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Abstract
Stomach adenocarcinoma (STAD) is a malignant tumor with high histological het-
erogeneity. However, the potential mechanism of STAD tumorigenesis remains to be 
elucidated. The purpose of our research was to identify candidate genes associated 
with the diagnosis, progression, prognosis, and immunotherapeutic targets of STAD. 
Based on tumor samples from the GSE28541 dataset, weighted gene co- expression 
network analysis revealed 16 modules related to STAD stage and grade. The salmon 
module emerged as the most relevant module (cor = 0.34), and functional enrichment 
analysis showed that the genes in the salmon were primarily related to major histo-
compatibility complex, immune response, and cell differentiation. Toll- like receptor 
7 (TLR7) was recognized as the real hub gene in the salmon module. Compared to 
normal stomach tissues, the transcriptional and translational levels of TLR7 were 
significantly elevated in STAD. Receiver operating characteristic curves verified that 
TLR7 displayed remarkable sensitivity and specificity for the diagnosis of STAD. 
The functions of TLR7 were primarily enriched in the regulation of Toll- like receptor 
signaling pathway, pattern recognition receptor signaling pathway, and innate im-
mune response. Overexpression of TLR7 tended to indicate more advanced STAD, 
higher degree of STAD, and poorer prognosis of STAD. In addition, TLR7 expres-
sion was positively correlated with immune cell infiltration and immune checkpoint 
expression. Somatic copy number alteration of TLR7 was also significantly related to 
immune cell infiltration. In conclusion, this study revealed the crucial role of TLR7 
in STAD and provided new perspectives for the selection of biomarkers, progression 
and prognosis indicators, and immunotherapeutic targets for STAD.
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1 |  INTRODUCTION

Gastric cancer is the second leading cause of cancer- 
related mortality worldwide, with an estimated 7,20,000 
deaths per year.1 It has been well established that gastric 
cancer is mainly derived from the glandular epithelium, 
with stomach adenocarcinoma (STAD) as the most com-
mon pathology type.2 However, knowledge of the specific 
pathogenesis of STAD remains limited. It is generally ac-
cepted that various intertwined factors, including genetic 
susceptibility and environmental stimuli (such as ciga-
rettes, diets, and Helicobacter pylori infection), contribute 
to morbidity and mortality in patients with STAD.3 Despite 
improvements in chemotherapy, radiotherapy, and surgery 
for STAD, 60% of patients with STAD are initially diag-
nosed with the advanced disease, thereby resulting in poor 
clinical outcomes.4,5 Thus, the search for novel molecular 
targets has become imperative for advancing targeted ther-
apy for STAD.

With the widespread application of high- throughput tech-
nology, including gene chip and RNA sequencing, bioinfor-
matics has been utilized to enable in- depth studies on the 
mechanisms accounting for cancer progression. For exam-
ple, some studies have adopted bioinformatics to determine 
the potential molecules associated with tumor progression 
and prognosis.6,7 As some studies are limited in screening 
differentially expressed genes (DEGs) between normal and 
cancerous tissues,8,9 a mechanism underlying the associa-
tion between candidate genes and cancer promotion must be 
discovered.

In this study, we conducted weighted correlation net-
work analysis (WGCNA) and integrated high- connective 
genes into the same modules. After performing a survival 
analysis of all eligible genes in the selected module, the 
current data were found to support the prognostic role of 
Toll- like receptor 7 (TLR7). Moreover, we combined data 
from a large number of databases to determine the ability 
of TLR7 to distinguish patients with STAD from healthy 
individuals, to validate the prognostic performance of 
TLR7 in STAD, and to uncover the significant contribu-
tion of TLR7 in the immune microenvironment of STAD. 
Overall, our findings provide novel insights into the role of 
TLR7, which can be exploited for novel and personalized 
treatment of patients with STAD.

2 |  MATERIALS AND METHODS

2.1 | Data acquisition and preprocessing

A flow diagram of the study is shown in Figure 1. We sys-
tematically searched the GEO database to identify the gastric 
cancer- related datasets that were clearly diagnosed as adeno-
carcinoma and provided the stage and grade of each patient 
for further analysis. The gene chip raw data of GSE28541 
provided by Sangbae et al. 10 were obtained from the GEO 
database. GSE28541, based on the GPL13376 platform 
(Illumina HumanWG- 6 v2.0 expression beadchip), contained 
40 tumor samples with a pathologically confirmed diagnosis 
of STAD. In R, the robust multiple array averaging (RMA) 

F I G U R E  1  Workflow of our research
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algorithm in the affy package was implemented to preprocess 
the gene expression profile data. After correcting the back-
ground, quantile normalization, and probe summarization, 
the most variable 10,000 of 25,036 genes were preserved for 
WGCNA.

2.2 | Construction of the co- 
expression network

The “WGCNA” package in R was employed to estab-
lish a gene co- expression network of the 10,000 genes.11 
“GoodSamplesGenes” function was implemented to examine 
the quality of raw data. Thereafter, we obtained an adjacency 
matrix using Pearson's correlation analysis. We constructed 
a scale- free co- expression network by calculating the soft- 
thresholding parameter β. To intensively analyze the func-
tional modules, the adjacency matrix was converted into a 
topological overlap matrix (TOM), and the dissimilarity ma-
trix between genes was calculated (dissTOM = 1- TOM).12 
Hierarchical clustering of dissTOM resulted in genes with 
similar expression clustered in the same gene module. The 
minimum number of module genes was set to 40.13 The 
DynamicTreeCut algorithm was applied to obtain the gene 
modules and the modules with high similarity were further 
merged.

2.3 | Identification of the most related 
module and module functional annotation

Module eigengenes (MEs) and gene significance (GS) 
were employed to identify modules related to tumor stage 
and histological grade.14 The MEs were considered as the 
major element of each gene module, and ME expression 
was recognized on behalf of all genes in a specific mod-
ule. The correlation between tumor stage, tumor grade, 
and MEs was derived to determine the modules associated 
with clinical significance. Additionally, in the linear re-
gression analysis of clinical characteristics and gene ex-
pression profiles, GS was interpreted as the mediating p 
value of each gene (GS =  lgP). The module significance 
(MS) was then interpreted as the average GS of all genes in 
a given module. The module (i.e., salmon module) with the 
most absolute MS was defined as the clinically significant 
module.

To further explore the function of the salmon module, 
which was obviously connected to the histologic grade of the 
tumor, we uploaded all genes in the salmon module into the 
g:Profiler website (http://www.biit.cs.ut.ee/gprof iler/gost) 
for functional annotation analysis and visualized the results 
using the Cytoscape software.8

2.4 | Identification of the real hub genes 
in STAD

Each gene module membership (MM) was calculated in the 
hub module, which was used to measure the importance of 
each gene in the module. Genes with |GS| >0.2 and |MM| 
>0.8 were considered as candidate hub genes.15 Thereafter, 
47 candidate hub genes were uploaded to the STRING da-
tabase (https://strin g- db.org/) to establish a protein- protein 
interaction (PPI) network.16 The following filter condi-
tions of the real hub genes were employed in our study: (ⅰ) 
high- connective genes in the PPI network; (ⅱ) genes sig-
nificantly associated with STAD stage and grade; and (ⅲ) 
genes significantly associated with the prognosis of STAD 
through analysis of the Kaplan– Meier Plotter database. 
Thus, only genes significantly related to both the progres-
sion and prognosis of patients with STAD were considered 
as the real hub genes. Of note, the minimum interaction 
score of these genes was >0.4, and genes with node con-
nectivity >10 (total edges/total nodes) were considered as 
the hub nodes in the PPI network.9

The Cancer Genome Atlas (TCGA, https://cance rgeno 
me.nih.gov/) database, which has 325 STAD samples with 
complete clinical information, was used to identify the hub 
genes in the PPI network that were significantly associated 
with STAD stage and grade. The Kaplan– Meier Plotter da-
tabase (http://kmplot.com/analy sis/) is an online prognostic 
analysis tool that integrates the Gene Expression Omnibus 
(GEO), European Genome- Phenome Archive (EGA), and 
TCGA databases. The Kaplan– Meier Plotter database was 
thus employed to assess the prognostic values of the hub 
genes closely related to tumor stage and grade; the following 
parameters were selected: “Auto select best cutoff,” “overall 
survival (OS),” “relapse- free survival (RFS),” and “Stomach 
adenocarcinoma (n = 375)”. The hub genes that were signifi-
cantly related to both the OS and RFS of STAD were pre-
served. Ultimately, the genes significantly associated with 
stage, grade, and prognosis of STAD were identified as hub 
genes.

2.5 | Intensive analysis of the real hub genes 
through a series of databases

2.5.1 | Transcriptional level analysis of real 
hub genes in STAD and normal stomach tissues

To investigate the differences in the transcriptional lev-
els of hub genes between STAD and normal stomach 
tissues and to explore the potential diagnostic value of 
real hub genes in STAD, the mRNA expression profiles 
of real hub genes were downloaded from the TCGA and 

http://www.biit.cs.ut.ee/gprofiler/gost
https://string-db.org/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://kmplot.com/analysis/
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Genotype- Tissue Expression project (GTEx, https://www.
gtexp ortal.org/home/). All data from TCGA and GTEx 
were converted into log2(fpkm+1) form for further analy-
sis. The “sva” package in R was utilized to batch normalize 
the gene expression profile data from different databases. 
The “stat_compare_means” function in R was applied to 
analyze and screen the differential expression of real hub 
genes in STAD and normal stomach samples. The “pROC” 
package in R was implemented to analyze the diagnostic 
values of real hub genes in STAD. The Oncomine database 
(https://www.oncom ine.org) was used to verify the differ-
ent expression and diagnostic values of real hub genes; the 
following parameters of the real hub genes were selected: 
“Gene: real hub genes,” “Analysis Type: Gastric Cancer 
versus Normal Analysis,” “Data Type: mRNA,” and 
“THRESHOLD BY: P- VALUE = 0.05, FOLD CHANGE 
= 2, GENE RANK = ALL”.

2.5.2 | Translational level analysis of the real 
hub genes in STAD and normal stomach tissues

The Clinical Proteomic Tumor Analysis Consortium 
(CPTAC, https://cptac - data- portal.georg etown.edu/) da-
tabase integrates genomic and proteomic data to identify 
and describe all proteins in tumor and normal tissues, and 
to identify candidate proteins that can be used as tumor 
biomarkers. This database was employed to explore the 
discrepancy in the translational level of real hub genes in 
STAD and normal stomach samples. After deleting sam-
ples without the expression level of the real hub genes, 108 
STAD and paracancerous tissues with “unshared log2(Fold 
Change) value” were obtained for further visualization of 
different protein levels of real hub genes in tumor and nor-
mal tissues via R language.

2.5.3 | Validation of the prognostic 
performances of real hub genes in STAD

A total of 325 STAD samples with complete prognos-
tic information obtained from the TCGA database were 
used to verify the prognostic performance of the real hub 
genes. To better reflect the real biological function of a 
gene, the “surv_cutpoint” function in R was implemented 
to determine the optimal critical point of risk separation. 
According to the best cut- off value, all patients with STAD 
were stratified into high and low expression of real hub 
genes. Survival analysis using the Kaplan– Meier method 
was then implemented to validate the prognostic perfor-
mance of real hub genes. Univariate and multivariate Cox 
regression analyses based on the expression of the real hub 
genes and the clinicopathological traits identified in the 

TCGA database were applied to justify their independent 
prognostic abilities.

2.5.4 | Co- expression analysis and immune 
infiltration analysis of the real hub genes in STAD

GeneMANIA (http://www.genem ania.org) 17 was used to 
identify other genes that are closely associated with real 
hub genes based on functional association data, including 
protein and genetic interactions, pathways, co- expression, 
co- localization, and protein domain similarity. TIMER 
(https://cistr ome.shiny apps.io/timer/),18 a user- friendly 
and reliable online tool, was applied to systematically 
analyze immune infiltrates across a multitude of cancers. 
“Gene module” was used to explore the correlation be-
tween the real hub gene level and immune cell infiltration. 
The “SCNA module” was used to investigate the poten-
tial association between somatic copy number alteration 
(SCNA) of real hub genes and six immune cell infiltration 
abundances in STAD. In addition, the “correlation mod-
ule” was employed to analyze the correlation between the 
real hub genes and certain common immune checkpoints 
(e.g., PDCD1, CD247, PDCD1LG2, CTLA4, HAVCR2, 
and IDO1). All statistical analyses in our research were 
conducted using R (Version 4.0.1), and statistical signifi-
cance was set at p < 0.05.

3 |  RESULTS

3.1 | WGCNA identification of key modules

The GSE28541 samples were clustered using the aver-
age linkage method and Pearson's correlation method 
(Figure  2A). No outlier samples were detected based on 
the Pearson's correlation analysis. In our research, we se-
lected the power of β = 12 (scale- free R2 = 0.86) as a soft- 
thresholding parameter to determine whether the network 
was scale- free (Figure A1). Based on average linkage hier-
archical clustering, we identified 16 modules (Figure 2B). 
The salmon module was most closely related to tumor 
grade and was thus selected for further analysis (Figure 2C 
and D).

3.2 | Biological function enrichment analysis

The functions of all genes in the salmon module were di-
vided into three groups: biological process (BP), cellular 
component (CC), and molecular function (MF). The genes 
in the BP group were primarily enriched in immune response 
(Figure 3A); the genes in the CC group were mainly enriched 

https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
https://www.oncomine.org
https://cptac-data-portal.georgetown.edu/
http://www.genemania.org
https://cistrome.shinyapps.io/timer/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28541
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in the major histocompatibility complex (MHC) protein com-
plex (Figure 3B); and the genes in the MF group were sig-
nificantly enriched in signaling receptor activity and peptide 
antigen binding (Figure 3C). Based on Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis, these candi-
date hub genes were primarily involved in cell differentiation 
(Figure 3D).

3.3 | Identification of the real hub genes

We identified 47 high- connective genes in the salmon module as 
hub genes based on predefined criteria (Figure 2E). Thereafter, 
we conducted a PPI network analysis by uploading these 47 
hub genes into the STRING database. Under the threshold of 
node connectivity >10 and a minimum interaction score >0.4, 
30 hub nodes were identified (Figure 2F). Subsequently, 325 
patients with STAD with complete clinical information were 
selected from the TCGA database to determine the association 
between these 30 hub genes and tumor stage and grade. The 
results showed that all 30 hub genes were significantly associ-
ated with tumor grade. Furthermore, 10 hub genes (i.e., ITK, 
TLR7, LAG3, IL2RB, CXCR3, CD3E, CCL5, GZMK, HLA- 
DOA, and CD8A) were found to be significantly associated 
with tumor stage (Figures 4A and B). The 10 genes, closely 
associated with tumor stage and grade, were selected for fur-
ther survival analysis using the Kaplan– Meier plotter database. 

Based on the results, only TLR7 was significantly associated 
with the OS and RFS of STAD (Figure 4C and D). Ultimately, 
TLR7, which is significantly related to tumor progression and 
prognosis, emerged as the hub gene in STAD.

3.4 | Expression pattern analysis and 
diagnostic value evaluation of TLR7 in STAD

We evaluated the mRNA levels of TLR7 in STAD and 
normal stomach tissues using the gene expression profiles 
of TCGA and GTEx. The transcriptional level of TLR7 in 
STAD samples was significantly higher than that in normal 
stomach tissues (p < 0.0001) (Figure 5A). We also compared 
the mRNA levels of TLR7 between tumor and normal tis-
sues using the Oncomine database (Figure 5B). Similarly, the 
results reached a similar conclusion (Figure 5B). Pan- cancer 
analysis based on the TIMER database revealed a signifi-
cantly different mRNA expression of TLR7 in many cancers, 
including STAD (Figure  5C). In addition, the translational 
level of TLR7 was found to be significantly higher in STAD 
tissues than in paracancerous tissues through an analysis of 
the CPTAC database (Figure 5D).

To estimate the diagnostic values of TLR7 in STAD, re-
ceiver operating characteristic (ROC) curves were plotted 
using the gene expression profiles of the TCGA, GTEx, and 
Oncomine databases. The area under the curve (AUC) of 

F I G U R E  2  Clustering dendrogram and module identification. (A) Clustering dendrogram of 40 samples. (B) Dendrogram of all DEGs 
clustered based on 1- TOM. (C) Correlation heatmap between module eigengenes and the clinical features of STAD. (D) Distribution of the 
average GS in the modules related to histological grades of STAD. (E) Scatter plot of module eigengenes in the salmon module. (F) PPI network of 
candidate hub genes derived from WGCNA (The candidate hub genes are colored in red)
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TLR7 was 0.878 based on the TCGA and GTEx databases 
and 0.796 based on the Oncomine database. Such finding in-
dicates that TLR7 had high specificity and sensitivity for the 
diagnosis of STAD (Figure 5E and F).

3.5 | Validation of the prognostic value of 
TLR7 in STAD

To verify the prognostic performance of TLR7 in STAD, 
325 samples with corresponding survival data from TCGA 
were then stratified into high expression and low expres-
sion according to the best cut- off value computed by the 
“surv_cutpoint” function in R. According to the survival 
curves depicted in Figure 6A, the high expression subgroup 
showed a poorer OS rate than the low- expression subgroup. 
To confirm whether TLR7 acted to predict prognosis inde-
pendently, univariate and multivariate Cox regression analy-
ses were performed (Figure 6B and C). However, the results 
do not support the hypothesis that TLR7 is an independent 
prognostic factor.

3.6 | Co- expression analysis and immune 
infiltration analysis of TLR7 in STAD

GeneMANIA revealed the 20 genes most closely related 
to TLR7. GeneMANIA also revealed that the functions of 
TLR7 were primarily related to the Toll- like receptor signal-
ing pathway, pattern recognition receptor signaling pathway, 
and innate immune response- activating signal transduction 
(Figure A2). In addition, the TIMER database was used to 
explore the correlation between TLR7 and local immune 
infiltration abundance in tumors. There was a significant 
positive correlation between TLR7 expression and the infil-
tration of CD8+T cells, CD4+T cells, macrophages, neutro-
phils, and dendritic cells (cor > 0.45, p < 0.001) (Figure 7A). 
This finding suggested that the proportion of immune cell 
infiltration increased with an increase in TLR7 expression. 
TLR7 was also found to be positively related to certain well- 
recognized immune checkpoints (e.g., PDCD1, CD247, 
PDCD1LG2, CTLA4, HAVCR2, and IDO1) (r  >  0.45, 
p < 0.001), which revealed that TLR7 might play a potential 
role in the response to immunotherapy in STAD (Figure 7B). 

F I G U R E  3  Functional analysis of all 
genes in the salmon module. (A) BP, (B) 
CC, (C) MF, and (D) KEGG
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In addition, different SCNAs of TLR7 were closely related 
to the immune infiltration of six leukocytes, indicating its 
regulatory role in the STAD immune microenvironment 
(Figure 7C).

4 |  DISCUSSION

STAD, a common alimentary tract malignancy, is associated 
with high morbidity and mortality. Although, progress has 

F I G U R E  5  Different expression analysis of TLR7 in STAD and normal stomach tissues. (A) mRNA levels of TLR7 in STAD and normal 
stomach tissues based on the TCGA and GTEx databases. (B) mRNA levels of TLR7 in STAD and normal stomach tissues based on the Oncomine 
database. (C) Pan- cancer analysis of TLR7 at the mRNA level based on the TIMER database. (D) Protein levels of TLR7 in STAD and normal 
stomach tissues based on the CPTAC database. (E) ROC curve of TLR7 based on the TCGA and GTEx databases. (F) ROC curve of TLR7 based 
on the Oncomine database
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been made in the treatment of STAD in recent decades, the 
prognosis of patients remains poor. Furthermore, the patho-
physiological mechanisms underlying STAD remain unclear. 
With the rapid development of gene chip and sequencing 

technology, bioinformatics analysis is playing an important 
role in the medical field. An increasing number of biomark-
ers, prognostic indicators, and immunotherapeutic targets has 
emerged as pivotal contributors to various malignancies.

F I G U R E  6  Prognostic value validation and independent prognostic analysis of TLR7 in STAD. (A) Validation of the prognostic value of 
TLR7 in STAD based on the TCGA database. (B) Univariate and (C) Multivariate Cox regression analyses of TLR7 in STAD

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ ++
+++ ++ + ++ +

++++++++++
+++

+++++++++
++++ + ++ ++

p=0.019

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Time(years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

TLR7 + +High Low

284 169 43 24 15 10 5 3 3 3 1
41 32 16 6 5 1 1 0 0 0 0Low

High

0 1 2 3 4 5 6 7 8 9 10
Time(years)

TL
R

7

age

gender

grade

stage

TLR7

pvalue

0.005

0.178

0.081

<0.001

0.022

Hazard ratio

1.027(1.008−1.046)

1.317(0.882−1.967)

1.378(0.961−1.975)

1.490(1.194−1.860)

2.138(1.116−4.096)

1.0 2.0 4.0
Hazard ratio

age

gender

grade

stage

TLR7

pvalue

<0.001

0.216

0.165

<0.001

0.235

Hazard ratio

1.034(1.014−1.054)

1.290(0.862−1.932)

1.311(0.895−1.920)

1.541(1.210−1.962)

1.520(0.762−3.033)

1.0 2.0
Hazard ratio

(A) (B) (C)
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In 2016, Yepes et al. provided a novel characteriza-
tion of the miRNA expression in STAD and identified the 
hub miRNAs closely related to the tumoral phenotype via 
WGCNA.19 In 2018, Zhang et al. integrated gene expression 
profiles and corresponding clinical information of STAD 
from TCGA via WGCNA and revealed the prognostic role 
of sorting nexin 10 in STAD.20 In 2021, Lu uncovered the 
homogeneous tumorigenicity of the alimentary canal, and 
the SERPINE1/hsa- mir- 145/SNHG1 axis was identified as 
a potential prognostic indicator and the therapeutic target of 
alimentary canal malignancies via WGCNA using the TCGA 
database.21 Compared to multiple analyses of the TCGA 
STAD cohort via WGCNA, there is an absence of the GEO 
STAD cohort for WGCNA. In this study, we selected GEO 
datasets with clinical features, including the STAD stage and 
grade. GSE28541 and GSE17154 were identified, which had 
40 and 23 STAD samples, respectively. Given that distinct 
datasets in GEO resources may provide valuable comple-
ments for TCGA, GSE28541 and GSE17154 were employed 
to evaluate hub genes for the progression and prognosis of 
STAD. Of note, because a GPL platform corresponding to 
GSE17154 does not provide the corresponding gene bank or 
gene symbol, it is impossible to convert the gene ID into a 
well- known gene name. Accordingly, we selected GSE28541 
for our study.

In this study, WGCNA was first implemented to identify 
the salmon module that was most closely related to tumor 
grade. Functional enrichment analysis revealed that the genes 
in the salmon module were primarily related to the MHC pro-
tein complex, immune response, antigen- receptor binding, 
and cell differentiation. A total of 30 candidate genes were 
identified to establish the co- expression network and PPI net-
work. Ten of the 30 hub genes were significantly associated 
with tumor stage and grade. After performing survival anal-
ysis of these 10 hub genes, only TLR7 was identified to be 
significantly associated with the OS and RFS of STAD and 
was thus considered as the real hub gene.

TLR7, a member of the Toll- like receptor family, recog-
nizes ligands from pathogens and dying cells, and plays an 
important role in the immune response through pathogen- 
associated molecular patterns and damage- associated molec-
ular patterns.22 TLR7 is generally accepted to play a pivotal 
role in the tumor microenvironment. Research on TLR7 not 
only emphasizes its immunosurveillance role through the 
activation of innate and adaptive immune effectors, but also 
its promotion effect on tumor progression.23,24 Marion et al. 
showed a higher expression of TLR7 in pancreatic cancer 
(PC) than in chronic pancreatitis, with stage- dependent up-
regulation.25 Moreover, the activation of TLR7 facilitates 
PC cell proliferation and induces resistance to chemother-
apy through the upregulation of NF- κB and COX- 2 expres-
sion.25– 27 TLR7 was also reported to be tightly associated with 
the prognosis of non- small cell lung cancer by facilitating 

tumor progression and reducing chemosensitivity.28 In 2019, 
Diakowska et al. revealed that both the mRNA and protein 
expression levels of TLR7 were significantly higher in pa-
tients with gastro- esophageal junction adenocarcinoma than 
in healthy individuals.29 At the same time, Kasurinen et al. 
unexpectedly found that the expression of TLR7 was signifi-
cantly related to STAD stage (p = 0.03).30 Similarly, our re-
sults revealed that both the transcriptional and translational 
levels of TLR7 were significantly elevated in patients with 
STAD compared to healthy controls. Meanwhile, the expres-
sion of TLR7 was significantly associated with STAD stage 
and grade. The ROC curve for TLR7 displayed remarkable 
sensitivity and specificity for STAD. In addition, an elevated 
expression of TLR7 tended to predict a worse prognosis in 
patients with STAD. Although, our results showed that TLR7 
was not an independent prognostic indicator, there is no 
doubt that TLR is indeed closely associated with STAD prog-
nosis and could serve as a diagnostic biomarker and disease 
progression- related predictive indicator.

Owing to an in- depth understanding of tumor immunity, 
immunotherapy, especially immune checkpoint blockade 
(ICB), has broad application prospects in the tumor field. It 
has been generally accepted that ICB might provide novel 
insights into the treatment of advanced gastric cancers.31 
Several studies have reported that TLR7 combined with ICB 
has the potential to enhance the survival of many patients 
with cancer. For instance, irreversible electroporation com-
bined with a TLR7 agonist and PDCD1 blockade improved 
the curative effect of PC by stimulating innate and adaptive 
immune responses.32 TLR7 agonists also act to promote T 
lymphocyte migration into the local tissue of colon cancer. 
Further, when combined with PDCD1 and CTLA4 inhibi-
tors, the infiltration of immune cells is more significantly 
increased.33 Mariola et al. suggested that TLR7 has the po-
tential to induce CD4+T cells and CD8+T cell infiltration 
into the tumor microenvironment.34 Overall, previous studies 
have shown that TLR7 indeed promotes immune cell infiltra-
tion, and TLR7 combined with ICB could markedly improve 
the clinical outcomes of many patients with cancer. However, 
the interaction between TLR7 and immune checkpoints has 
rarely been reported.

Similarly, our results showed that TLR7 not only partic-
ipated in the progression and prognosis of STAD, but also 
played a pivotal role in the immune microenvironment of 
STAD. The infiltration of T lymphocytes, macrophages, neu-
trophils, and dendritic cells was positively correlated with 
TLR7 expression. In addition, we found that the expression 
of TLR7 was positively associated with six common im-
mune checkpoint expression. It has been well established 
that immune checkpoints negatively regulate the anti- tumor 
immunity of the body, and TLR7 might attenuate the anti- 
tumor immune response by increasing the expression of 
immune checkpoints. Dysregulation of the tumor immune 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28541
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17154
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28541
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17154
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17154
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28541
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microenvironment affected by TLR7 overexpression might 
be responsible for the poor prognosis of STAD. Altogether, 
these findings enhance our understanding of these check-
points in cancer therapy and provide novel insights into im-
mune checkpoint- targeting therapeutic strategies for STAD.

Our study had some limitations. Our eligibility criteria 
for the GEO datasets were: (ⅰ) the pathological type must be 
clearly diagnosed as adenocarcinoma and (ⅱ) the stage and 
grade information of each patient must be available. Hence, 
although, there was a collection of gastric cancer- related data-
sets in the GEO database, most of the datasets were not eli-
gible for our study, which led to a relatively small number of 
patients with STAD being used for WGCNA. In addition, this 
study is a retrospective study based on bioinformatics anal-
ysis. Therefore, more solid experiments and well- designed 
prospective studies are warranted to verify our findings and 
highlight the crucial role of TLR7 in the occurrence and de-
velopment of STAD.

In conclusion, after constructing the co- expression net-
work and intensively analyzing multiple databases, one real 
hub gene (i.e., TLR7) that could serve as a biomarker for the 
diagnosis, progression, and prognosis of STAD was identi-
fied layer by layer, thereby providing new insights into the 
pathogenesis of STAD. More importantly, TLR7 is expected 
to be a novel therapeutic target for STAD.
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APPENDIX 

F I G U R E  A 1  Determination of soft- thresholding power in the WGCNA. (A) Analysis of the scale- free fit index for various soft- thresholding 
powers (β). (B) Analysis of the mean connectivity for various soft- thresholding powers. (C) Checking the scale free topology when β = 12
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F I G U R E  A 2  Co- expression and 
interaction analyses of TLR7


