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Abstract: Halogen bonding has emerged at the forefront of advances in improving ligand: receptor
interactions. In particular the newfound ability of this extant non-covalent-bonding phenomena
has revolutionized computational approaches to drug discovery while simultaneously reenergizing
synthetic approaches to the field. Here we survey, via examples of classical applications involving
halogen atoms in pharmaceutical compounds and their biological hosts, the unique advantages that
halogen atoms offer as both Lewis acids and Lewis bases.
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1. Introduction to Halogen Bonding

Drug discovery has become increasingly computation-intensive. There is a two-fold reason for
this. Historic techniques have relied on the identification of principals from traditional remedies,
from soil or from bacteria, serendipitously, via optimization of high throughput screens, and by natural
product tuning/medicinal chemistry approaches. Hits from these mechanisms have reached a plateau,
akin to “Moore’s limit”. By contrast, the “rediscovery” of novel chemistries coupled with the advent of
more robust computational techniques to assess the energetics of host:guest interactions have induced
a much-needed renaissance in the field.

One such novel bonding chemistry, viz. halogen bonding, has not only permitted ligand-receptor
interactions to be further refined and optimized, but also enabled directed design efforts via
precise selection of atoms to be incorporated in to the bio-active ligand moieties [1–15]. Halogen
bonding is commonly termed as X-bonding given its parallels with H-bonding [3]. X-bonds have
provided new relevance to the role of halogens in pharmaceuticals beyond the usual metrics (such as
enhanced membrane permeability and reduced elimination) that were though to solely improve
“druggability” [16–25]. X-bonding is now understood as a phenomenon in its own right and one that
is capable of making precise interactions independent of its role as a hydrogen bonding partner [10].
Importantly, the recent incorporation of halogen bonding into docking algorithms and energetics
calculations will undoubtedly pave the way for improved therapeutic outcomes [26–37]. Halogen
bonding exemplifies the “turning of tables” in drug discovery, wherein analysis, understanding
and refinement in silico have driven synthetic approaches to the genesis of 2nd and 3rd generation
pharmacophore progeny [16–20,22–25,38,39]. Halogen bonding, and its applications in ligand-receptor
optimization and drug discovery, are discussed in the following sections.
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Origin of Halogen Bonding

Consider a bond of the type R-C-X (alternatively, R-X) where C is carbon and X is a halogen
(Figure 1A). Note that fluorines rarely participate in X-bonds so X usually refers to the remaining
halogens (Cl, Br and I). R is a moiety that is electron withdrawing in nature (for example, an aromatic
group). Then, the shared electron pair (bonding pair) between C and X is drawn towards the carbon
atom. In other words, the distal region of the so-called Pz lobes of the halo-atom is electron-density
depopulated (Figure 1B). The resulting anisotropic distribution of electronic charge (density) around
the halo atom is reflected in the formation of a relatively positively charged region called “sigma
hole”. The presence of the electro positive sigma hole makes it possible for the halo atom to interact
with lone pair electrons of other electronegative atoms in the vicinity. For example, the halogen can
non-covalently bond with atoms such as oxygen, nitrogen, sulfur or simply other halogen atoms.
Such an interaction constitutes the halogen (X-) bond [4–7].
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Figure 1. (A) The appearance of a sigma-hole (δ+) that can interact with a region of electron density 
residing in a different atom. Here, the halogen atom (or R-X) is an “electron-poor” species and acts a 
halogen-bond donor (D). The acceptor (Y) possesses a rich electron density and acts as a nucleophile, 
thereby completing the halogen bond between the Donor sigma-hole and the acceptor lone pair. Such 
an interaction is observed in many drug:receptor systems. (B) Another view detailing the formation 
of the σ-hole: The covalent bond (C-X) between the Carbon atom and the halogen (σ-bond, yellow) 
pairs an electron from the carbon with one from the valence pz-orbital of the halogen. The electron 
withdrawing nature of the R-C moiety results in the depopulation of the pz-orbital cof the  halogen 
atom. As a result, it creates an electropositive crown (blue) and flattening of the atomic radius 
opposite the σ-bond, while the px,y-orbitals remain fully occupied, resulting in an electronegative 
annulus perpendicular to the covalent bond. [Figure (1A) has been reproduced with permission from 
reference [39] and (1B) from reference [15]. 

An alternative model, termed a “lump-hole” model attempts to remedy inadequacies observed 
in the σ-hole concept [7,8]. A lump-hole is a proposed local charge depletion at donor terminus of the 
halogen bond and it can then “halogen bond” with the electronic density of the acceptor. In this 

Figure 1. (A) The appearance of a sigma-hole (δ+) that can interact with a region of electron density
residing in a different atom. Here, the halogen atom (or R-X) is an “electron-poor” species and acts
a halogen-bond donor (D). The acceptor (Y) possesses a rich electron density and acts as a nucleophile,
thereby completing the halogen bond between the Donor sigma-hole and the acceptor lone pair. Such
an interaction is observed in many drug:receptor systems; (B) Another view detailing the formation
of the σ-hole: The covalent bond (C-X) between the Carbon atom and the halogen (σ-bond, yellow)
pairs an electron from the carbon with one from the valence pz-orbital of the halogen. The electron
withdrawing nature of the R-C moiety results in the depopulation of the pz-orbital of the halogen
atom. As a result, it creates an electropositive crown (blue) and flattening of the atomic radius opposite
the σ-bond, while the px,y-orbitals remain fully occupied, resulting in an electronegative annulus
perpendicular to the covalent bond. (A) has been reproduced with permission from reference [39] and
(B) from reference [15].

An alternative model, termed a “lump-hole” model attempts to remedy inadequacies observed in
the σ-hole concept [7,8]. A lump-hole is a proposed local charge depletion at donor terminus of the
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halogen bond and it can then “halogen bond” with the electronic density of the acceptor. In this review,
we will limit ourselves to the sigma-hole description used to explain the origin of halogen bonding.

It is notable that the “quality” of the sigma hole can be further modulated by choice of
halo-atom [7]. The largest electropositive density is observed with iodine. The iodinic sigma-hole can be
additionally amplified by introducing electronegative (electron withdrawing) moieties at the proximal
ends around the C-X bond [7]. For example, a highly fluorinated aromatic ring (R), would influence
the already electropositive X-end of the R-X bond. These are some of the “first principles” governing
rational drug design. Albeit rudimentary, these building blocks, coupled with an understanding of the
thermodynamics and sterics of such interactions, the synthetic limitations and tractability imposed by
substitutions, and experimental verification are key tenets that improve “druggability” and thereby
enhance clinical outcomes [26–37].

2. Halogen Bonding in Biological Systems

Halogen bonding interactions in biological systems have attracted widespread interest [11–27].
They have garnered this interest not only from the perspective of basic research but also in clinical
endpoints through pharmaceutical design and development. A fundamental understanding of halogen
bonding interactions in biological systems involves analysis, both experimentally and theoretically,
of bond angles between the donor atom, the halogen, and the acceptor atom and the energetics of
such interactions. A comparison of similar properties with H-bonding interactions is particularly
useful to gather information about the utility of introducing halogen bonding in lieu of existing
hydrogen bonding or in addition to H-bonding. Furthermore, similar to the scenario in small molecules,
biological systems are also sensitive to entropic perturbations. In both systems, entropic and enthalpic
interactions compete with one another. Thus, the presence of a halogen bond, introduced at the
expense of a hydrogen bond, must engage with sufficient enthalpic energy to overcome entropy.
The next sections summarize the role of halogen bonding with respect to receptor-ligand interactions
within a primarily biological context. Particularly, we will elaborate on those compounds that are
of pharmaceutical interest; an area in which a large number of papers have emerged exploiting
halogen bonding interactions between ligands and their receptors [26–34]. Of value, in many instances
the interactions have been described both qualitatively and quantitatively [12]. The quantitative
aspects, which are crucial to engineering binding and enhance drug efficacies, have spurred various
research groups to described energy functions and docking algorithms of halogen bonds. However,
these remain outside the scope of this review.

2.1. Halogen Bonding between Small Molecules and Proteins

The docking of halogen containing pharmaceutical compounds to their biological targets have
been analyzed by a number of groups [26–34]. As a starting point, halogen bonding interactions
between halogens in drugs and the backbone and side-chain donors of amino acids have been mined
from the PDB [38,39]. These studies have primarily relied on strictly restricting “halogen bonds” to the
sum of the Van der Waal’s distances between the participating atoms. Among the structures deposited
in the PDB, halogen atoms in pharmaceutical compounds were found to interact most frequently with
the backbone Lewis bases, viz. O and N, of glycine (Figure 2A).

This is an expected outcome given the absence of a side-chain for this amino acid, permitting
access to lone pairs of both Lewis bases from either direction. Two independent studies found that the
frequency with which the backbone amino and carbonyls of Leu as acceptors for halogen bonding
interactions was large despite anticipated steric hindrance from its bulky side-chain [38,39]. The high
fraction of observed interactions relative to amino acids with smaller side-chains is likely the result
of secondary effects. For example, the hydrophobic interactions between the side-chain of Leu and
the hydrophobic moieties in the organopharmacophore could bias the halogen bonding tendencies
in favor of the Leu backbone. The remainder of the trend that follows in the frequency of X-bonding
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interactions is that of Ala and other small-side-chain-bearing amino acids with a flat-lining found for
interactions involving bulkier and aromatic side-chains.Molecules 2017, 22, x FOR PEER REVIEW  4 of 15 
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Figure 2. (A) Frequency of interactions of halogenated ligands with proteins. The interactions are
defined using van der Waals radii between halogen of the ligand and backbone carbonyl or backbone
nitrogen of the protein as Lewis bases. The interaction is labeled as being as above at the N-Cα-C of
the side chain that is pendant off of the backbone.The data is normalized to the maximum number of
interactions made by each halogenated ligand; (B) Frequency of interactions of halogenated ligands
with proteins. The interactions are defined using van der Waals radii between halogen of the ligand
and side chain Lewis bases (oxygen, nitrogen, and sulfur). Also included are interactions as above
with the π electron rich aromatics residues (Phe, Tyr, Trp and His). The data is normalized to the
maximum number of interactions made by each halogenated ligand (the figure has been reproduced
with permission from [39]).

The trend for side-chain Lewis bases involved in halogen bonding differed from backbone
tendencies [38,39] (Figure 2B). Along with arginine, which likely proffers nitrogen for bonding,
the aromatic amino acids were frequently found to be within van der Waals’ distance with the halo
atoms. It is likely that the aromatic amino acids behave as non-classical Lewis bases via their pi cloud
such as evidenced by Tyr. In this case though, the data did not discriminate between X-piTyr and
X-O-H Tyr interactions.

The donor-acceptor bond angles (C-X···Lewis Base) in both sets of interactions were found to
span a wide range with only a handful of interactions approaching linearity. Two reasons have been
postulated to help reconcile the large extent of non-linearity in the spectrum of halogen bond angles that
are made. (1) The electron-rich Lewis-base (acceptor) may polarize and thereby modulate the electron
distribution deficit (sigma hole) at the distal (halogen ) end of the R-C-X bond [40]; (2) The probability
of the acceptor atom aligning itself to make a linear (180◦) approach is relatively small compared to
other areas of the sigma-hole spread. Thus, even though it’s energetically favorable to align with the
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“bulls-eye” of the sigma hole “target”, in practice it may not be the case [9]. The latter reason can
particularly be influenced by steric factors that can drive the bond angle.

Figure 3 shows typical halogen-bonding interactions found in the PDB between halogen-containing
pharmaceutical compounds and their receptors. The choice of halogen atom and the donor-acceptor pair
can be used to enhance molecular interactions as described in the succeeding sections.
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Figure 3. Illustration of a halogen bond in a protein-ligand complex. (A) Chlorine forms a halogen
bond with main chain oxygen of the protein. The ligand is shown as light pink stick model and protein
is shown as both a cartoon model and interacting amino acid as stick model (pdb id: 4ALI); (B) Iodine
forms a halogen bond with main chain oxygen of the protein. The ligand is shown as an green
stick model and protein is shown as both a cartoon and stick model (pdb id: 3JZB); (C) Chlorine
forms a halogen bond with main chain oxygen of the protein. The ligand is shown as a cyan stick
model and protein is shown as both a cartoon and stick model (pdb id: 2B19). Figures were prepared
using PYMOL.
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2.2. X-Bonds in Drug Discovery: Case Studies

As stated before, much work has been completed in the area of tuning halogen atoms in ligands
to avail of better ligand:receptor interactions via enhanced X-bonding. In the following sections we
review case studies involving strategies used to improve ligand: receptor interactions by directed
design of halogen bonding.

2.2.1. X-Bonding in Cathepsin

A series of halogen-containing inhibitors of cathepsin have been recently formulated, pursuant to
the discovery of hydrogen bonding, between select ligands and the active-site of cathepsin [15].
The fine-tuning of the cathepsin binding inhibitors was possible as a result with an outcome
that enhanced several-fold the binding constant observed between the starting ligands and their
halogenated successors (Figure 4). For example, XB was found to increase in strength with the mass
of the halide substituent (Cl < Br < I). By contrast, no favorable bonding was found to exist with
organofluorine derivatized compounds. Furthermore, the halogen bonding interaction was found
to have stringent geometrical specifications such as a distance between the interacting atoms below
the sum of the van der Waals radii and a strong dependence on the O···X-C angle. Nevertheless,
in conclusion, the study revealed that establishing a halogen bond enhanced protein–ligand interactions
several-fold which translated into a gain in free enthalpy of −∆∆G = 2.6 kcal/mol.Molecules 2017, 22, x FOR PEER REVIEW  7 of 15 
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2.2.2. Sildenafil

Similarly, the first comprehensive thermodynamic and structural characterization of halogen
bonding in PDE5−inhibitor interactions has been described exhaustively in terms of their
thermodynamic binding parameters (Figure 5) [23]. In this recent “textbook” study, Xu et al investigate
the binding of sildenafil with its receptor with the overall aim of designing better binding efficacies
between the sildenafil successors and the receptor [23]. Starting with the X-ray structure to examine
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the atomic details of the contacts between the receptor and the drug, they used a molecular docking
program to replace hydrogen atoms in the drug by halogen atoms that could potentially make X-bonds.
Using a hybrid approach involving both QM and MM, the authors were able to refine the search to
candidates that were subsequently synthesized. The experimental binding energies of the progeny with
the receptor were found to be in excellent agreement with the computational predictions demonstrating
that it is possible to rationally incorporate halogen bonding to impact drug discovery.
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Figure 5. Structure and the binding mode of 1 (X = H) to PDE5 from the docking study. (a) Chemical
structure of 1; (b) The docked structure of 1–PDE5 complex. PDE5 is shown in cartoon form with Y612
represented in stick form in the boxed area. 1 is also represented in the boxed area in stick form; (c) For
clear visualization, the hydrogen bonding between 5C-H in 1 and Y612 in PDE5 extracted from (b) is
shown (figure has been reproduced with permission from [23]).

2.2.3. X-Bonding in Unnatural Amino Acid:Protein Complexes

Other groups have studied the influence of halogen bonds in complexes of proteins and
halogen-containing non-natural aminoacids. In their study, attention was focused on the interface
between proteins and halogen-containing non-natural amino acids [41]. This study revealed that
X-bonding can occur by direct amino-acid:protein contact or via a water-mediated mechanism. In the
latter mechanism, a water molecule formed a bridge between the amino acid and the polymer,
simultaneously engaging in halogen- and hydrogen bonds. The data also indicated that in amino
acid–protein complexes the halogen atoms, despite being usually surrounded by hydrophobic residues,
could also engage in hydrogen bonding interactions with hydrogen bonding-donors.

The quantification of such bonds in binary complexes, as well as its in silico prediction is
particularly useful in advancing our understanding of the mechanism by which the ligand achieves
specificity. It also underscores knowledge of the binding pocket which in turn enables selectivity
among drug candidates.

2.2.4. The Donepazil Study

It is abundantly clear that halogenation can be used to further efforts in modulating drug design.
By virtue of its ability to facilitate transfer of drug moieties across biological barriers (plasma membrane,
blood brain barrier, etc.), filling of small hydrophobic pockets in protein topologies, impacting lifetimes
and easing drug uptake, halogenated pharmaceuticals have been deemed to be extremely versatile and
malleable in their applications. In comparison with other halogenations, the tuning via fluorination
and carbon trifluoromethylation have made inroads in medicinal chemistry [42–45]. Of particular
interest is the stabilization of interactions between drug molecules and their protein/DNA targets
achieved through relatively improved bonding the donor-acceptor couples through charge distribution
and the shuffling of halogens to yield improved binding parameters which has been successfully used
in recent studies [46–59].
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For example, a series of donepezil drug derivatives designed to inhibit acetyl cholinesterase
(AChE) were prepared using the halo atom as a functional “director” [60]. The authors of this
study were able to use Density Functional theory (DFT) to optimize the interaction between the
parent drug and its halo-modified derivative (both the chair and boat conformers; B3LYP/MidiX and
B3LYP/6-311G + (d,p) level of theories). Attributes such as “charge distribution, dipole moment,
enthalpy, free energy and molecular orbitals” of the ligands of interest were also investigated to in
an attempt to better understand how the halogen-directed modifications impact the ligand structure
and impacted the interactions with the receptors [61–69]. In addition, molecular docking calculations
were performed in the same study to obtain information on similarities and differences between
the binding modes of unmodified and halogenated chair-formed ligands [60,67–69]. The results
revealed that donepezil and its halo-derivatized progeny interacted with hydrophobic gorges and
anionic subsites of AChE [61]. The trifluorinated ligand possessed the most desirable free energy.
The receptor-ligand interactions were found to be mostly hydrophobic and of the π-stacking type.
These studies revealed that fluorine, chlorine and trifluorinated ligands were the most effective and
specific among the tested AChE inhibitors, interacting strongly at both the catalytic sites of AChE.
This study was then followed by examining the pharmacokinetic parameters of the parent and
halo-substituted progeny.

2.3. Some Other Aspects and Applications of Halogen Bonding

A theoretical study involving negatively charged donor moieties were found to be fully capable of
important X-bonding interactions because in many situations both participants, viz., the organohalogen
and nucleophile are both deprotonated (i.e., anionic in nature) and this may result not only in the loss
of the σ-hole functionality but also a potential repulsion between the “pairs” [70,71]. The authors noted
a remarkably high degree of variability in the distance between the center of the negative charged donor
and the halo atom. To further attempt to define a clear relationship among the parameters, a series
of model systems comprising 4-halophenyl-conjugated polyene acids and ammonia, were designed
to examine the effect, if any, of distance on halogen bonding as a function of solvent chemistry.
QM indicated a direct relationship between distance and bond strength. The authors deconvoluted
the energetics, in the process revealing that the majority contribution to the binding energy resided
in electrostatic interaction, followed by orbital interaction (42–36%). Furthermore, “natural bond
orbital calculations showed that electron transfer takes place from the acceptor to the donor, whereas
the halogen atom becomes more positive during the bonding, which is in agreement with the
result of neutral halogen bonding”. Theoretical work (QM/molecular mechanics) demonstrated
that “the polarity of binding pockets makes all of the interactions attractive in a protein system”.
This lends “tunability” to the strength of the halogen bonding interaction between the halo atom and
the negatively charged donor via variations in the distance between the negative charge center and
halogen atom. Further tuning can be achieved through variations in the solvent medium [69,72,73];
though this latter feature may not have limited relevance in a physiological milieu that drugs operate in.

A survey of the entire database clearly indicated that halogen bonding-like interactions between
two anions are possible. QM computations involving small model complexes of halobenzoates and
propiolate suggested that interactions of the type “anion–anion halogen bonding” are unstable in
vacuum [71,72]. By contrast, the same calculations revealed that similar interactions were favorable in
solvents. Impressively, the QM optimized X-bonding link between the participating anions is shorter
than that in a neutral system, indicating a possibly stronger halogen bonding interaction, as was
evidenced by computed binding energies. Energetics’ analysis on multiple ligand-receptor system
indicated that anion–anion X-bonding could assist in docking with values approximating 3 kcal/mol
making anion–anion X-bonds both a stabilizing factor and of utility to drug design.
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2.3.1. Halogen Bonding in Nucleic Acids

Not much work has been done in the area of halogen bonding in nucleic acids. Nevertheless,
a recent survey examining the role of halogen bonding in nucleic acids finds that the phosphate
backbone oxygen is clearly the most common halogen acceptor [74]. In this study, the authors identified
21 X-bonds among deposited structures with the majority of the intremolecular bonds formed by
halogenated nucleobases such as bromouridine with near-ideal geometries. This study could herald
a new era in the development of molecules that could chelate DNA and open up additional therapeutic
potentials that is enabled by halogen bonding.

2.3.2. Halogen Bonding and Anesthetics Specificity

The efficacy of the anaesthetic, propofol (PFL, 1-hydroxyl-2,6-diisopropylbenzene), was investigated
using its halogentaed counterpart, anesthetically inactive fropofol (FFL, 1-fluoro-2,6-diisopropylbenzene),
as a contrast [75]. While PFL binds to receptors via hydrogen bonding, FFL is inactive (though it is able
to bind via halogen bonding intreactions). The study pointed out that “multiple specific interactions
rather than just hydrogen or halogen bonds must be taken into account to explain the different anesthesia
endpoints caused by PFL and FFL”. The work highlighted the importance of retaining hydrogen bonds as
opposed to simply replacing them with halogen bonds. It showed the significance of taking into account
multiple bonding interactions while designing drug-receptor interactions.

2.3.3. Halogen Bonding and Drug Repositioning

Drug repositioning is an outcome of the relatively slow pipeline of new drugs that make it to
the market. An interesting study recetly led to the repurposing of rafoxanide and closantel as potent
B-Raf V600E inhibitors via molecular docking with improved halogen bonding scoring functions [76].
The experimentally determined IC50 values of 0.07 µM and 1.90 µM, respectively, made it comparable
to vemurafenib (IC50: 0.17 µM), a marketed drug targeting B-Raf V600E. These studies vindicated
the notion that that a robust halogen bonding scoring function is essential for accurate molecular
interaction prediction. The outcome in this case being the repositioning of drugs with heavy halogen
atoms in their molecular structures.

2.3.4. Halogen Bonding in Directed Biosynthesis

Halogen bonding use has found application in drug biosynthesis as opposed to its traditional
exploitations in enabling drug discovery, binding efficacy, and druggability. In a novel study,
authors were able to exploit X-bonding in the nitrilase-catalyzed synthesis of ortho-, meta-,
and para-chlorophenylacetic acid [77]. Different distributions of halogen bond induced changes
of substrate binding conformation and affected substrate selectivity. The authors report that the
engineering of the halogen interaction led to alterations in the substrate selectivity of the enzyme.
The implication from this work is that X-bonding can be used to tune biosynthesis and “should be
used as an efficient and reliable tool in enzymatic drug synthesis”.

3. Discussion

Clearly there is a lot of excitement in the community about the contribution of halogen bonding
to drug discovery. Given that the field is still somewhat in its infancy, the computational approaches to
clearly defining the energetics and geometry of X-bonding between a ligand and a receptor are still
undergoing development. It is clear from the aforementioned examples that no single technique is
satisfactory to clearly pin-point where a halogen must reside and which hydrogen it must replace.
As a result there are several “hits and misses” with the nature of the publishing field such that we
only see the “hits”. There are several aspects involved in X-bonding that the computational field has
yet to reconcile. One example is the replacement of weakly acidic hydrogens with halogens. Weakly
acidic hydrogens are those hydrogens that are not involved in traditional hydrogen bonding but may
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at best associate with Lewis bases via “weak hydrogen bonding interactions”. For example these are
hydrogens around conjugated ring structures with a result that the bond is not very polar as would
be the case in normally in F, O, N linkages with H. The ability to exploit these weak H-bonds by
replacing them with halogen bonds would not comprise the ligand:receptor interaction as would
be the case when replacing a hydrogen bond with a halogen. By contrast, replacement of weakly
acidic hydrogens in the ligand with halogen atoms that are positioned to halogen bonding with
receptor Lewis bases would further stabilize the ligand:receptor interaction. Thus it is important for
computational approaches to be able to calculate the energies associated with weak hydrogen bonding
interactions between the ligand and receptor and examine whether replacement of such interactions
by X-bonds is feasible. A second aspect is the need to exploit the dual Lewis base–Lewis acid tendency
that inherently exists in halogens that are engaged in X-bonding for drug design (Figure 6).
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Figure 6. The versatility of halogens and additionally non-halogen Lewis bases in chemical bonding.
(a) A Lewis-base acceptor (red, Oxygen) can make halogen bonding interactions with the sigma-hole
end of a halogen atom (x; bluish to red indicates electrostatic potential trend from +ve to –ve) while
simultaneously proffering other lone pairs for H-bonding; (b) A halogen atom involved in both
X-bonding via its sigma hole and H-bonding via its lone pairs). Both interactions show are with water
molecules (figure has been reproduced from [15]).

The ability of halogen bonding halogen atoms to engage in hydrogen bonds that are orthogonal is
particularly tantalizing for enhanced binding. This feature is unique to halogen bonding and does not
pertain to hydrogens involved in hydrogen bonding. For example, a halogen atom can make a σ-hole
induced halogen bonding interaction with a Lewis base in a receptor. At the same time, the halogen
atom, by virtue of its lone pair can hydrogen bond with an acidic receptor H-atom. There are other
combinations of this such as when the receptor Lewis base can both hydrogen bond and halogen bond
to ligand acidic hydrogens and ligand halogen σ-hole. Furthermore, relative to receptor nitrogen and
sulfur as Lewis bases, oxygen can act as a “multi-Lewis-base” by hosting Lewis acids and/or halogen
bonds simultaneously”. To these reviewers’ knowledge, oxygen is not unique in its ability to serve as
a “multi-Lewis-base”, relative to N or S. S has exactly the same outer shell electronic configuration as
O and, therefore, its non-bonding electrons should have similar properties. N in delocalized systems
have both in-plane nonbonding electrons and out-of-plane π-electron systems. The prevalence of O as
an acceptor are likely more to do with how prevalent and accessible the atom is in biological molecules.
Thus, while parallels can be drawn between halogen bonding and the well-known hydrogen bonding
phenomenon, a key distinction between hydrogen bonds and halogen bonds is that the halogen atom
can act as both a Lewis base and a Lewis acid because it possesses both a sigma hole and multiple lone
pairs of electrons. However, the hydrogen atom in the hydrogen bond can only act as a Lewis acid.
Thus halogen bonding is more versatile than hydrogen bonding

As a result, it becomes important for force fields and search algorithms to accurately identify
those moieties than can engage in both X- and H-bonding and exploit them in rational drug design.
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It is clear that much work needs to be done to fully exploit the arsenal of interactions that are possible
via logical introductions of σ-holes via halogen atoms. Nevertheless, in conclusion we are confident
that that this is a new dawn in the area of computer- aided drug design [78]. The best is ahead of
us and computer are bound to reduce costs associated with the bench to clinic process. They will
also be instrumental, hopefully, in reducing the number of false candidates, although more accurate
predictions are required to get to that stage.

4. Conclusions

The examples above are only a few that of the many that illustrate the rich plethora of applications
involving the contributions of X-bonding to drug discovery. It is clear from these examples and
the rich repository of computational tools that are available to predict and select for the most
rewarding interactions that the future of computational drug discovery is bright. The marriage between
computational drug discovery and that of halogen bonding in biological systems has provided renewed
impetus and hope for the otherwise thought to be “past-prime” area of drug discovery.
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