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Abstract: Peroxisome proliferator-activated receptor-γ2 gene Pro12Ala allele polymorphism (PPARG2
Pro12Ala; rs1801282) has been linked to both cancer risk and dietary factors. We conducted the first
systematic literature review of studies published before December 2020 using the PubMed database
to summarize the current evidence on whether dietary factors for cancer may differ by individuals
carrying C (common) and/or G (minor) alleles of the PPARG2 Pro12Ala allele polymorphism.
The inclusion criteria were observational studies that investigated the association between food or
nutrient consumption and risk of incident cancer stratified by PPARG2 Pro12Ala allele polymorphism.
From 3815 identified abstracts, nine articles (18,268 participants and 4780 cancer cases) covering three
cancer sites (i.e., colon/rectum, prostate, and breast) were included. CG/GG allele carriers were more
impacted by dietary factors than CC allele carriers. High levels of protective factors (e.g., carotenoids
and prudent dietary patterns) were associated with a lower cancer risk, and high levels of risk factors
(e.g., alcohol and refined grains) were associated with a higher cancer risk. In contrast, both CG/GG
and CC allele carriers were similarly impacted by dietary fats, well-known PPAR-γ agonists. These
findings highlight the complex relation between PPARG2 Pro12Ala allele polymorphism, dietary
factors, and cancer risk, which warrant further investigation.

Keywords: peroxisome proliferator-activated receptor-γ2; PPARG2 Pro12Ala polymorphism; diet;
nutrients; cancer; diet-gene interactions

1. Introduction

Peroxisome proliferator-activated receptor-γ (PPARG or PPAR-γ) belongs to the nu-
clear hormone receptor superfamily, which induces target gene expression by binding as
a heterodimer with retinoid X receptor alpha to PPAR-response element, the specific DNA
motifs [1–4]. The three known splice variants of PPAR-γ include PPARG1, PPARG2, and
PPARG3, with PPARG2 being the longest and most bioactive [5,6]. Several diet-derived and
synthetic small lipophilic compounds can bind to PPARG and modify its activity, either
fully or partially promoting, or completely inhibiting it [1,2,7]. The most well-known
PPAR-γ agonists are long- and very-long-chain fatty acids, and their derivatives and thia-
zolidinediones such as rosiglitazone and piaglitazone. They play a role in the PPAR-γ ’s
most important metabolic function, which is to remove excess fatty acids and glucose from
circulation through insulin signaling pathways [8]. PPAR-γ agonists, such as thiazolidine-
diones, are beneficial for type 2 diabetes management; however, thiazolidinediones fell
out of favor because of severe side effects such as adipose hypertrophy, edema, and coro-
nary dysfunction [9]. Thus, partial PPAR-γ agonists such as resveratrol, β-cryptoxanthine,
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isorhamnetin, and Gleevec have received increased attention for management of chronic
diseases, including cancer [10].

PPAR-γ plays a role in adipocyte differentiation as well as carcinogenesis. Up-
regulation of PPARG expression frequently occurs in many metabolic disorders [11] and
cancers [12]. The PPARG2 Pro12Ala polymorphism (rs1801282; chr3:12351626) is a coding
and missense variant where a C (common) allele is replaced by a G (minor) allele, which
leads to a substitution of proline (Pro) with alanine (Ala) in the 12th amino acid from
the N-terminal end of PPARG2. This attenuates (−30%) PPARG2 activity and decreases
the risk of type 2 diabetes and colorectal and breast cancers [13–15]. In contrast, the risk
of obesity and gastric cancer are lower among C allele carriers [16,17], highlighting the
complex involvement of PPAR-γ in carcinogenesis. This may be due to the fact that etio-
logical and dietary factors differ by cancer site, and their associations may also differ by
PPARG2 Pro12Ala allele polymorphism. This notion is highlighted in previous studies of
cardiometabolic diseases. For example, polyunsaturated fatty acid intake was inversely
associated with risk of myocardial infarction among CC allele carriers, but not in G allele
carriers (CG and GG) [18]. Total dietary fat intake had a statistically significant positive
association with plasma high-density lipoprotein concentration among G allele carriers,
but had a non-significant inverse association among CC allele carriers [19]. Furthermore,
the fact that the number of common C alleles is associated with increased risk of chronic
diseases such as type 2 diabetes [20] represents the public health impact. To the best of
our knowledge, there has been no systematic literature review that examined whether
the association of cancer risk with dietary factors differed by PPARG2 Pro12Ala allele
polymorphism, which is the objective of the current study.

2. Materials and Methods
2.1. Registration

This systematic review was conducted according to the guideline of PRISMA (Pre-
ferred Reporting Items for Systematic Review and Meta-analysis) [21], and the protocol
is registered with PROSPERO International Prospective Register of Systematic Reviews
(CRD42020108352). Details of the systematic review and article selection steps are shown
in Figure 1.
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2.2. Search Strategy

This systematic review was conducted using the electronic database, PubMed, in De-
cember 2020 as the last search. In order to find eligible studies, the search terms listed in
Supplementary Material were used. All titles and abstracts identified were screened for the
inclusion of possibly eligible studies and exclusion of irrelevant studies. Three authors (L.T.,
G.A., and Y.T.) conducted this screening and review independently, and inconsistencies
were discussed and brought to consensus. For studies with relevant titles and/or abstracts
or studies that did not have enough information in the abstracts to make a decision, full-text
articles were obtained. The full-text articles were evaluated for inclusion or exclusion.

2.3. Study Inclusion and Exclusion Criteria

The eligible studies needed to meet the following criteria: Human studies, written in
English, and reporting the diet-gene (PPARG2 Pro12Ala allele variant [rs1801282]) interac-
tion in relation to incident cancer risk. Titles and abstracts, and/or full texts were excluded
if they meet one of the following criteria: (1) Review, letter, editorial, commentary, or case
reports; (2) in vitro, functional, or animal studies; (3) study not about PPAR polymorphism
and incident cancer risk; (4) only abstract available; (5) no diet-gene interactions reported;
or (6) overlap of the study population in another eligible original study or duplicated with
individual studies in eligible meta-analysis.

2.4. Data Extraction

Data were extracted from each included study. Specific data extracted are: Last
name of the first author; year of publication; study design; sample size (the number of
cases/controls in case-control studies, or the number of total participants in other types of
studies); study population characteristics (e.g., age, race, and sex); study location; cancer
site; PPARG2 Pro12Ala allele polymorphism; exposure or modifiable factors; interaction-
related information such as risk estimates in the form of odds ratio (OR), relative risk, or
incidence rate ratio (IRR), and 95% confidence interval (CI); and the statistical significance of
the interactions. Two authors (L.T. and Y.T.) extracted data from each study independently,
and inconsistencies were discussed and brought to consensus.

2.5. Risk of Bias Assessment

The risk of bias for each study was assessed by two authors (L.T. and Y.T.) inde-
pendently using Newcastle–Ottawa scale for case-control and cohort studies [22]; any
discrepancies were discussed and brought to a consensus.

3. Results

Figure 1 shows the flow chart of results in the identification, screening, exclusion,
and inclusion phases in the systematic review. First, as the identification phase, the
search strategy on the PubMed database resulted in 3815 records. There were no duplicate
abstracts among these records. Second, screening of titles and abstracts resulted in exclusion
of 3661 records. Among the remaining 154 records, full-text articles were obtained and
assessed for eligibility. Among those, 145 articles did not meet the inclusion criteria and
were thus excluded. In total, our systematic review included nine articles, which included
a total of 18,268 participants with 4780 cancer cases from eight studies (two articles are
based on the same case-control study [23,24]).

The eight studies included in our systematic review were conducted in a wide variety
of countries; two were carried out in Denmark, and each of the other studies were con-
ducted in the United States, Finland, Spain, India, Korea and Japan (Table 1). In terms of
the study design, four studies were hospital-based case-control studies, three were nested
case-control studies, and one was a population-based case-control study. A total of three
cancer sites were investigated, including six studies on colorectal cancer, one on breast
cancer, and one on prostate cancer. For the age of the participants, five studies reported the
mean/median age in late fifties to early sixties, two studies reported age ranges between
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20 and 79 [23–25], and one study did not report exact range or mean/median age [26].
In terms of sex of the participants, for six studies of colorectal cancer, the proportion of
women ranged from 36% to 48%. Two studies of breast or prostate cancer were limited to
postmenopausal women [27] or male smokers [28], respectively. All studies used a food
frequency questionnaire to assess food and nutrient intakes. Dietary factors and cancer
sites we identified are classified into two groups: (1) Alcohol (two nested case-control
studies of colorectal and breast cancer); and (2) food and nutrient intakes (five colorectal
cancer studies and one prostate cancer study). All studies had high quality with eight or
nine score (good quality) (Table S1).

Alcohol and PPARG2 Pro12Ala allele variant: Two case-control studies nested within
a Danish cohort [27,29] reported that PPARG2 Pro12Ala modified the association between
alcohol intake and cancer risk (Table 2). For breast cancer, alcohol intake increased the
risk of breast cancer in CC allele carriers (IRR = 1.13 and 95% CI = 1.04–1.23), who had
an overall higher risk than G allele carriers. In contrast, for colorectal cancer, alcohol
intake was associated with an increased risk in G allele carriers (IRR = 1.22 and 95%
CI = 1.07–1.39), who had a numerically overall higher colorectal cancer risk.

Diet and PPARG2 Pro12Ala allele variant: Six studies investigated whether PPARG2
Pro12Ala polymorphism altered the association of nutrient and food consumption with can-
cer risk [23–26,28,30], of which five focused on colorectal cancer (Tables 2–4 and Table S2).
In a US population-based case-control study [23], G allele carriers had a lower risk of colon
cancer than CC allele carriers at the same high β-carotene and lutein intakes (Table 3). In
a Spanish hospital-based case-control study [26], the inverse association with vitamin A
intake was observed among all participants, which was stronger among G allele carriers
than CC allele carriers at the low vitamin A intake. Moreover, PPARG2 Pro12Ala polymor-
phism altered the association of dietary patterns and refined grain intake with cancer risk
(Table 4); G allele carriers had a lower risk of colon cancer at high prudent dietary pattern
scores and low refined grain intake than CC allele carriers [23]. In contrast, G allele carriers
were more susceptible to high fried food intake (Table 2) and tended to be more susceptible
to high egg and dairy product consumption (Table S1) than CC allele carriers [25,30]. The
inverse association of colorectal cancer risk with fish intake was not altered by PPARG2
Pro12Ala polymorphism (Table 2), as was the positive association with meat and fat intake
(Table S2) [25,30,31].
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Table 1. Characteristics of studies included in the systematic review.

Cancer
Site

Study
Design *

First Author/
Publication

Year

Study
Location Age ** Race Cases/

Controls
Women

(%)
Modifiable

Factors Case/CC Case/CG Case /GG Control/CC Control/CG Control
/GG

Colon/rectum N CC Vogel 2007
[29] Denmark 59/56 NR 355/753 44% Alcohol 252 96 7 550 190 13

Colon/rectum PB CC

Murtaugh
2005 [23] and
Slattery 2005

[24]

USA 30–79

NH White,
Hispanic,

Black,
Asian, and

Native
American

1577/1971
(colon)

794/1001
(rectum)

45%
(colon)

42%
(rectum)

Dietary
fats,

energy,
dietary an-
tioxidants
and food
items 6=

1234
606

343
188

1493
790

478
211

Colon/rectum HB CC Landi 2003
[26] Spain <58–>75 NR 377/326 43% Vitamin A 311 46 3 243 61 5

Colon/rectum HB CC Jiang 2005
[25] India 20–75 Asian 301/291 36% Fish intake 240 57 4 230 57 4

Colon/rectum HB CC Kuriki 2006
[30] Japan

57.9
(study 1)

58.9
(study 2)

NR

128/238
(study 1)
257/771
(study 2)

48% (study
1)

37% (study
2)

Meat, milk,
and other
food items
6=

120
248

7
9

221
732

17
37

Colon/rectum HB CC Kim 2018
[31] Korea 58.2 Asian 971/658 44% Red meat

intake 886 82 3 607 51 0

Prostate N CC Paltoo 2003
[28] Finland 60.5 NR 193/188 0% Dietary fat 121 64 8 128 54 6

Breast N CC Peterson
2012 [27] Denmark 57/57 NR 798/798 100% Alcohol 616 167 15 569 209 20

*: CC: Nested case-control study; HB CC: Hospital-based case-control study; PB CC: Population-based case-control study; BMI: Body mass index; NH: Non-Hispanic; NR: Not reported; **: Age is shown as
mean/median among all participants, median among cases/controls [27,29], or the range among all participants [23–26].; 6= Kuriki 2006 [30] included meat, milk, beef and pork, processed meat, poultry, fish, egg,
milk, yogurt, mayonnaise, fried food, deep-fried food; Murtaugh 2005 [23] included dietary fats (total fat, saturated fat, monounsaturated fat, polyunsaturated fat, trans fat, cholesterol), dietary antioxidants (total
tocopherol, β-Carotene, lutein, lycopene, vitamin C), foods (vegetables, refined grain, whole grain and Western and Prudent dietary patterns).
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Table 2. Interactions between PPARG2 Pro12Ala allele polymorphism and alcohol, fish, and fried food consumption in observational studies in relation to cancer risk.

OR/IRR (95% CI)

PPARG2 Pro12Ala Allele Polymorphism

First Author/
Publication Year Age Women (%) Study

Location Cancer Site Stratified
Categories CC CG + GG p-Value for

Interaction

Petersen 2012 [27] 57/57 100% Denmark Breast cancer Alcohol intake
Per 10 g

alcohol/day 1.13 (1.04–1.23) 0.95 (0.83–1.08) 0.02

Vogel 2007 [29] 59/56 44% Denmark Colorectal cancer Alcohol intake
Per 10 g

alcohol/day 1.03 (0.96–1.10) 1.22 (1.07–1.39) 0.02

Jiang 2005 [25] 20–75 36% India Colorectal cancer Fish intake
Low Reference 1.14 (0.72–1.81) 0.36
High 0.74 (0.46–1.18) 0.51 (0.20–1.27)

Kuriki 2006 [30]
(study 2)

58.9 37% Japan Colorectal cancer Fish
Low Reference 0.69 (0.23–2.10) 0.49

Middle 0.93 (0.66–1.29) 1.09 (0.34–3.47)
High 0.91 (0.61–1.34) 0.34 (0.04–2.81)

Fried foods
Low Reference 0.23 (0.03–1.82) 0.01

Middle 0.94 (0.65–1.34) 0.20 (0.03–1.56)
High 0.77 (0.51–1.16) 2.04 (0.74–5.63)

Deep-fried foods
Low Reference 0.45 (0.10–2.05) 0.17

Middle 0.81 (0.59–1.13) 0.59 (0.19–1.77)
High 0.68 (0.44–1.03) 1.33 (0.32–5.49)

CC will be translated into proline and GG will be translated into alanine; age is shown as mean/median among all participants [30], median among cases/controls [27,29], or the range among all participants [25].



Nutrients 2021, 13, 261 7 of 12

Table 3. Interactions between PPARG2 Pro12Ala allele polymorphism and antioxidant intake in observational studies in relation to cancer risk.

OR (95% CI)

PPARG2 Pro12Ala Allele Polymorphism

First Author/
Publication Year Age (Range) Women (%) Study

Location
Stratified

Categories CC CG + GG CC CG + GG

Landi 2003 [26] <58–>75 43% Spain Colorectal Cancer

Vitamin A intake
Low Reference 0.25 (0.12–0.53)
High Reference 1.08 (0.53–2.20) *

Murtaugh 2005
[23] 30–79 45% (colon) USA Colon Cancer Rectal Cancer

42% (rectum) Beta-Carotene
High Reference 0.71 (0.52–0.96) Reference 1.08 (0.73–1.61)

Middle 0.94 (0.77–1.16) 0.85 (0.65–1.13) 1.03 (0.77–1.37) 0.43 (0.94–2.18)
Low 0.82 (0.65–1.02) 0.82 (0.61–1.10) 1.15 (0.83–1.58) 1.28 (0.83–1.97)

Lutein
High Reference 0.63 (0.44–0.89) Reference 1.06 (0.72–1.57)

Middle 0.89 (0.72–1.10) 0.82 (0.61–1.10) 0.95 (0.72–1.27) 1.19 (0.79–1.79)
Low 0.90 (0.71–1.13) 0.90 (0.71–1.13) * 0.90 (0.64–1.25) 1.15 (0.73–1.79)

Lycopene
High Reference 0.75 (0.52–1.06) Reference 0.89 (0.61–1.30)

Middle 1.02 (0.82–1.27) 0.96 (0.72–1.29) 0.81 (0.61–1.08) 1.27 (0.85–1.92)
Low 1.00 (0.80–1.26) 0.89 (0.67–1.19) 1.10 (0.81–1.48) 1.37 (0.89–2.09)

Vitamin C
High Reference 0.79 (0.58–1.06) Reference 1.33 (0.90–1.97)

Middle 1.05 (0.86–1.28) 0.90 (0.68–1.19) 1.19 (0.89–1.59) 1.31 (0.87–1.98)
Low 0.88 (0.70–1.10) 0.86 (0.64–1.15) 1.28 (0.92–1.77) 1.46 (0.94–2.27)

Total tocopherol
High Reference 0.96 (0.71–1.30) Reference 1.02 (0.72–1.42)

Middle 1.02 (0.83–1.26) 0.85 (0.63–1.15) 0.96 (0.71–1.29) 1.36 (0.92–2.03)
Low 0.96 (0.75–1.23) 0.82 (0.60–1.12) 1.21 (0.85–1.73) 1.55 (0.92–2.64)

CC will be translated into proline and GG will be translated into alanine. * star denotes p-value for interaction < 0.05.
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Table 4. Interactions between PPARG2 Pro12Ala allele polymorphism and diet patterns and vegetable intake in observational studies in relation to cancer risk.

OR (95% CI)

PPARG2 Pro12Ala Allele Polymorphism

First Author/
Publication Year Age (Range) Women

(%)
Study

Location
Stratified

Categories CC CG + GG CC CG + GG

Murtaugh 2005
[23]

30–79
45% (colon)

42%
(rectum)

USA Colon Cancer Rectal Cancer

Western dietary
pattern

Low Reference 0.71 (0.52–0.96) Reference 1.40 (0.93–2.10)
Middle 1.22 (1.00–1.49) 1.17 (0.89–1.54) 0.98 (0.74–1.30) 1.19 (0.79–1.79)
High 1.27 (1.00–1.62) 1.18 (0.87–1.63) 1.13 (0.84–1.52) 1.17 (0.78–1.75)

Prudent dietary
pattern
High Reference 0.66 (0.49–0.89) Reference 1.29 (0.87–1.92)

Middle 1.00 (0.82–1.23) 0.92 (0.69–1.22) 0.99 (0.74–1.34) 0.95 (0.61–1.47)
Low 1.02 (0.81–1.28) 1.07 (0.79–1.45) * 1.07 (0.78–1.45) 1.36 (0.91–2.04)

Vegetables
High Reference 0.72 (0.54–0.96) Reference 1.16 (0.79–1.71)

Middle 0.91 (0.75–1.12) 0.81 (0.61–1.08) 0.95 (0.71–1.26) 0.93 (0.62–1.40)
Low 0.94 (0.75–1.17) 0.96 (0.71–1.30) 0.87 (0.64–1.19) 1.28 (0.83–1.97)

Refined grain
Low Reference 0.70 (0.53–0.94) Reference 1.68 (1.11–2.54)

Middle 1.07 (0.88–1.29) 0.95 (0.72–1.24) 1.04 (0.75–1.43) 1.2 (0.78–1.59)
High 1.08 (0.88–1.33) 1.17 (0.87–1.58) * 1.12 (0.83–1.51) 1.53 (1.03–2.28)

Whole grain
High Reference 0.74 (0.57–0.97) Reference 1.24 (0.81–1.89)

Middle 0.98 (0.81–1.19) 0.96 (0.73–1.28) 1.07 (0.81–1.43) 1.21 (0.79–1.84)
Low 0.92 (0.74–1.13) 0.85 (0.63–1.15) 1.32 (0.93–1.87) 1.22 (0.78–1.92)

CC will be translated into proline and GG will be translated into alanine. * star denotes p-value for interaction < 0.05.
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4. Discussion

Through our systematic literature review, we identified eight case-control studies
(18,268 participants and 4780 cancer cases) covering three continents (i.e., America, Asia,
and Europe) and three cancer sites (i.e., colon/rectum, prostate, and breast) that examined
the association between dietary factors and cancer risk among participants who differ in
PPARG2 Pro12Ala polymorphism. Overall, major findings from these studies were on:
(1) Alcohol intake and breast or colorectal cancer risk; and (2) diet and colorectal cancer risk.

Dietary factors and PPARG2 Pro12Ala polymorphism generally play a more impor-
tant role in the etiology of colorectal cancer than other cancer sites [14,32–35]. PPARG
expression levels in colorectal tissue are moderate to high [36–38]. Some fatty acids and
their derivatives can bind to PPAR-γ and act as full agonists to promote cellular fatty acid
uptake and lipogenesis, whereas carotenoids, lutein, and polyphenols can act as partial
agonists and inhibit growth of colon cancer cell lines [1]. In three studies of colorectal
cancer [23,29,30], high intake of cancer-protective factors—β-carotene, lutein and prudent
dietary pattern score—had a stronger inverse association with risk of colorectal cancer
among G allele carriers [23]. In contrast, high intake of cancer risk factors—refined grains
and alcohol—had a stronger positive association with risk of colorectal cancer among G
allele carriers [29,30]. Hence, G allele carriers may benefit more from dietary interventions
than CC allele carriers.

Regarding prostate cancer, we found only one study, a nested case-control study
among male smokers in Finland. This study investigated the interaction of dietary fat intake
with PPARG2 Pro12Ala variant and reported no statistically significant interaction [28].
There is a link between PPAR-γ and prostate cancer, as PPARG1 acts as an oncogene and
PPARG2 inhibits proliferation in prostate cancer cells [39]. Although some fatty acids
(including long-chain and very long-chain unsaturated fatty acids and their derivatives)
can bind to PPAR-γ as full agonists, limited evidence exists on dietary fat intake as a risk
factor for prostate cancer, which might have led to the null finding [40]. Furthermore,
a direct effect of PPAR-γ on prostate carcinogenesis is less likely, as PPARG levels are
non-detectable in healthy prostate tissue [36,37]. Given that only one study reported the
interaction between dietary factors and PPARG2 Pro12Ala variant in prostate cancer, the
interaction needs to be investigated in other study populations.

One study of breast cancer examined its association with alcohol consumption among
postmenopausal women after stratifying by PPARG2 Pro12Ala polymorphism. In general,
CC allele carriers had an increased risk of breast cancer compared with G allele carriers [15].
PPAR-γ agonists, as well as PPAR-γ antagonists, can inhibit breast growth depending on
type of breast cancer (e.g., estrogen receptor status) [41–44], which makes investigation of
dietary factors and breast cancer challenging. In breast tissues from breast cancer patients,
PPARG expression levels were lower in cancer than normal tissues and differed by cancer
stage [44]. In a Danish nested case-control study, in comparison to G allele carriers, CC
allele carriers had a higher risk of postmenopausal breast cancer with higher alcohol
consumption. Their median alcohol consumption was less than moderate consumption
(9 g/day) [27], which may be more of a concern for female CC allele carriers in regard to
breast cancer risk. Given that only one study reported the diet-gene interaction for breast
cancer, future studies need to replicate this finding.

Other than the three cancer sites (i.e., colon/rectum, prostate, and breast), we did
not find any study of other cancer sites that investigated the interaction between diet and
PPARG2 Pro12Ala allele polymorphism. In the future, additional studies are warranted
to elucidate the link between bioactive food components and cancer risk at sites with
moderate to high PPARG expression such as the digestive tract (specifically gastric cancer)
with high levels of bioactive food components [36,37]. Regarding dietary factors, more
partial PPAR-γ agonists need to be explored, given that our systematic review found
that associations between full PPAR-γ agonists and cancer risk did not differ by PPARG2
Pro12Ala allele polymorphism, although limited studies were available. This may be due
to side effects of full PPAR-γ agonists reported for type 2 diabetes, which might have
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nullified beneficial effects. Moreover, CC allele carriers were more susceptible to colorectal
cancer and G allele carriers were more susceptible to gastric cancer [14,17], which requires
further clarification.

This study has several strengths. To our knowledge, this is the first systematic review
on diet-gene interactions of PPARG2 Pro12Ala allele polymorphism in the association with
cancer risk. We were able to include a large number of study participants in this review
(18,268 participants). Moreover, we included previous studies conducted from a wide range
of geographic locations, which facilitated to cover a wider range of dietary factors that
could not have been achieved within one study population. This study also has limitations.
First, we used only one database, PubMed, with potentially a limited number of studies
available. Moreover, although all included studies had good quality based on the risk of
bias assessment, they were not without potential bias nor were we able to fully control the
quality of these studies. There was heterogeneity in reporting of interaction effects among
the studies included in this review, which did not allow us to conduct a meta-analysis.
Hence, we provided a comprehensive review with detailed descriptions. Future studies of
diet-gene interactions need to consider more uniform reporting, such as by modeling low
dietary intake and common allele groups as reference.

In conclusion, our systematic literature review found limited evidence on modifying
effects of PPARG2 Pro12Ala polymorphism on the association between dietary factors and
cancer risk. For colorectal cancer, the most studied cancer site, risk factors (i.e., fried foods,
alcohol, and refined grains) were more detrimental in individuals carrying the G allele,
whereas high levels of protective factors (i.e., carotenoids and prudent dietary pattern score)
were more beneficial in individuals carrying the G allele. In contrast, dietary fat and meat
intakes were equally detrimental, and fish intake was equally protective in both PPARG2
Pro12Ala genotypes, which need to be confirmed in future studies. More evidence is
currently available on interactions of PPARG2 Pro12Ala polymorphism with dietary factors
other than well-known full PPAR-γ agonists, suggesting that partial PPAR-γ agonists or
other novel bioactive compounds may be more relevant for the PPAR-γ’s involvement in
carcinogenesis. Although limited evidence is currently available, future studies may need
to focus more on such dietary factors, especially for cancers in the digestive tract that have
relatively high amounts of bioactive food components and PPARG expression.
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