMSO.
Absorbance values at 570 nm wavelength were immedi-
ately read in a microplate reader (SpectraMax i3x, Mole-
cular Devices, USA).

2.3 Determination of intracellular ROS

The ROS amount was examined with a DCFH-DA probe
based on the principle that DCFH-DA could be easily
oxidized to fluorescent 2′,7′-dichlorofluorescein in the
presence of generated intracellular ROS. Cells seeded in
96-well black plates were treated successively with 10 µM
DCFH-DA for 1 h, 100 μMGME for 2 h, and 350 μMH2O2 for
15 min. Fluorescence changes were detected at excitation
wavelength 485 nm and emission wavelength 535 nm.

2.4 Protein expression analysis

Protein expression was performed using Western blot as
we reported [18,19]. In brief, HT22 cells in six-well plates
were pre-treated with GME (3–100 μM) for 2 h, and then
exposed to 350 μM H2O2 for different lengths of time.
Culture media were removed and adherent cells were
lysed in RIPA buffer supplemented with 1 mM phenyl-
methanesulfonyl fluoride. Cell extracts were transferred
to Eppendorf tubes and subjected to centrifugation (4°C,
14,000×g, 10 min). Proteins in the supernatant were col-
lected and subjected to the bicinchoninic acid assay. After
denaturation at 100°C for 5min, proteins (10–30 μg/lane)
were loaded onto a 12% SDS-PAGE gel and transferred
to PVDF membranes. The membranes were successively
immersed into blocking solution for 1–2 h at room tem-
perature, primary antibodies solution (1:1,000 dilution)
overnight at 4°C, and respective secondary antibodies
solution (1:2,000 dilution) for 1 h. Thereafter, membranes
were developed with a Super ECL kit and exposed to X-ray
films (Beyotime, Shanghai, China).

2.5 Molecular docking

The possible interaction and binding sites between GME
and ERK2 protein were carried out using AutoDock
4.2.6 program. The initial structure was prepared using
AutoDockTools 1.5.6, preserving the original charge of
the protein and generating a pdbqt file for docking. The

crystal structure of ERK2 was acquired from Protein Data
Bank (PDB ID, 6OPK) and the 3D structure of GME was
downloaded from the PubChem database. The active site
of ERK2 was chosen as the binding pocket for docking.
The number of grid points in the XYZ of grid box was set
to 50 × 60 × 50, the grid spacing was 0.375 Å, the number
of GA run was set to 100, rest of the parameters were set
to default. Finally, the structure with the lowest docking
energy was carried out with energy minimization.

2.6 Statistical analysis

All data are means ± SEM of independent experiments
(n ≥ 3). Statistical analysis was performed using SPSS
software. Multiple comparisons were carried out using
one-way ANOVA followed by LSD’s post-hoc tests, p < 0.05
or less was taken as statistically significant.

3 Results

3.1 GME effectively promoted the survival of
HT22 cells exposed to H2O2

First, the toxic effect of GME itself on HT22 cells was
tested. As shown in Figure 1b, GME was non-toxic when
its concentration did not exceed 200 μM and dosages less
than or equal to 200 μM were then chosen for the subse-
quent neuroprotection assay.

Second, an oxidative stress model associated with
neurodegeneration was established by exposing HT22
cells to exogenous H2O2 solution. It is evident in Figure 2a
that 24 h incubation with H2O2 (50–500 μM) dose depen-
dently reduced the neuronal survival. Specifically, 350 μM
H2O2 decreased cell viability to 58.47 ± 1.79% and this con-
centration of H2O2 was selected for the ideal inducer con-
centration. Two hours pre-treatment with GME (10–200 μM)
promoted cell viability to 75.18 ± 1.33, 79.64 ± 1.52, 81.15 ±
1.62, and 79.64 ± 2.24%, respectively (Figure 2b).

3.2 GME significantly prevented abnormal
morphological change challenged by
H2O2 in HT22 cells

As observed in Figure 3, cells exposed to 350 μM H2O2

became too sparse, as compared to those in control group
with high density. Moreover, these cells displayed abnormal
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cell characteristics, including round cell shape and damaged
intercellular connection. Encouragingly, a remarkable
increase in cell density and a decrease in the number
of small round neurons were observed in the group of
GME (100 μM) plus H2O2.

3.3 GME decreased intracellular ROS in
HT22 cells

ROS resulted in oxidative stress and we thus tested the
possibility that GME may inhibit intracellular ROS. As
demonstrated in Figure 4, 350 μM H2O2, even 15 min after
introduced into cells, caused a rapid and sharp increase
in the intracellular ROS level as compared to control

group. Pre-treatment of 2 h with 100 μMGME significantly
decreased ROS production, equivalent to only approxi-
mately 77% of H2O2 group.

3.4 GME inhibited the increase of phospho-
ERK, but not phospho-p38, protein
expression caused by H2O2

MAPK pathway, extracellular signal-regulated kinase (ERK),
and p38 in particular, were primarily evaluated in neuropro-
tection provided by GME. As shown in Figure 5, exposure of
HT22 cell to 350 μM H2O2 evoked a significant increase in
phospho-ERK (p-ERK) and phospho-p38 (p-p38), specifically,
after H2O2 challenge for 2 h, both p-ERK and p-p38 reached a

Figure 2: GME effectively protected against H2O2-induced injury in HT22 cells. (a) H2O2 dose-dependently decreased cell viability. Cells were
insulted with H2O2 (50–500 μM) or dd H2O (an equal volume of H2O2, Control group) for 24 h and then tested by MTT assay. (b) GME
significantly reversed cell survival inhibited by H2O2. Cells were successively treated with GME (1–200 μM) or 0.1% DMSO (Control group)
for 2 h, H2O2 (350 μM) for 24 h, and tested with MTT assay. **, p < 0.01 versus Control group, ##, p < 0.01 versus H2O2 group (n = 4).

Figure 3: GME greatly blocked HT22 morphological changes challenged by H2O2. Neurons were successively treated with 100 μM GME or
0.05% DMSO (Control group) for 2 h, 350 μM H2O2 for 24 h, and then observed using a phase contrast microscope. Red arrows indicate
damaged cells or intercellular connection (n = 3).
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maximum level, which was 1.95 ± 0.21 and 3.31 ± 0.25-fold
than that of the control level (Figures 5a and 6a). On the other
hand, GME treatment gradually returned p-ERK protein to the
normal level (Figure 5b). While, there was no changes in p-
p38 protein expression among the groups of H2O2 and GME
treatments (Figure 6b).

3.5 GME favorably bound to ERK2 protein via
hydrophobic and hydrogen bonding
interactions

In our in silico molecular docking analysis, GME showed
a moderate interaction with ERK2 (estimated binding
energy = −5.60 kcal/mol). As shown in Figure 7, GME
favorably bound to the active site of ERK2 protein. Spe-
cifically, GME was buried into a hydrophobic pocket con-
sisting of Ile29, Gly30, Glu31, Met106, Thr108, Asp109,

Figure 4: GME significantly inhibited the increase of intracellular
ROS caused by H2O2. Neurons were successively treated with 10 µM
DCFH-DA for 1 h, 100 μM GME or 0.05% DMSO (Control group) for
2 h, 350 μM H2O2 for 15 min. **, p < 0.01 versus Control group, #,
p < 0.05 versus H2O2 group (n = 3).

Figure 5: GME reversed the increase of p-ERK insulted by H2O2. (a) HT22 neurons were treated with 350 μM H2O2 or dd H2O (an equal volume
of H2O2, Control group) for a short period of time (0.5–6 h) and protein analyses were performed with Western blot. (b) Neurons were
successively treated with GME (3–100 μM) or 0.05% DMSO (Control group) for 2 h, 350 μM H2O2 for another 2 h. Protein was isolated and
analyzed with Western blot using antibodies against p-ERK, t-ERK, and β-actin. *, p < 0.05 versus Control group, ##, p < 0.01 versus H2O2

group (n = 3).
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Lys149, Ser151, Asn152, Leu154, and Asp165. In addition,
the aromatic ring of GME structure was stuck in the active
cavity of ERK2 protein. In this binding position, the
amino group of GME formed a hydrogen bond with
Asp109, while the ester and ether parts in the GME struc-
ture formed another hydrogen bond with Glu31 near the
hydrophilic groups outside the active site. Furthermore,
there were also a large number of hydrophobic amino
acids near the aromatic ring of GME, such as Ile29,
Met106, Leu154, etc. These hydrophobic groups could
further enhance the affinity between GME and ERK2
protein.

4 Discussion

Oxidative stress occurs when there is excess ROS that
could not be eliminated immediately and are closely

associated with the pathology of various neurodegenera-
tive conditions [20,21]. Pharmaceutical augmentation of
neuroprotective capacity is a potential means by which to
prevent ROS-induced damage.

Chinese medicine and its associated medicinal herbs
are huge treasure troves from which a variety of modern
pharmaceuticals have been isolated and developed [22,23].
A good example includes huperzine A, an alkaloid derived
from Chinese herb Qian Ceng Ta. Huperzine A was identi-
fied as an effective inhibitor of acetylcholinesterase [24],
an enzyme responsible to hydrolyze neurotransmitter acet-
ylcholine, and have thus been approved to treat Alzhei-
mer’s disease in China. This discovery inspires us to
pursue the naturally occurring neuroprotectant that could
eliminate ROS from Chinese medicine herbs.

GME is a naturally occurring compound with less
toxicity. In our study, we found that GME was non-toxic
when its concentration did not exceed 200 μM. At a
higher concentration (300 μM or above), GME became

Figure 6: GME failed to restore the increase of p-p38 insulted by H2O2. (a) HT22 neurons were treated with H2O2 or dd H2O (an equal volume
of H2O2, Control group) for a short period of time (0.5–6 h) and protein analyses were performed with Western blot. (b) Neurons were
successively treated with GME (3–100 μM) or 0.05% DMSO (Control group) for 2 h, 350 μM H2O2 for another 2 h. Protein was isolated and
analyzed with Western blot using antibodies against p-p38, p38, and GAPDH. *, p < 0.05 versus Control group, ##, p < 0.01 versus H2O2

group (n = 3).

374  Shengquan Hu et al.



toxic. We speculate that GME over certain dose may cause
inactivation of some key metabolic enzymes or decrease
the activity of pro-survival transcription factor including
myocyte enhancer factor-2 (MEF2) and cAMP responsive
element binding protein. Moreover, the production of
ROS and its associated oxidative stress process was induced
by H2O2 in HT22 cells, a mouse-derived hippocampal neu-
ronal cell line. Using this system, we found, for the first
time, that GME provided effective neuroprotection against
H2O2-induced cell death, a conclusion supported by the
fact that GME promoted neuronal viability and decreased
intracellular ROS. Collectedly, these findings encourage
further pre-clinical investigation of GME in the potent
application of neurodegeneration. Meanwhile, the cellular
model and methodology established in this study may be
used as a platform for screening neuroprotective com-
pound with anti-oxidant ability in the modernization of
Chinese medicine.

MAPKs, which are composed of ERK, p38, and c-Jun
NH2-terminal kinase, function as important protein kinases
in cell physiology [25]. In response to multiple extracellular
and intracellular factors including neurotoxins or small
chemical molecules, MAPKs are activated or inactivated,
readily and instantly, to regulate diverse cellular activities
including neuronal survival, differentiation, protection, and
proliferation. ERK phosphorylation has been reported to be
associated with neurodegenerative processes. Specifically,
increased phospho-ERK level was usually observed in a
variety of neurons and animals insulted by Aβ oligomers
[26] and MPP+ [27], which represent neurotoxins that drive
Alzheimer’s and Parkinson’ disease progression, respec-
tively. Besides, an upregulation of ERK was involved in
the activation of GSK3β, the progression of neurofibrillary
degeneration as well as the hyperphosphorylation of tau
[28,29]. Moreover, there is evidence suggesting that ERK
signaling pathway regulated neuronal death by increasing

Figure 7: The possible binding mode of GME with ERK protein. (a) GME bound in the hydrophobic pocket of ERK (PDB ID, 6OPK). Blue color:
hydrophilic domain, orange color: hydrophobic domain. (c) Binding position of GME in ERK protein. 2D (b) and 3D (d) ligand interaction
diagram between GME and ERK. Dashed green lines indicated hydrogen bonds and red serrations represented hydrophobic interaction.
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p35 expression and by activating cyclin dependent kinase 5
(CDK5) [30]. As such, small molecules that could reduce
ERK phosphorylationmay provide effective neuroprotection
against neurodegenerative diseases. In our model, an
increase in protein expression of phosphorylated ERK,
the subgroup of MAPK, was found in HT22 cells exposed
to H2O2, an observation consistent with earlier studies
[9,31]. GME dose-dependently reversed such increase of
p-ERK1/2, indicating the involvement of ERK pathway in
GME-mediated neuroprotection. Molecular docking simu-
lation further revealed a possible binding mode that GME
inhibited ERK protein, showing that GME2 favorably bound
to ERK via multiple hydrophobic and hydrogen bond inter-
actions. Meanwhile, there were no significant changes
in p38 phosphorylation among groups, indicative of the
absence of p38 signaling pathway in GME-provided neuro-
protective mechanism. Nevertheless, we could not exclude
any other possible important targets that H2O2 or GME may
act on, such as MEF2, GSK3β, and CDK5.

It should be noted that H2O2 induced various bio-
chemical changes at different time points. For instance,
it took just 15 min for H2O2 to trigger excess intracellular
ROS, 2 h to induce ERK phosphorylation, 0.5–4 h to evoke
p38 phosphorylation, while 24 h to decrease cell viability.
This may be explained by the fact that ROS accumulation
occupied an “upstream” position within the H2O2 toxicity
cascade. Taken together, GME blocked the generation of

excess ROS and its associated oxidative stress in HT22
cells, then decreased the protein level of p-ERK to inacti-
vate ERK, finally prevented cell abnormal morphological
change and promoted neuronal survival (Figure 8).

Recent studies have highlighted the multifaceted fac-
tors in the pathology of neurodegenerative conditions and
the involvement of multi-target compounds in treating
such devastating diseases [32,33]. These compounds are
expected to synergistically hit different targets associated
with neurodegenerative diseases in the brain to acquire
better efficacy [34]. There is evidence suggesting that
GME inhibited the activity of acetylcholinesterase [35],
an enzyme responsible to hydrolyze neurotransmitter acet-
ylcholine. In addition, GME was able to attenuate gluta-
mate-induced excitotoxicity [36], a widely accepted
hypothesis for Alzheimer’s disease. Thus, the neuro-
protective effect and ERK inhibition ability described herein,
together with the blockage of acetylcholinesterase enzyme
activity and glutamate excitotoxicity reported earlier, may
make GME as a promising anti-Alzheimer’s multi-target
compound.

However, there are some limitations in the current
study. First, GME-mediated inhibition of intracellular
ROS should be confirmed by both DCFH-DA staining
assay and fluorescence-activated cell sorting analysis.
Second, since mitochondria are believed to be the main
source of ROS in the neurons, it is reasonable to test the

Figure 8: Schematic model revealing the molecular mechanisms by which GME protected against H2O2-induced toxicity. GME blocked the
generation of excess ROS and its associated oxidative stress in HT22 cells, then decreased the protein level of p-ERK to inactivate ERK,
finally prevented cell abnormal morphological change and promoted neuronal survival.
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possibility that if GME may increase the mitochondrial
membrane potential using TMRE staining. Third, though
GME was found to inhibit the increase of p-ERK protein
expression caused by H2O2 and bind to ERK via multiple
hydrophobic and hydrogen bond interactions, the hypoth-
esis that ERK activator (such as PAFC-16) or ERK SiRNA
could abrogate GME-mediated neuroprotective effects needs
to be verified to confirm the involvement of ERK pathway in
GME-mediated neuroprotection. Such interesting topics will
be carried out in our future projects.

5 Conclusion

We provide solid evidence that naturally occurring GME
protects HT22 hippocampal neurons from H2O2-evoked
neurotoxicity by inhibiting ERK pathway. Molecular docking
simulation further reveals a possible bindingmode that GME
inhibits ERK protein, showing that GME2 favorably binds to
ERK via multiple hydrophobic and hydrogen bond interac-
tions. Our findings would encourage further ex vivo and in
vivo pharmacological investigations of GME in treating oxi-
dative stress-mediated neurological disorders.
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