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Background.  Infectious diseases are causally related to a large array of noncommunicable diseases (NCDs). Identifying ge-
netic determinants of infections and antibody-mediated immune responses may shed light on this relationship and provide thera-
peutic targets for drug and vaccine development.

Methods.  We used the UK biobank cohort of up to 10 000 serological measurements of infectious diseases and genome-wide 
genotyping. We used data on 13 pathogens to define 46 phenotypes: 15 seropositivity case–control phenotypes and 31 quantitative 
antibody measurement phenotypes. For each of these, we performed genome-wide association studies (GWAS) using the fastGWA 
linear mixed model package and human leukocyte antigen (HLA) classical allele and amino acid residue associations analyses using 
Lasso regression for variable selection.

Results.  We included a total of 8735 individuals for case–control phenotypes, and an average (range) of 4286 (276–8555) samples 
per quantitative analysis. Fourteen of the GWAS yielded a genome-wide significant (P < 5 ×10-8) locus at the major histocompatibility com-
plex (MHC) on chromosome 6. Outside the MHC, we found a total of 60 loci, multiple associated with Epstein-Barr virus (EBV)–related 
NCDs (eg, RASA3, MED12L, and IRF4). FUT2 was also identified as an important gene for polyomaviridae. HLA analysis highlighted 
the importance of DRB1*09:01, DQB1*02:01, DQA1*01:02, and DQA1*03:01 in EBV serologies and of DRB1*15:01 in polyomaviridae.

Conclusions.  We have identified multiple genetic variants associated with antibody immune response to 13 infections, many 
of which are biologically plausible therapeutic or vaccine targets. This may help prioritize future research and drug development.

Keywords.:  genome-wide association study; human leukocyte antigen; infections; LASSO; serology.

Infectious agents have been implicated in the pathogenesis of 
many noncommunicable diseases (NCDs) [1]. They rank as 
the third leading cause of cancers worldwide [2] and are as-
sociated with multiple chronic conditions such as rheumatoid 
arthritis [3], Alzheimer’s dementia [4], and multiple sclerosis 
[5]. Measuring the antibody immune response to infections is 
a common approach to study this relationship, as seropositivity 
can both serve as a marker of infection exposure and provide 
clues about the pathophysiology between infections and NCDs 
(eg, through molecular mimicry [6]). This could potentially 

lead to important diagnostic and therapeutic advances, espe-
cially in the fields of vaccination and immunotherapy [7–10]. 
Further, given the recent global coronavirus disease 2019 pan-
demic, understanding immune responses to infection could 
help to identify common pathways that, when perturbed, influ-
ence susceptibility to infection and/or immunological response. 
However, the underlying pathophysiology tying infectious 
agents and NCDs often remains poorly understood, and their 
true causal effect also often remains unclear.

One approach to improve our understanding of these asso-
ciations is through the study of genetic markers of infectious 
diseases susceptibility or host immune response. Genome-wide 
association studies (GWAS) have been used to identify the ge-
netic determinants of a large array of diseases, improving our 
understanding of their pathophysiology and leading to thera-
peutic advances [11]. The infectious disease immune response 
is also intrinsically tied to the human leukocyte antigen (HLA) 
system [12], encoded by the major histocompatibility com-
plex (MHC) gene complex. The MHC is a region of chromo-
some 6 with a high density of highly polymorphic genes, often 
in linkage disequilibrium, rendering any disease association 
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study difficult to perform without adequate sample sizes and 
appropriate statistical methods [13]. However, few GWAS and 
HLA association studies have been published on genetic deter-
minants of infectious diseases, and most were limited by small 
sample sizes [14] or relied on patient self-reported infectious 
diseases diagnosis [15]; both factors led to a decrease in statis-
tical power and difficulties with clinical interpretation.

Therefore, in order to better understand the human immu-
nological response to infectious diseases, we undertook GWAS 
and HLA association studies using the UK Biobank [16] cohort 
(UKB) in up to 10 000 serological measurements of 20 infec-
tious diseases.

METHODS

Phenotype

We performed this analysis using the UKB’s serological meas-
urements of infectious agents. The UKB recruited over half a 
million British adults between 2006 and 2010, among whom 
a subsample of 9724 participants provided serum samples for 
serological measurements of 20 different microorganisms. 
Samples were tested for total antibody levels against multiple 
antigens. These were measured using fluorescent bead-based 
multiplex serology technology at a dilution of 1:1000 using 
the Luminex 100 platform (Luminex Corporation, Austin, TX, 
USA). This method provides the median fluorescence inten-
sity (MFI), a standardized quantification of the amount of an-
tibody in the sample obtained by measuring the fluorescence 
emitted by the analyte-capture agent complex. Validation was 
performed using separate serum samples and a reference gold 
standard [17]. This method and the choice of seropositivity 
threshold have been previously validated for multiple infectious 
agents [17]. Finally, of the 20 original pathogens, we selected the 
ones with a seroprevalence of >15% for our GWAS [1] in order 
to ensure adequate statistical power to identify associated loci. 
Table 1 provides more details on the selected infectious agents.

Genome-Wide Association Study

For the GWAS, we used the UKB Version 3 imputed geno-
type data set, with genome-wide genotyping data available for 
488 000 UK Biobank participants. Details on the collection of 
this data can be found elsewhere [16]. For each of the selected 
microorganisms, we performed 3 GWAS. First, we performed 
case–control analyses by splitting participants into seropositive 
and seronegative samples, based on the UKB suggested sero-
positivity definitions (Table  1). These GWAS aim to identify 
genetic variants associated with previous infections to each 
given pathogen. Second, we performed quantitative analyses 
using antibody MFI measurements. Given that all serological 
tests are at risk of low-level cross-binding with other nonspe-
cific antibodies that are not representative of infection [18], 
we restricted the quantitative analyses to samples above the 

seropositivity threshold, using thresholds suggested by UKB 
(Table 1). Therefore, these GWAS aim to identify genetic vari-
ants responsible for varying antibody-mediated immune re-
sponses within the seropositive population. Third, given the 
risk of heavily skewed data leading and inflation of variance 
with higher MFI (in violation of linear regression assumptions), 
we performed the same quantitative analysis but using a loga-
rithmic transform on antibody MFI.

For all GWAS, we restricted our analysis to White British in-
dividuals, as identified using principal component analysis [19]. 
This was performed to minimize bias from population stratifi-
cation, which tends to confound the relationship between the 
genetic variants and the phenotype of interest [20]. For the 2 
quantitative analysie, we standardized the data to have a mean 
of 0 and a standard deviation of 1 before applying the algorithm. 
We performed all GWAS using the fastGWA mixed model 
package [21] with the following covariates: sex, age, UKB as-
sessment center visited, and the first 20 principal components. 
We excluded single nucleotide polymorphisms (SNPs) with 
minor allele frequencies <1%. A prespecified P value threshold 
of P < 5 ×10-8 was then used to identify genome-wide signif-
icant SNPs [22]. Lead genetic variants at each loci were iden-
tified using the plink software (276 to 8555)  [23, 24] clump 
function with a linkage disequilibrium threshold of 0.2 and a 
physical distance threshold of 500 kilo-base pairs.

HLA Association Study

Next, we performed HLA association studies on the same 3 
phenotypes as those defined above for our GWAS. This was also 
done for each of the selected pathogens. HLA classical allele im-
putation was performed by the UKB using the HLA*IMP:02 
algorithm [16]. The following HLA class  I  and II genes were 
studied: A, B, C, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1, 
DQA1, and DQB1. As recommended by the UKB [25], we set al-
leles with a posterior probability call of <0.7 to a copy number 
of 0.  Similarly, the UKB used the 99:01 suffix to indicate that 
no DRB3-4–5 alleles were present and recommends setting 
them to 0. Given the high degree of collinearity between HLA 
gene alleles and the large number of statistical tests planned, 
we used Lasso regression for variable selection. Lasso imposes 
a penalty on models selecting larger variable numbers and is 
therefore less likely to uncover false associations than stepwise 
regression methods [26]. The analysis used all HLA allele copy 
numbers, age, sex, and the first 20 principal components as vari-
ables from which to select a sparse model. Analyses were also 
restricted to White British individuals. To further reduce false 
associations, we performed 10-fold cross-validation 100 times 
and only selected variables that were chosen by Lasso in at least 
95 of our analyses, using the 1 standard error selection rule [26]. 
In cases of repeated measurements from the same individuals, 
we average their results (for quantitative MFI phenotypes), and 
an individual was called seropositive if at least 1 serology test 
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was above the seropositivity threshold (for case–control pheno-
types). Analyses were performed using the glmnet package (ver-
sion 2.0.16) on R (version 3.5.0).

Amino Acid Residue Association Study

Given the highly polymorphic HLA genes, different alleles may 
encode similar sequences of amino acids, and studying the as-
sociation between diseases, those amino acid residue sequences 
can be a more powerful and informative statistical analysis [27]. 
To do this, we first used the IMGT/HLA database [28] to trans-
late each HLA allele copy number (as defined above) to amino 
acid copy numbers. In cases where the specific amino acid res-
idue was unknown (ie, an asterisk in the IMGT/HLA database), 

we set it to 0.  We used the same Lasso analysis pathway de-
scribed above, using amino acid copy numbers, age, sex, and 
the first 20 principal components. Repeated serology measure-
ments were handled as above. Note that given that some alleles 
and amino acid residues are not commonly found in every pop-
ulation, amino acid residues with 100% correlation were ana-
lyzed as the same and were reported as such in the results.

Review of Previously Reported Associations

We used the NHGRI-EBI GWAS catalog [29] and the 
Phenoscanner [30, 31] tool to review previously reported 
disease associations with the genome-wide significant SNPs 
found in our GWAS, and with the alleles selected using 

Table 1.  Details of Infectious Agents Studied

Infectious 
Agents Groups Infectious Agents

Antigen 
Targets

MFI Seropositivity 
Threshold Used for 
Quantitative GWAS

Number of Sero-
positive Samples 

(%) (for MFI Quan-
titative GWAS)

Seropositivity Definitions if Multiple Antigens 
Available (for Case–Control GWAS)

Herpesviridae Herpes simplex virus-1 mgG-1 150 6199 (69.0) n/a

Herpes simplex virus-2 mgG-2 150 1382 (15.4) n/a

Epstein-Barr virus VCA p18 250 8518 (94.8) Positive for 2 or more antigens

EBNA-1 250 7972 (88.7) Total: 8477 (94.4%)

ZEBRA 100 8191 (91.2)

EA-D 100 7763 (86.4)

Human cytomegalovirus pp150 100 5136 (57.2) Positive for 2 or more antigens

pp52 150 5681 (63.2) Total: 5045 (56.2%)

pp28 200 5087 (56.6)

Human herpesvirus-6 IE1A 100 6968 (77.6) Three seropositivity definitions assessed sepa-
rately:

IE1B 100 7119 (79.2) -Positive for any antigen, total: 8171 (91.0%)

-Positive for IE1A, total: 6968 (77.6%)

p101k 100 1951 (21.7) -Positive for IE1B, total: 7119 (79.2%)

Human herpesvirus-7 U14 100 8528 (94.9) n/a

Varicella zoster virus Glycopro-
teins E 
and I

100 7595 (84.5) n/a

Polyomaviridae Human polyomavirus BKV BK VP1 250 8555 (95.2) n/a

Human polyomavirus JCV JC VP1 250 5118 (57.0) n/a

Merkel cell polyomavirus MC VP1 250 5915 (65.8) n/a

Bacteria Chlamydia trachomatis momp A 100 964 (10.7) Seropositive if either:

momp D 100 1371 (15.3) -Positive for pGP3

tarp-D F1 100 1635 (18.2) -Negative for pGP3 but positive for 2 out of 5 
remaining antigens (but momp D and momp 
A can only contribute once together)

tarp-D F2 100 2074 (23.1)

PorB 80 273 (3.04)

pGP3 200 1784 (19.9) Total: 1784 (19.9%)

Helicobacter pylori CagA 400 985 (11.0)a Positive for 2 or more antigens, except for CagAa

VacA 100 1571 (17.5) Total: 2674 (29.8%)

OMP 170 2640 (29.4)

GroEL 80 2716 (30.2)

Catalase 180 1558 (17.3)

UreA 130 2251 (25.1)

Parasite Toxoplasma gondii p22 100 1308 (14.6) Positive for either antigen

sag1 160 3919 (43.6) Total: 2449 (27.3%)

This table is adapted from the UKB documentation [17]: infectious agents selected for the GWAS analyses, the antigen targets used for antibody measurements, and the seropositivity 
definitions used for case–control status. All counts and ratios are restricted to the 8761 samples from white British individuals. 

Abbreviations: UKB, UK Biobank; GWAS, genome-wide association study.
aCagA was not available for all participants and was therefore not used for seropositivity calculation.
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the HLA allele Lasso analyses. Note that the Phenoscanner 
uses SNP rsID rather than allele identifiers for the HLA 
region. We restricted our results to genome-wide significant 
associations.

Patient Consent Statement

Consent was obtained by the UKB for every enrolled participant.

RESULTS

A total of 13 pathogens were chosen from the original list of 
infectious disease agents (Table 1). Most microbes were viruses 
of the Herpesviridae family, though the 3 Polyomaviridae vir-
uses most commonly associated with human NCDs [32] were 
also selected. Seroprevalence was highly variable, with Epstein-
Barr virus (EBV) antibodies found in >94% of individuals and 
Chlamydia trachomatis in <20%. There were a total of 8735 
White British individual participants (55.9% female), providing 
a total of 8984 individual samples. There was an average (range) 
of 4286 (276–8555) samples used for quantitative analyses. The 
median age (interquartile range) was 58 (51–64) years at the 
time of enrollment into the UKB.

As suspected before performing the analyses, log-
transformed MFI analyses had more stable estimates than their 
untransformed counterparts. Visual inspection of the untrans-
formed antibody MFI GWAS Manhattan plots showed a large 
amount of genome-wide significant loci, even in analyses with 
smaller sample sizes (results not shown). This suggests that the 
variance-stabilizing logarithmic transform was able to reduce 
most of the noise observed in the signals. Therefore, here we will 
only report on results from case–control and log-transformed 
antibody MFI analyses. Manhattan plots from these analyses 
are available in Supplementary Data 1.

GWAS

A total of 46 GWAS were performed: 15 case–control analyses 
and 31 logarithm-transformed MFI analyses. Genome-wide 
significant loci are shown in Table 2. Genomic inflation factors 
(Supplementary Data 2) were smaller than 1.04 for all GWAS, 
except for momp D MFI (log-transformed) at 1.24. This ana-
lyses also yielded 22 separate loci using LD clumping, the lar-
gest number of genome-wide significant peaks. However, this 
was one of the analysis with the smallest sample size (1371 
individuals). Given the genomic inflation, an underlying pop-
ulation stratification and an elevated rate of false-positive asso-
ciations should be suspected.

Reassuringly, 14 analyses showed a locus at the MHC 
(Figure  1), with EBV (P = 1.9 ×10-76 to 3.1 ×10-16), JC virus 
(JCV; P = 1.7 ×10-47 to 4.5 ×10-24), and Merkel cell virus (MCV; 
P = 7.3 ×10-37 to 1.0 ×10-18) showing the strongest associations. 
Interestingly, the FUT2 gene on chromosome 19 was identified 
in both the case–control JCV seropositivity analysis and the BK 
virus VP1 log-transformed MFI analysis. Otherwise, no other 

genetic loci were identified more than once, including within 
infectious agent families.

HLA Allele Association Analyses

EBV antibody MFIs (EA, EBNA-1, and ZEBRA) were asso-
ciated with the most HLA alleles, with Lasso selecting 10 al-
leles for EBNA-1. The DQB1*02:01 and DQA1*03:01 alleles 
were found in 2 out of the 3 EBV antibody analyses (EA-D, 
EBNA-1, and ZEBRA) in Table  1. Interestingly, despite a 
strong MHC locus in the GWAS, Lasso did not select any 
alleles for VCA antibody MFI. This is most likely because 
the effect sizes and collinearity from any of the HLA alleles 
were likely too small to confidently select them in a multivar-
iate analysis such as Lasso. Among the Polyomaviridae, JCV 
and MCV replicated their GWAS finding, with DRB1*15:01 
and DRB5*01:01 (also identified in EBNA-1) being selected 
in both antibody MFI analyses. Of note, these 2 HLA alleles 
are in almost complete linkage disequilibrium in European 
populations [33, 34]. Finally, varicella zoster virus anti-
body MFI was associated with 3 HLA alleles, 1 of which 
(DQB1*02:01) was also associated with 2 EBV antibodies 
(EA-D and EBNA). Results from the HLA allele association 
studies are summarized in Table 3.

HLA Amino Acid Residue Association Analyses

Lasso selected amino acid residues from most selected alleles in 
the HLA allele association above, and also selected amino acid 
residues from proteins encoded by genes whose alleles were not 
previously selected. There were some differences, most signifi-
cantly for the ZEBRA MFI analysis. This is likely to be due to 
the high rate of multicollinearity between amino acid residues 
encoded by MHC genes, which even Lasso was not able to en-
tirely untangle. The full results can be found in Supplementary 
Data 3.

Review of Previously Reported Associations

Of the 88 associations obtained from either GWAS or HLA al-
lele Lasso analysis, the NHGRI-EBI GWAS catalog found previ-
ously reported associations in 17 variants. In total, there were 73 
previously reported associations, 57 in the HLA regions. Using 
the Phenoscanner and the 52 loci obtained from our GWAS, 24 
had previously reported associations (total of 453 associations), 
of which 14 were in non-HLA regions (total of 271 associations). 
With both tools, associations included a wide range of diseases, 
including autoimmune diseases, white blood cell counts, body 
mass index, or respiratory functions (Supplementary Data 4 
and Supplementary Data 5).

DISCUSSION

Infectious diseases are a major contributor to the global burden 
of diseases and play a significant role in many NCDs. Given that 
multiple factors, both heritable and environmental, contribute 

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa450#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa450#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa450#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa450#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa450#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa450#supplementary-data
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Table 2.  Lead Significant Variants per GWAS as Determined by LD Clumping

Agent Analysis Variant CHR Beta SE P Value
Effect 
Allele

Other 
Allele

Effect Allele 
Frequency

Overlapping or 
Nearest Gene

BKV VP1 MFI (log) rs492602 19 –0.09 0.015 4.3e-09 A G 0.479 FUT2

C. trachomatis Seropositivity case–control rs143335233 2 –0.14 0.023 5.4e-09 C T 0.983 NCK2

PorB MFI (log) rs74725117 3 –1.71 0.31 4.5e-08 T G 0.987 TP63

Chr4:13265941 4 –1.53 0.28 3.1e-08 CT G 0.983 RNU6-962P

rs201129973 6 –1.74 0.31 3.1e-08 G A 0.981 RP11-302L19.1

rs61957300 13 –1.28 0.23 3.6e-08 A C 0.975 TPTE2P2

rs140031044 18 –2.05 0.33 7.4e-10 A G 0.989 CTD-2008L17.1

pGP3 MFI (log) Chr7:66874490 7 –0.32 0.059 4.2e-08 CTCTT C 0.916 AC006480.1

CMV pp28 MFI (log) rs12698418 7 0.13 0.024 4.4e-08 G A 0.248 EN2

EBV Seropositivity case–control rs71437272 13 0.07 0.012 2.1e-08 C T 0.980 RASA3

VCA MFI (log) rs9379862 6 0.10 0.018 1.1e-08 T C 0.740 BTN3A2

rs9271536 6 0.19 0.020 7.3e-21 A T 0.180 HLA-DQA1 (MHC)

ZEBRA MFI (log) rs34034915 6 0.10 0.017 3.3e-09 T TG 0.660 RP1-97D16.1

Chr6:32597087 6 –0.29 0.016 3.0e-75 CA C 0.637 HLA-DQA1 (MHC)

EBNA-1 MFI (log) rs67886110 3 0.09 0.016 2.1e-08 G T 0.599 MED12L

rs6927022 6 0.30 0.016 1.9e-76 A G 0.505 HLA-DQA1 (MHC)

EA-D MFI (log) rs2316515 6 0.09 0.016 4.2e-08 A G 0.388 IRF4

rs2395192 6 –0.13 0.016 3.1e-16 C T 0.440 HLA-DRB9 (MHC)

rs73067509 7 0.14 0.025 2.2e-08 C G 0.892 AC004538.3

HHV6 IE1A MFI (log) rs13079586 3 –0.10 0.018 4.6e-08 C T 0.674 ITGA9

rs2844606 6 –0.10 0.017 1.2e-08 A G 0.584 RPL3P2 (MHC)

IE1B MFI (log) rs28752523 6 –0.12 0.021 7.9e-09 C T 0.806 HLA-DQA1 (MHC)

HHV7 U14 MFI (log) rs139299944 6 0.11 0.016 4.1e-12 C CT 0.658 HLA-DQA1 (MHC)

rs75438046 11 0.27 0.047 1.0e-08 G A 0.973 CXCR5

rs1808192 17 –0.09 0.016 6.8e-09 A G 0.329 TBKBP1

H. pylori OMP MFI (log) rs3104361 6 –0.18 0.029 6.5e-10 T C 0.418 HLA-DQB1 (MHC)

UreA MFI (log) rs71569678 6 –0.34 0.061 3.0e-08 A C 0.940 RP11-439H9.1

HSV2 Seropositivity case–control rs538162817 3 –0.14 0.025 2.9e-08 T C 0.988 GRK7

rs7503464 17 0.03 0.0054 1.2e-08 G A 0.484 CTD-3195I5.5

mgG-2 MFI (log) rs144232229 3 –1.0 0.17 1.9e-09 G A 0.989 TAMM41

Chr5:166282898 5 0.73 0.13 4.6e-08 CT C 0.020 CTB-63M22.1

rs117705146 8 –0.94 0.16 3.8e-09 G A 0.986 ADAM32

JCV Seropositivity case–control rs17843569 6 –0.15 0.010 1.7e-47 C G 0.157 HLA-DQA1 (MHC)

rs2432132 19 –0.06 0.0082 8.8e-15 C T 0.380 FUT2

VP1 MFI (log) rs1610401 1 0.35 0.063 1.9e-08 G C 0.026 LRRN2

rs374949924 6 –0.26 0.026 4.5e-24 G A 0.198 HLA-DRB6 (MHC)

MCV Seropositivity case–control rs55792153 5 0.05 0.0082 3.6e-10 A C 0.255 TMEM173

rs9269771 6 –0.12 0.0096 7.3e-37 T C 0.252 HLA-DRB1 (MHC)

VP1 MFI (log) rs7444313 5 0.16 0.021 6.5e-15 G A 0.273 TMEM173

rs76148407 6 0.31 0.052 1.8e-09 C G 0.967 HIST1H4PS1

rs114708114 6 0.37 0.066 2.1e-08 C T 0.980 OR2E1P

rs75040706 6 0.30 0.054 3.4e-08 A G 0.970 RP1-86C11.7

rs28393149 6 –0.26 0.029 1.0e-18 C G 0.882 HLA-DRB6 (MHC)

T. gondii sag1 MFI (log) rs541989586 3 –0.26 0.047 3.9e-08 A AT 0.934 SOX2-OT

rs148929820 5 –0.44 0.072 8.5e-10 G A 0.975 RP11-510I6.1

rs11881343 19 –0.47 0.086 3.9e-08 A T 0.982 NOTCH3

VZV Seropositivity case–control rs1766 6 –0.04 0.0055 1.1e-11 A G 0.530 HLA-DQB1 (MHC)

Glycoproteins E and I MFI 
(log)

rs13197633 6 –0.20 0.025 1.4e-15 G A 0.880 TOB2P1

rs34073492 6 –0.19 0.025 5.8e-14 C T 0.877 RP11-457M11.5

rs56401801 6 –0.19 0.025 6.7e-14 T A 0.883 VN1R10P

rs13204572 6 –0.16 0.026 1.1e-09 G C 0.892 HIST1H4D

rs1048381 6 –0.22 0.021 6.3e-25 G A 0.815 HLA-DQA1 (MHC)
Where applicable, variant positions are given using the GRCh37/hg19 human genome assembly. For variants within the major histocompatibility complex, only the variant with lowest P 
value is reported.

Abbreviations: BKV, BK polyomavirus; CMV: cytomegalovirus; CHR, chromosome; EBV: Epstein-Barr virus; HHV6, human herpes virus 6; HHV7, human herpes virus 7; HSV2, herpes simplex 
virus type 2; JCV, JC polyomavirus; MCV, Merkel cell polyomavirus; MFI, mean fluorescence intensity; MHC, major histocompatibility complex; SE, standard error; VZV: varicella zoster virus.
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Figure 1.  QQ plot and Manhattan plots from selected GWAS from the seropositivity case–control and antibody log-transformed MFI analyses. Each dot on a Manhattan 
plot (right) represents the P value (y-axis, on a logarithmic scale) associated with the association test at a genetic variant. Values above the dashed line are considered 
genome-wide significant. QQ plots (left) show the observed P values (y-axis) against the expected P values (x-axis). Any deviance from the red line suggests that the effect 
seen is not explained only by chance alone. As can be seen, the MHC is a commonly identified locus. A, EBV EA-D MFI (log). B, EBV EBNA-1 MFI (log). C, EBV ZEBRA MFI (log). 
D, JCV seropositivity case–control. Abbreviations:  EBV, Epstein-Barr virus; JCV, JC polyomavirus; GWAS, genome-wide association studies; MHC, major histocompatibility 
complex; MFI, mean fluorescence intensity.
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to their transmission, their acquisition, and the human host re-
sponse, studying their genetic determinants can be challenging. 
In this study, we have used measurements from the UKB’s se-
rological results to perform the largest reported genetic asso-
ciation study of infectious diseases antibody measurements to 
date. While the HLA region was commonly associated with 
the host’s antibody-mediated immune responses, we have un-
covered multiple biologically plausible genetic determinants 
of infectious diseases. For example, for EBV, we found loci at 
RASA3 [35], MED12L [36], and IRF4 [37], which are related to 
viral transcription or related to EBV-associated carcinogenesis. 
Similarly, the TMEM173-encoded STING [38] protein is asso-
ciated with MCV-caused Merkel cell carcinoma [39]. Further, 
while our results cannot prove causality, multiple previously re-
ported epidemiological associations support our methodology. 
For example, allele DRB1*15:01 was associated with both JCV 
analysis and EBV ZEBRA analysis. DRB1*15:01 is the main 
genetic risk factor for multiple sclerosis [40], a disease previ-
ously associated with EBV [41]. DRB1*15:01 was also selected 
by Lasso as a predictor of JCV serology, the cause of progres-
sive multifocal leukoencephalopathy, another demyelinating 
disease [42] that can also be triggered when giving immuno-
suppression to patients with multiple sclerosis [43]. Similarly, 
FUT2 was associated with both BKV and JCV, 2 Polyomaviridae 
with high genetic homology [44], and is therefore likely to be 
truly associated with their pathophysiology. FUT2 is a major 
determinant of the blood group secretor status and has been 
associated with multiple other viruses [45] and NCDs, most 
notably kidney diseases [46, 47]. Uncovering these genetic de-
terminants may allow for better informed drug and vaccine 
development, which typically is a long and expensive process. 
Similar genetics-informed prioritization of therapeutic targets 
for further drug and vaccine development has previously been 
used in multiple diseases with success [48].

There are few published GWAS on human infectious diseases 
[14, 15, 49–52], and each has employed a different methodology 
to enroll patients, making comparisons difficult. Our study used 
serology data, but others have used prospective patient enrollment 
[52] or electronic medical record data [50, 51], and the biggest 
GWAS on infectious diseases to date used self-reported history 
using questionnaires [15]. A similar preprint using the same data 
as ours is currently accessible and found similar significant asso-
ciations [53]. However, the authors performed a slightly different 
analysis that did not account for intrinsically limited serology 
testing specificity or UKB HLA quality control recommendations. 
Nevertheless, as we found here, the HLA emerges as an important 
risk locus across most published GWAS.

Our study’s main strength lies in its careful methodology. 
Given the large number of statistical tests performed and the 
inherent diagnostic limitations of serological tests, we made 
multiple analytic choices to ensure interpretable results while 
lowering the risk of false associations. Most notably, we used 
Lasso regression to select HLA alleles and amino acid residues, 
and we used logarithmic transform to stabilize the variance of 
the antibody MFI analyses.

However, given that serological tests may have multiple 
possible interpretations, our results should be interpreted 
with caution. That is because the differential diagnosis of a 
negative serological test includes having never been in contact 
with the infectious agent, the host not being able to mount 
an antibody mediated response, or antibodies not being a 
good proxy for either contact or immune response [54]. 
Alternatively, a positive antibody titer may be explained by 
cross-reactivity with other antigens, especially if the antibody 
titers are low [55]. Further, antibody levels are known to vary 
in time due to multiple host and environmental factors [56]. 
To better assess antibody-mediated response in hosts with a 
likely exposure, we have limited our quantitative analyses to 
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individuals above the seropositivity threshold. Nevertheless, 
given that the population was randomly selected from the 
UKB cohort, we cannot rule out that unmeasured environ-
mental or socioeconomic confounders [57] may have affected 
our results.

Our study has several limitations that can help guide future 
efforts in studying genetic determinants of infectious diseases. 

First, ideally future serological studies should be performed in 
individuals with a clear history of exposure (or lack thereof) to 
the infectious agent. This would increase the serological test’s 
specificity and improve the chance of finding clinically sig-
nificant genetic associations. Second, as the environment is a 
major nonheritable determinant of infectious diseases, it should 
be factored in the design of future genetic studies. Third, as 

Table 3.  HLA Allele Association Analysis Summary

Agent Analysis Selected Components Univariate Effect (95% CI) Univariate P Value Multivariate Effect (95% CI) Multivariate P Value

EBV EA-D MFI (log) B*08:01 –0.16 (–0.20 to –0.11) 6.17 ×10-12 –0.065 (–0.13 to –0.0011) .05

DRB1*09:01 0.40 (0.27 to 0.54) 8.67 ×10-9 0.24 (0.081 to 0.40) .003

DQB1*02:01 –0.17 (–0.21 to –0.12) 1.38 ×10-13 –0.092 (–0.16 to –0.028) .005

DQA1*03:01 0.11 (0.070 to 0.15) 2.96 ×10-8 0.072 (0.032 to 0.11) .0004

DQB1*03:03 0.18 (0.11 to 0.25) 7.3 ×10-7 0.10 (0.019 to 0.18) .02

Sex –0.23 (–0.27 to –0.19) <2 ×10-16 –0.24 (–0.29 to –0.20) <2 ×10-16

Age 0.007 (0.005 to 0.01) 1.35 ×10-7 0.064 (0.042 to 0.086) 1.04 ×10-8

PC1 0.08 (0.06 to 0.11) 9.61 ×10-14 0.078 (0.056 to 0.10) 4.16 ×10-12

EBNA-1 MFI (log) DRB4*01:03 –0.17 (–0.20 to –0.13) <2 ×10-16 –0.11 (–0.15 to –0.067) 3.75 ×10-7

DRB3*02:02 0.21 (0.17 to 0.26) <2 ×10-16 0.16 (0.11 to 0.21) 3.88 ×10-10

DRB1*07:01 –0.22 (–0.27 to –0.18) <2 ×10-16 –0.089 (–0.45 to 0.27) .63

DRB1*12:01 0.53 (0.40 to 0.67) 3.76 ×10-15 0.30 (0.16 to 0.43) 1.57 ×10-5

DRB1*15:01 0.26 (0.22 to 0.31) <2 ×10-16 0.14 (0.061 to 0.22) .0005

DQB1*02:01 –0.24 (–0.28 to –0.19) <2 ×10-16 –0.25 (–0.30 to –0.20) <2 ×10-16

DQA1*01:02 0.23 (0.19 to 0.27) <2 ×10-16 0.058 (–0.016 to 0.013) .12

DQA1*02:01 –0.22 (–0.27 to –0.18) <2 ×10-16 –0.091 (–0.45 to 0.27) .62

DPB1*03:01 –0.20 (–0.25 to –0.14) 1.99 ×10-12 –0.19 (–0.25 to –0.14) 5.49 ×10-12

DPB1*04:02 0.16 (0.11 to 0.21) 4.96 ×10-10 0.11 (0.058 to 0.16) 2.78 ×10-5

ZEBRA MFI (log) DRB4*01:01 0.28 (0.23 to 0.34) <2 ×10-16 0.074 (–0.000 29 to 0.15) .05

DRB1*03:01 –0.20 (–0.24 to –0.16) <2 ×10-16 –0.081 (–0.12 to –0.038) .0002

DRB1*04:04 0.45 (0.37 to 0.53) <2 ×10-16 0.36 (0.27 to 0.46) 3.19 ×10-14

DQB1*03:02 0.24 (0.19 to 0.28) <2 ×10-16 0.045 (–0.029 to 0.12) .23

DQB1*04:02 0.36 (0.26 to 0.46) 1.18 ×10-11 0.45 (0.35 to 0.55) <2 ×10-16

DQA1*02:01 0.27 (0.23 to 0.31) <2 ×10-16 0.29 (0.23 to 0.35) <2 ×10-16

DQA1*03:01 0.17 (0.13 to 0.20) <2 ×10-16 0.13 (0.075 to 0.18) 1.29 ×10-6

Sex –0.27 (–0.31 to –0.23) <2 ×10-16 –0.29 (–0.33 to –0.25) <2 ×10-16

Age 0.051 (0.029 to 0.072) 4.17 ×10-6 0.059 (0.039 to 0.080) 2.43 ×10-8

JCV Seropositivity case–controla DRB5*01:01 0.55 (0.50 to 0.60) <2 ×10-16 1.02 (0.51 to 1.55) .95

DRB1*15:01 0.55 (0.50 to 0.59) <2 ×10-16 0.63 (0.31 to 1.26) .19

DQB1*06:02 0.55 (0.21 to 0.60) <2 ×10-16 0.94 (0.64 to 1.39) .75

DQA1*01:02 0.61 (0.57 to 0.66) <2 ×10-16 0.89 (0.78 to 1.02) .11

Sex 1.25 (1.15 to 1.36) 1.87 ×10-7 1.26 (1.16 to 1.37) 8.06 ×10-8

VP1 MFI (log) DRB5*01:01 –0.29 (–0.35 to –0.23) <2 ×10-16 –0.29 (–0.35 to –0.23) <2 ×10-16

MCV VP1 MFI (log) A*29:02 –0.41 (–0.50 to –0.31) <2 ×10-16 –0.41 (–0.50 to –0.32) <2 ×10-16

DRB1*04:04 –0.39 (–0.49 to –0.29) 1.9 ×10-14 –0.41 (–0.51 to –0.31) 7.01 ×10-16

DRB1*15:01 –0.19 (–0.24 to –0.13) 1.67 ×10-11 –0.12 (–0.36 to 0.11) .30

DQB1*05:01 0.21 (0.16 to 0.27) 1.53 ×10-15 0.068 (–0.055 to 0.19) .28

DQB1*06:02 –0.18 (–0.24 to –0.13) 2.62 ×10-11 –0.059 (–0.29 to 0.18) .62

DQA1*01:01 0.21 (0.16 to 0.26) <2 ×10-16 0.10 (–0.016 to 0.22) .09

VZV Glycoproteins E and I MFI (log) A*01:01 0.17 (0.13 to 0.20) <2 ×10-16 0.089 (0.039 to 0.14) .0004

B*08:01 0.20 (0.16 to 0.25) <2 ×10-16 0.040 (–0.033 to 0.11) .28

DQB1*02:01 0.21 (0.17 to 0.25) <2 ×10-16 0.14 (0.080 to 0.20) 8.67 ×10-6

Sex 0.21 (0.16 to 0.25) <2 ×10-16 0.21 (0.17 to 0.26) <2 ×10-16

As explained in the text, the untransformed antibody MFI analyses are not shown. Only pathogens with Lasso-selected alleles are reported. Age is on the standardized scale. Only variables 
selected by Lasso are shown. PC1: first principal component (effect is on the standardized scale). Multivariate effects stand for the effects observed when all alleles selected by Lasso (for 
each respective infection) are included in the same regression analysis. 

Abbreviations:  EBV, Epstein-Barr virus; JCV, JC polyomavirus; MCV, Merkel cell polyomavirus; MFI, mean fluorescence intensity; VZV, varicella zoster virus.
aEffects for the JCV seropositivity case–control analysis are reported as odds ratios.
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individuals are possibly constantly re-exposed to infectious dis-
eases, longitudinal follow-up and serial measurements of both 
IgM and IgG would also improve the chance of finding clini-
cally important genetic variants. Lastly, our results are mostly 
hypothesis-generating, and despite the fact that many of the loci 
we found to be associated with infectious diseases have been as-
sociated with other diseases, our study needs to be followed by 
in vitro or in vivo studies to establish true causal associations. 
This is especially true given that most of the associations we 
found were in the HLA, a region of the human genome that 
does not lend itself well to further in silico study.

In summary, here we present the largest GWAS and HLA as-
sociation analyses on infectious diseases and the resultant host 
antibody–mediated immune response to date. While this work 
is hypothesis-generating and should not be used to infer cau-
sality between infections and NCDs without further research, 
with careful planning, we hope that future genetic studies will 
lead to further advances in our understanding of the interplay 
between, host, environment, and disease pathophysiology.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
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