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Abstract

In this study we used functional near-infrared spectroscopy (fNIRS) to investigate neural 

responses in normal-hearing adults as a function of speech recognition accuracy, intelligibility 

of the speech stimulus, and the manner in which speech is distorted. Participants listened 

to sentences and reported aloud what they heard. Speech quality was distorted artificially by 

vocoding (simulated cochlear implant speech) or naturally by adding background noise. Each 

type of distortion included high and low-intelligibility conditions. Sentences in quiet were used 

as baseline comparison. fNIRS data were analyzed using a newly developed image reconstruction 

approach. First, elevated cortical responses in the middle temporal gyrus (MTG) and middle 

frontal gyrus (MFG) were associated with speech recognition during the low-intelligibility 

conditions. Second, activation in the MTG was associated with recognition of vocoded speech 

with low intelligibility, whereas MFG activity was largely driven by recognition of speech in 

background noise, suggesting that the cortical response varies as a function of distortion type. 

Lastly, an accuracy effect in the MFG demonstrated significantly higher activation during correct 

perception relative to incorrect perception of speech. These results suggest that normal-hearing 

adults (i.e., untrained listeners of vocoded stimuli) do not exploit the same attentional mechanisms 

of the frontal cortex used to resolve naturally degraded speech and may instead rely on segmental 

and phonetic analyses in the temporal lobe to discriminate vocoded speech.
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1. Introduction

Despite myriad sources of distraction in daily life, listeners’ perception of speech 

demonstrates surprising resilience. The robustness of speech perception owes to the neural 

redundancy within the auditory system, whereby subcortical neural firing strongly correlates 

with stimulus patterns and becomes increasingly discerning to specific feature combinations 

of speech at the level of the cortex (Gervain and Geffen, 2019; Schnupp, 2006). Likewise, 

comprehension of speech generally follows a hierarchy of processing such that acoustic 

sensory analyses begin at the temporal lobe, and higher level, attentional mechanisms of 

the frontal cortex are recruited to resolve more complicated speech information (Davis and 

Johnsrude, 2003; Friederici, 2011). When degraded listening conditions complicate speech 

understanding, additional brain regions become activated beyond those recruited during 

favorable listening conditions (Defenderfer et al., 2017; Du et al., 2014; Mattys et al., 2012).

The neural response can vary based on the manner in which speech is compromised. For 

example, brain activity in some regions may exhibit a diminished response as intelligibility 

is reduced (Billings et al., 2009), while in other regions, a heightened response suggests 

specific neural mechanisms are activated to optimize speech understanding (Davis and 

Johnsrude, 2003; Davis et al., 2011). Neural processing of common external distortions 

(e.g.; multi-talker babble, background noise) have appeared in frontal regions, whereas 

speaker-related distortion (i.e. accented speech, voice quality) appear in temporal regions 

(Adank et al., 2012; Davis and Johnsrude, 2003; Kozou et al., 2005). Many studies 

attribute higher-order linguistic processes such as switching attention, inference-making, 

and response selection from competing stimuli to the frontal cortex (Friederici et al., 2003; 

Obleser et al., 2007; Rodd et al., 2005). Temporal regions are recruited to perform auditory 

analyses and early speech decoding processes (Hickok and Poeppel, 2007). Thus, the 

speech perception network uses multiple mechanisms to enhance perception in unfavorable 

listening conditions.

Cochlear implant (CI) users face unique challenges when listening to speech amid 

background noise due to the compounding effects of having a compromised auditory system 

in addition to dealing with the inherent signal distortion of the processor (Macherey and 

Carlyon, 2014). Despite widespread success with restoring access to speech, the use of CIs 

continues to exhibit huge variability in post-implantation outcomes (Blamey et al., 2013; 

Lazard et al., 2012). The CI speech processor inherently degrades all auditory input by 

stripping away the fine spectral properties of the speech signal. Post-lingually deafened 

individuals, who at one point had normal hearing, commonly report that listening through 

the CI does not resemble their auditory memories prior to their hearing loss (Boëx et al., 

2006; James et al., 2001). Thus, there is a period of neural discordance wherein listeners 

are adapting to the altered input and re-learning the gamut of sounds in daily life (i.e., 
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remapping neural pathways). In some listeners who continue to struggle using the CI, the 

attentional mechanisms within the neural systems of speech perception may not be flexible 

enough to enhance processing of speech when attempting to listen amid background noise.

CI speech simulations have long been used to examine how the NH auditory system treats 

stimuli that lack the perceptual properties it otherwise is accustomed to processing (Goupell 

et al., 2020; Pals et al., 2012; Sheldon et al., 2008). The process of vocoding is an artificial 

manipulation that results in speech stimuli that are similar to the output of speech processors 

worn by CI listeners. Fine spectral information is stripped from the speech input while 

preserving temporal properties of the speech envelope (Shannon et al., 1995), effectively 

removing the properties that make speech sound natural. The use of vocoded speech with 

NH listeners allows us to simulate variability of speech recognition performance observed 

in the CI population and also examine the impact of spectral degradation on the neural 

response. Prior to losing their hearing, post-lingually deafened CI recipients had normal 

auditory function, indicating that the neural infrastructure associated with typical hearing 

function was, at one point, intact. This may help explain why speech-related activity in 

post-lingually deafened CI users resemble that of NH listeners (Hirano et al., 2000; Olds 

et al., 2016; Petersen et al., 2013). Additionally, experienced CI users have demonstrated 

use of speech perception mechanisms also employed by NH listeners (Moberly et al., 2014; 

Moberly et al., 2016). It’s important to note that use of vocoded stimuli with NH subjects 

is not expected to mimic how the neural system of CI listeners process auditory stimuli, 

as there are fundamental differences between the peripheral/central auditory systems of 

NH and CI users (L. Chen et al., 2016; Sandmann et al., 2015; Zhou et al., 2018). In 

the present study, CI speech simulations are expected to influence neural and behavioral 

responses in NH listeners, revealing effects unique to the spectral degradation of a CI. Thus, 

in the current project we assessed neural activity of NH adults to better understand how the 

frontotemporal response to CI simulations (i.e., artificial distortion) differs from processing 

speech in noise (i.e., natural distortion).

Frontotemporal activation has been cited in a number of studies that have manipulated 

speech intelligibility with vocoding. Temporal lobe engagement, specifically in the superior 

temporal gyrus (STG) and/or superior temporal sulcus (STS) (Giraud et al., 2004; Pollonini 

et al., 2014), underscore neural sensitivity to temporal speech features preserved in the 

vocoded speech. Other studies have found neural correlations with intelligibility along 

the STG and effort-related processing associated with prefrontal cortex (PFC) activity 

(Davis and Johnsrude, 2003; Eisner et al., 2010; Lawrence et al., 2018). PFC activation 

has also been observed during comprehension of vocoded speech stimuli, relative to 

speech in quiet (Hervais-Adelman et al., 2012). Similarly, results of an fMRI examination, 

which were later replicated using fNIRS (Wijayasiri et al., 2017), revealed significant 

PFC activation, specifically in the inferior frontal gyrus (IFG), while listeners attended to 

vocoded speech, relative to speech in quiet. Importantly, simply hearing the vocoded stimuli 

was not associated with IFG activity. Rather, activation depended on whether listeners were 

attending to the speech (Wild et al., 2012). These studies, however, used other attentional 

manipulations in the context of speech perception suggesting that PFC activity is not specific 

to processing vocoded speech and may be associated with the higher-level processes such 

as inhibition (Hazeltine et al., 2000), performance monitoring (Ridderinkhof et al., 2004), 
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working memory (Braver et al., 1997; J. D. Cohen et al., 1994), and attention (Godefroy and 

Rousseaux, 1996). Even so, a large body of evidence indicates that PFC activation plays an 

important role in optimizing speech recognition during difficult listening conditions (Demb 

et al., 1995; Obleser and Kotz, 2010; Poldrack et al., 2001; Wong et al., 2008). Thus, the 

specific role of PFC regions in processing vocoded speech remains to be demonstrated.

One way to better understand the neural mechanisms that give rise to speech perception 

is to examine the differences in cortical activation related to correct and incorrect 

speech recognition. The few neuroimaging studies that have made this direct comparison 

have reported elevated activation in different frontotemporal regions to both accurate 

(Dimitrijevic et al., 2019; Lawrence et al., 2018) and inaccurate perception (Vaden et al., 

2013). Additionally, a recent fNIRS examination of temporal lobe activity in NH adults 

reported increased temporal cortex activation during accurate recognition of sentences in 

noise when compared to incorrect trials, highly intelligible vocoded speech stimuli, and 

speech-in-quiet stimuli (Defenderfer et al., 2017). What did not emerge from this study 

were differences in activation between natural speech and vocoded speech stimuli. Notably, 

the interpretation of these results was limited, first, by the regions measured, as the fNIRS 

probe only covered bilateral temporal lobes. Additionally, the vocoded sentences were 

highly intelligible and participants achieved near perfect performance in this condition. 

Incorporation of a vocoded speech condition with low intelligibility could reveal important 

cortical differences associated with how the brain optimizes recognition of degraded speech.

1.1. Current study

The aim of this study was to investigate the effects that simulated CI speech and speech in 

background noise have on the brain response. We recorded cortical activity using functional 

near-infrared spectroscopy (fNIRS), a non-invasive, portable, cost-effective imaging tool that 

utilizes the interaction between hemoglobin (Hb) and near infrared light to estimate cortical 

activation (Villringer et al., 1993). Unlike functional magnetic resonance imaging (fMRI), 

fNIRS generates very little noise and is compatible with hearing aid devices such as cochlear 

implants (CI) or hearing aids (Lawler et al., 2015; Saliba et al., 2016) making it an ideal tool 

for studying the neural basis of speech perception processes.

We address the limitations of previous research in two ways. First, we designed an fNIRS 

probe to cover left frontal and temporal regions and conducted volumetric analyses which 

can provide better alignment of data across participants and localize activation to cortical 

regions. This analysis method has been validated through comparison with concurrently

measured fMRI data (Eggebrecht et al., 2012; Wijeakumar et al., 2017) and has been 

applied in studies using only fNIRS (Forbes et al., 2021; Wijeakumar et al., 2019). This 

method will allow us to assess the degree to which these compensatory mechanisms activate 

across temporal and frontal cortices, and further, determine how they might differ during 

recognition of artificial versus natural forms of distorted speech. Second, many studies 

that use CI speech simulations parametrically vary speech intelligibility by altering the 

number of frequency channels (Hervais-Adelman et al., 2012; Miles et al., 2017; Obleser 

et al., 2008). Instead, we sought to create a realistic, low-intelligibility vocoded condition 

in which sentences amid background noise were vocoded. These stimuli are likely better 
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approximations of a CI user’s daily listening experience and will allow us to investigate the 

neural mechanisms that are engaged when attention is needed to focus on speech lacking the 

fine spectral features usually characteristic of natural speech.

We used an event-related design to compare cortical activity associated with accuracy 

(correct, incorrect), intelligibility (high, low), and type of speech distortion (background 

noise, vocoding). The task included high- and low- intelligibility conditions for both 

vocoded speech (artificial distortion) and speech in background noise (natural distortion), 

using sentences in quiet for comparison. Intelligibility (as measured by averaged speech 

recognition score) was approximately equivalent between degraded speech types. However, 

acoustic composition between speech-shaped background noise and vocoded stimuli vary 

drastically. Unlike vocoding speech, incorporating background noise does not eliminate 

any component of the speech signal. Instead, the added noise acts as an energetic masker, 

blending acoustic signals and decreasing intelligibility of salient acoustic features of speech 

(Mattys et al., 2009). It is likely that neural mechanisms associated with extracting meaning 

from speech may differ according to the manner in which the speech is distorted. Thus, 

while behavioral performance is equal between these two speech conditions, we expect 

variations in the way the cortex resolves each form of distortion. For instance, we expect 

the auditory systems of NH listeners to be more familiar (and thus better prepared) to 

process speech in noise relative to vocoded speech. Top-down attentional mechanisms 

associated with activity in frontal regions should be available to deploy during speech-in

noise conditions but may not be flexible enough to optimize recognition of simulated 

CI speech. In typical, noisy settings, CI listeners face a number of complicating factors. 

First, ambient noise adds auditory input that is irrelevant to the targeted speech signal. 

Second, speech recognition is further compounded by the inherent signal distortion from the 

speech processor. Therefore, the low-intelligibility vocoded condition was created to reflect 

an ecologically-valid listening environment experienced by CI users by adding low level 

background noise to sentences in quiet prior to applying the vocoding process (detailed in 

section 2.2). The neural responses to these vocoded stimuli might help us better understand 

the cortical mechanisms used by post-lingually deafened CI listeners to resolve spectrally

degraded speech. By studying the interaction of these two factors in this unique way, we 

are hoping to increase our understanding of the mechanisms mediating accurate speech 

perception. Such an understanding may help guide future work to improve speech perception 

after CI implantation.

2. Methods and analyses

2.1. Participants

The Institutional Review Board of the University of Tennessee Knoxville approved 

the experimental protocol and plan of research. Based on our previous fNIRS study 

(Defenderfer et al., 2017), power analyses of a two-factor, within-subjects design suggests 

a minimum of 38 subjects to achieve a power of 80% with an effect size of 0.14. Thirty

nine adults (mean age 24.76 years, 21 females) participated in the study. All participants 

completed a consent form, handedness questionnaire, and demographic inventory prior to 

the experiment. Participants were between the ages of 18 to 30 years old, right-handed, 
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native English-speakers, and passed a hearing screening with auditory thresholds better 

than or equal to 25 dB HL at 500, 1000, 2000 and 4000 Hz. Participants received 

monetary compensation for their time. It is possible that the NIR wavelengths of interest 

are susceptible to absorption characteristics of hair color and density; however, subjects 

were not selected with regard to hair or skin color (Strangman et al., 2002). One participant 

was later discovered to have had a brain tumor which was removed 2 years prior to the 

experimental session; this dataset was excluded from the group analyses. The study results 

are based on 38 adults (20 females).

2.2. Speech material

Stimuli were created using sentences from the Hearing in Noise Test (HINT) (Nilsson et 

al., 1994), which are male-spoken and phonemically-balanced. A total of five listening 

conditions were created using Adobe Audition (v. 7) and Audacity (Audacity Team, 

2017) software. Speech in quiet (SQ) was used as a baseline comparison to the distorted 

conditions. Two of the conditions were designed with high intelligibility (H) where ceiling 

performance was expected: vocoded speech (HV) and speech in low-level noise (HN). Two 

conditions were designed to be of low intelligibility (L) where performance was expected 

to be 50% on average across subjects: speech in high-level noise (LN) and sentences with 

low-level noise that were then vocoded (LV). Pilot data were collected from a sample of 40 

NH individuals to determine the appropriate signal-to-noise ratios (SNRs) that would yield 

an average score of 50% correct for each low-intelligibility condition (these individuals were 

not participants in the current study).

HINT sentences were digitally isolated from their original lists and sampled at 44,100 

Hz into 3-second tracks. For noise manipulations, a 3-second clip of the original HINT 

speech-shaped noise track was mixed with the isolated sentences. This noise is composed 

of the spectral components of all HINT sentences which are converted into a broadband 

spectrum identical to that of the HINT corpus. The measured total RMS value of each 

sentence utterance was modified to reflect target SNRs such that the level of the utterance 

changed, while the level of noise remained constant. This way, participants would not 

perceive noticeable changes in noise levels from trial to trial. Sentences were mixed with 

noise to reflect a +10 dB SNR for the HN condition and −4 dB SNR for the LN condition.

Speech stimuli for the HV and LV conditions were vocoded with AngelSim™ (TigerCIS) 

Cochlear Implant and Hearing Loss Simulator software. The HV condition contained 8

channel vocoded sentences. Isolated sentence files were band-passed into eight frequency 

channels, and temporal envelopes were extracted in each frequency band by half

rectification and low-pass filtering. The extracted envelope was used to modulate wide-band 

white noise and lastly, filtered with a bandpass filter. Trials for the LV condition received 

one additional step prior to vocoding. Sentences were first mixed with the HINT noise track 

at a +7 dB SNR, and were then 8-channel vocoded to simulate a realistic listening condition 

that CI recipients experience in a day-to-day environment.

Condition information is summarized in Fig. 1A. The presentation level was determined 

by measuring the full acoustic stimulus of 5 sentences from each listening condition with 

a sound level meter and 2 cc coupler (standard ANSI coupler to approximate residual ear 
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canal volume while wearing inserts), equaling approximately 65 dB SPL on average. SQ, 

HV, and HN conditions contained 30 sentence trials each. LN and LV contained 40 sentence 

trials each. Average performance in the low-intelligibility conditions were targeted at 50% 

resulting in approximately 20 correct trials and 20 incorrect trials per condition. Relative to 

the high-intelligibility conditions, the number of trials for the low-intelligibility conditions 

were reduced to avoid participant fatigue, while still maintaining a sufficient number of 

trials for statistical comparison. Participants received familiarization trials at the beginning 

of each block of trials for a condition (three for high-intelligibility conditions, six for 

low-intelligibility conditions). While NH participants are unfamiliar with vocoded stimuli, 

the familiarization trials were not intended to train performance with vocoded stimuli, rather 

orient participants to the nature of the stimuli. These trials were not included in the analyses. 

In total, there were 170 trials per participant.

2.3. Procedure

The current study implemented a speech recognition task in an event-related experimental 

design previously reported (Defenderfer et al., 2017). A research assistant placed the insert 

earphones and positioned the custom-made NIRS headband over designated regions of 

interest. The headpiece was adjusted to meet the participant’s comfort level while also 

remaining adequately secure to ensure good contact between the optodes and scalp. Next, 

spatial coordinates for five scalp landmarks (right and left preauricular points, vertex (CZ), 

nasion, and inion) and the position of every source light and detector on each participant’s 

head were recorded using Polhemus digitizing system.

Condition blocks were randomized to rule out any effect of order, and all sentence trials 

of one condition were presented together. Participants received breaks at the end of each 

condition block. In an attempt to reduce the introduction of signal artifacts, participants 

were asked to sit still and reserve large body movements for breaks between conditions. The 

following description of the trial paradigm can be seen in Fig. 1 from Defenderfer et al. 

(2017): Each trial began with a silent period (500ms) prior to onset of sentence presentation 

(3000ms), followed by a second silent period (jittered at 500, 1500, or 2000ms in a 2:1:1 

ratio, respectively). A click sound (250ms) was played after each trial, cueing the participant 

to repeat the sentence during the repetition phase (3000ms). This is followed by another 

silent pause (jittered at 1000, 1500 or 2000 ms in a 2:1:1 ratio, respectively) before the 

beginning of the next trial. Timing of trial presentation was jittered to avoid collinearity 

between trial columns in the design matrix (Dale, 1999). Jittering reduces the occurrence of 

a deterministic pattern in the neural response and allows us to use deconvolution methods to 

parse rapid event-related activity from its associated trial type (Aarabi et al., 2017).

Participants were asked to listen to each sentence, wait for a “click,” and then repeat as 

much of the sentence out loud to the best of their abilities. Participants were encouraged to 

guess any part of the sentence, and if not able to provide a response at all, they were told 

to say “I don’t know.” Instructions were also displayed on a computer monitor prior to the 

beginning of each listening condition, and each block of trials began at the participant’s 

discretion by pressing the spacebar on the keyboard. Performance was scored as a 

percentage of correct trials within each condition. Using the HINT scoring criteria, a correct 
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response was defined by correctly repeating the entire HINT sentence (allowing ‘article’ 

exceptions). Participants did not receive feedback on performance accuracy. Sessions were 

audio-recorded and later scored by two research assistants.

2.4. fNIRS Methods

2.4.1. Hardware and probe design—The original data files used in the current study 

comply with the requirements of the institute, comply with IRB guidelines, and are available 

in the public domain (http://dx.doi.org/10.17632/4cjgvyg5p2.1). This study was conducted 

using a Techen continuous-wave 7 (CW7) NIRS system including 8 detectors and 4 source 

lights. The Techen CW7 simultaneously measures hemodynamic changes using 690 and 830 

nm wavelengths. The experimental task was implemented in E-Prime (v. 3.0) and fNIRS 

data was synchronized to stimulus presentation with time-stamps at trial onsets. Given the 

limited number of source lights and detectors, we opted to focus the probe configuration 

over the left hemisphere owing to its dominant role in speech and language processing 

(Belin et al., 1998; Hickok and Poeppel, 2007). A headpiece was custom-made to record 

fNIRS data from left frontal and temporal cortices. The design accommodated a range of 

head sizes and comprised of thirteen 30 mm long channels and one 10 mm short separation 

(SS) channel (Fig. 1B). Channels were conFig.d to record data over T3 (STG), F3 and F7 

(IFG) scalp locations of the 10:20 Electrode System. Incorporating short-distance channels 

has been shown to reasonably identify extracerebral hemodynamic changes (Gagnon et al., 

2011; Sato et al., 2016). Due to the limited number of available sources/detectors, only one 

SS channel was included (Fig. 1B, channel 5). Noise within the head volume measured with 

fNIRS is spatially inhomogeneous across the scalp (Huppert, 2016). Therefore, it is possible 

that the single SS channel did not effectively remove artifact caused by superficial blood 

flow on the more distant long channels if the scalp blood flow patterns were different than 

what was measured on the SS channel. In order to optimize the effect of the SS channel, it 

was positioned over the temporal muscle and near the center of the probe design to target the 

most robust source of noise and capture superficial artifact associated with temporal muscle 

activity during vocalization (Schecklmann et al., 2017; Scholkmann et al., 2013).

2.4.2. Pre-processing of NIRS data and creation of light model for NeuroDOT
—fNIRS data were analyzed in MATLAB with functions provided in HOMER2 (Huppert 

et al., 2009) and NeuroDOT (Eggebrecht and Culver, 2019). First, data were pre-processed 

in HOMER2. The raw signal intensity was de-meaned and converted to an optical intensity 

measure. Due to the potential motion/muscle artifact associated with speaking tasks, a 

more liberal correction approach was selected to counteract signal contamination. First we 

applied the hybrid method of combining spline interpolation and Savitzky-Golay filtering 

techniques (p = 0.99, frame size = 10s) to correct large spikes and baseline shifts in the 

data (Jahani et al., 2018; Savitzky and Golay, 1964; Scholkmann, Gerber, Wolf and Wolf, 

2013; Scholkmann et al., 2010). Second, we used the modified wavelet-filtering technique 

(implemented with Homer2 hmr-MotionCorrectWavelet) (Molavi and Dumont, 2012) using 

an IQR threshold of 0.72. This method has been shown to effectively diminish motion 

artifact during experiments with speech tasks (Brigadoi et al., 2014). Channel-wise time 

series data at this stage of the processing are plotted from representative channels in the 

frontal and temporal lobe in Fig. 2A.
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The first step before reconstructing the fNIRS data into image space is to prepare the atlas 

that will be used to create a structural image that is aligned to the digitized anatomical 

landmarks for each participant. Here, we used Colin’s atlas. Next, a light model was 

created using the digitized spatial coordinates for the source and detector positions. Using 

AtlasViewer, photon migration simulations were performed to create sensitivity profiles by 

estimating the path of light for each channel using parameters for absorption and scattering 

coefficients for the scalp, CSF, gray and white matter (Bevilacqua et al., 1999; Custo et 

al., 2006). Sensitivity profiles were created with Monte-Carlo simulations of 10,000,000 

photons for each channel (Fang and Boas, 2009). An example of the combined sensitivity 

profile for the entire probe is shown on a representative head volume in Fig. 1B. Sensitivity 

profiles for each channel were thresholded at 0.0001 and combined together to create a mask 

for each participant that reflected the cortical volume from which all NIRS channels were 

recording. A group mask was then created which included voxels in which at least 75% of 

participants contributed data. Since the fNIRS probe spanned lobes that were discontinuous 

in tissue, this group mask was divided into two separate masks corresponding to frontal and 

temporal lobes which allowed for activation in the two lobes to be analyzed separately.

2.4.3. Image reconstruction with NeuroDOT—NIRS data were bandpass filtered to 

retain frequencies between 0.02 Hz and 0.5 Hz, removing high and low frequency noise that 

are often motion-based. Systemic physiology (pulse and respiration) was then removed by 

regressing the short separation data from the other channels. Finally, data were converted 

to hemoglobin concentration values using a differential path-length factor of 6 for both 

wavelengths. Volumetric timeseries data were constructed from these cleaned channel data 

following the procedure outlined by Forbes et al. (2021).

Image reconstruction in NeuroDOT integrates the simulated light model created in 

AtlasViewer with the pre-processed channel-space data. Measurements from the sensitivity 

profiles for each source-detector pair are organized into a 2-D matrix (measurements 

X voxels). NIRS files are converted to NeuroDOT format, in which SD information 

(source, detector, wavelength, separation) and stimulus paradigm timing information are 

extracted into reformatted variables. Channel data, originally sampled at 25 Hz, was 

down-sampled to 10 Hz to mitigate costly computational demands. A challenge unique 

to optical imaging is proper estimation of near infrared light diffusion in biological tissue, 

as image reconstruction of the NIRS data is subject to rounding errors and may lead to an 

under-determined solution (Calvetti et al., 2000). Therefore, the Moore-Penrose generalized 

inverse (Eggebrecht et al., 2014; Tikhonov, 1963; Wheelock et al., 2019) is used to invert 

the sensitivity matrix for each wavelength using a Tikhonov regularization parameter of 

λ1 =0.01 and spatially variant parameter of λ2 =0.01. Optical data are then reconstructed 

into the voxelated space for each chromophore (NeuroDOT function reconstruct-img). 

Relative changes in HbO and HbR are obtained each wavelength’s respective absorption 

and extinction coefficients (NeuroDOT function spectroscopy_img) (Bluestone et al., 2001).

After reconstruction, general linear modeling is used to estimate the amplitude of HbO 

and HbR for each condition and for each subject across the measured voxels.We used an 

HRF derived from diffuse optical tomography (DOT) data for both HbO and HbR responses 

because it has shown to be a better fit than HRFs derived from fMRI (Forbes et al., 
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2021; Hassanpour et al., 2014). The GLM comprised of eight regressors, including (1) 

speech in quiet (SQ), (2) speech in noise with high-intelligibility (HN), (3) vocoded speech 

with high-intelligibility (HV), (4) correct speech in noise with low-intelligibility (LNc), (5) 

correct vocoded speech with low-intelligibility (LVc), (6) incorrect speech in noise with 

low-intelligibility (LNi), (7) incorrect vocoded speech with low-intelligibility (LVi), and (8) 

time stamps associated with the vocal responses after each trial. Each event was modelled 

with a 3 second box-car function (corresponding to the duration of the sentence stimuli) 

that was convolved with a hemodynamic response function defined as a mixture of gamma 

functions (created using spm_Gpdf; h1 =4, l1 =1 =0.0625; h2=12, l2 = 0.0625).

2.4.4. Validating image-reconstruction of fNIRS data—Image-based analyses of 

fNIRS data is a method that continues to be developed. Therefore, it is important to check 

for consistency after the image reconstruction process. Following the procedures described 

in Forbes et al. (2021) (see section 6.2), we correlated the channel-based time series data 

with the image-reconstructed time series for all subjects in this study. The mean amplitude 

of HbO and HbR were extracted from a 2 cm size sphere of voxels around the voxel with 

maximum sensitivity for each channel. Correlations were carried out between the average 

image-reconstructed time series and the channel-wise time series. In total, 988 correlations 

were performed for 38 subjects, 13 channels each (channel 5, the short separation channel, 

was excluded in this analysis). The histogram in Fig. 2B plots frequency of correlational 

values between channel and image-based time series data. Of the 988 correlations, 922 were 

greater than 0.25 (minimal acceptable threshold reported in Forbes et al., 2021). Within this 

subset which exceeded the criterion, the mean r value was 0.7. Thus, from these analyses 

we can conclude that the image-based reconstruction was an accurate reproduction of the 

channel-base data.

2.5. Statistical analyses

2.5.1. Analyses of variance between conditions—Group analyses were carried out 

using 3dMVM in AFNI (G. Chen et al., 2014). A summary of each statistical test can 

be reviewed in Table 1. fNIRS estimates cortical activation by tracking changes in the 

hemodynamic response that follows neural activity (Steinbrink et al., 2006). The process 

of neurovascular coupling suggests that neural activation results in a net increase of 

oxygenated hemoglobin (HbO) and concurrent net decrease of deoxygenated hemoglobin 

(HbR) (Buxton et al., 1998). For this reason, we included hemoglobin as a factor with 

measures of HbO and HbR. The first two repeated-measures ANOVAS examines how noise 

(Table 1A) and the process of vocoding (Table 1B) affect the neural response relative to the 

baseline response to speech in quiet. Table 1C details an ANOVA that examines whether 

cortical activity interacts with distortion type (noise versus vocoding) and/or intelligibility 

(high versus low). The ANOVA in Table 1D examines whether trial accuracy has an effect 

on the cortical response and whether this interacts with distortion type.

Unlike fMRI data in which noise is relatively uniform within the brain volume, noise in 

fNIRS data is heteroscedastic such that 1) temporal noise artifacts (i.e., motion, speaking) 

cause the artifact distribution to be heavy-tailed (yielding non-normal distribution) and 2) 

spatial noise is inherently different from channel to channel (Huppert, 2016). Therefore, we 
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conducted an omnibus 2 (Hemoglobin) X 5 (Condition) preliminary ANOVA to generate 

the voxel-wise residuals from each condition. These residuals were used to generate spatial 

autocorrelation parameters. AFNI’s 3dClustSim uses these parameters to estimate minimum 

cluster size need to achieve a family-wise error of α < 0.05 (in the case of multiple 

comparisons, alpha represents the probability of making at least one type I error) with a 

voxel-wise threshold of p < 0.05 (Cox et al., 2017). This process indicated a minimum 

cluster threshold of 83 voxels for the frontal lobe mask and 43 voxels for the temporal 

lobe mask. Voxel-wise HbO and HbR beta estimates were averaged for each participant 

from the clusters that satisfied threshold requirements and used to carry out follow-up tests 

(SPSS, IBM, version 25). The Greenhouse-Geisser correction for violations to sphericity 

were applied where necessary, and Bonferroni corrections were used to account for multiple 

comparisons in follow-up analyses.

2.5.2. Correlational analyses between performance score and cortical 
activation—Correlational analyses were carried out with AFNI’s 3dttest++. Using a p 
threshold of 0.05, the LNc voxel-wise HbO map was tested against zero using subject 

behavioral scores for the LN condition as a covariate to identify cortical regions where 

variance of LNc voxel-wise betas covaried with performance. The same analysis was 

performed between the LVc voxel-wise HbO map and behavioral scores from the LV 

condition. The same cluster size thresholds were applied as described above.

3. Results

Study results were based on data from 38 participants (20 females). Due to a task 

programming error, a small number of LV trials were unintentionally excluded from the 

experimental task for some of the participants: four participants received 32 LV trials and 

seven participants received 39 LV trials instead of the intended total of 40 LV trials. Relative 

to the total number of trials, it is unlikely that the absence of these trials affected the 

statistical analyses.

3.1. Behavioral data: speech recognition performance

Behavioral performance and comparisons between each condition are detailed in Table 

2. Participants achieved, on average, 99.7% (SD +/− 1%) in the HN condition, 92.5% 

(SD +/− 5.6%) in the HV condition, and perfect scores in the SQ condition. LN 

performance varied between subjects ranging 27.5% to 75% correct; LV scores varied 

between subjects from 27.5% to 72.5% correct. As expected, average scores in LN and LV 

were 48% (SD +/− 12.4%) and 49.9% (SD +/−10.8%), respectively. Two research assistants 

independently scored each speech perception measure with high interrater reliability 

(α=0.9817, Krippendorff alpha). Paired samples t-tests between performance scores in 

each condition can be viewed in Table 2. Performance in the LV and LN conditions were 

significantly worse than the other conditions but were not significantly different from each 

other.
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3.2. fNIRS data

3.2.1. Image-based data—Results of the ANOVAs are listed in Table 3. The MNI 

coordinates of the center of mass for each cluster denote the cluster location. Note that 

these coordinates and the number of voxels is not a quantitative measure of each cluster, 

as these image-based analyses are a projection of the two-dimensional fNIRS data into 

three-dimensional space. Rather, the MNI coordinates and cluster size provide an enhanced 

description of activation localization and extent of the response, respectively. Significant 

main effects and interaction effects appeared in portions of the temporal and frontal cortices 

for all ANOVAs, suggesting that our ROIs were sensitive to the experimental task.

Table 3A summarizes the results of the first ANOVA which examined how added noise 

affected the baseline response to speech in quiet. A main effect of Hemoglobin was found 

in the IFG (F(37) = 11.62, p = .002) and two clusters in the middle temporal gyrus (MTG) 

(F(37) = 6.81, p = .013 and F(37) = 10.34, p = .003, respectively). Further inspection of the 

first cluster in the MTG (anterior to the second MTG cluster) revealed an inversed response, 

in which change in HbO was negative and change in HbR was positive. An interaction 

between Hemoglobin and Noise Level appeared in the middle frontal gyrus (MFG) (F(37) 

= 5.87, p = .004) and IFG (F(37) = 6.41, p = .006). The first cluster revealed significantly 

higher activity for speech recognition in high level background noise (LNc) relative to the 

easier SQ and HN conditions (see Fig. 3). In the second cluster, changes in both HbO and 

HbR were found to be negative for all three conditions, where the most negative changes 

occurred in the LNc condition. In a similar manner, the ANOVA in Table 3B examined 

how simulated CI speech affected the baseline response to speech in quiet. Main of effects 

of Hemoglobin were observed in the MFG (F(37) = 10.61, p = .002) and MTG (F(37) 

= 7.77, p = .008). The second hemoglobin response was in- versed, showing negative 

changes in HbO and positive changes in HbR. An interaction between Hemoglobin and 

Vocoding Level was observed in the MTG (F(37) = 6.59, p = .002), where activation during 

the low-intelligibility vocoded (HVc) and speech in quiet conditions showed significantly 

greater activation relative to the high intelligibility vocoded condition (HV) (see Fig. 3). 

Results of follow-up paired samples t-tests for the Hemoglobin X Noise Level (ANOVA A) 

and Hemoglobin X Vocoding Level (ANOVA B) interactions are listed in Table 4.

Table 3C summarizes the ANOVA which tested whether cortical response was affected by or 

interacted with distortion type (noise, vocoding) and intelligibility (high, low). A main effect 

of Hemoglobin was observed in the MFG (F(37) = 12.32, p = .001) and in the MTG (F(37) 

= 7.06, p = .012). The first demonstrated the conventional activation response (increase in 

HbO, decrease in HbR) while the second demonstrated an inversed response. Hemoglobin X 

Distortion interactions were observed in the IFG (F(37) = 6.08, p = .018) and MTG (F(37) 

= 9.06, p = .005) (see Fig. 4). The interaction in the IFG revealed changes in hemoglobin 

to be negative for both oxy- and deoxyhemoglobin, and no significant difference between 

HbO and HbR for either distortion condition. The MTG cluster showed significant activation 

for speech in noise conditions (HN, LNc) relative to a lack thereof during the vocoded 

speech conditions (HV, LVc). Hemoglobin X Intelligibility interactions were observed in the 

MTG (F(37) = 18.59, p < .001) and MFG (F(37) = 5.99, p = .019), both of which revealed 
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significantly more activation during low-intelligibility conditions (LNc, LVc) relative to 

high-intelligibility conditions (HN, HV).

Table 3D summarizes the results of the second ANOVA which examined the effect of 

distortion type (background noise and vocoding) and trial accuracy (correct and incorrect). 

This ANOVA analyzed responses between LNc, LNi, LVc and LVi. Two effects of 

Hemoglobin were observed in separate clusters in the IFG (F(37) = 10.35, p = .003 and 

F(37) = 9.74, p = .003), respectively). The first demonstrated the conventional hemodynamic 

response, while the second was inverted. A third effect of Hemoglobin was found in the 

MTG (F(37) = 8.26, p = .007. An interaction between Hemoglobin and Accuracy appeared 

in the MFG (F(37) = 9.72, p = .004) and the MTG (F(37) = 7.32, p = .010). The MFG 

cluster demonstrated a significant increase in activation during correct responses relative to 

incorrect responses (see Fig. 5A). Alternatively, the second cluster in the MTG revealed 

negative changes in both HbO and HbR.

Lastly, we examined brain-behavior associations by running correlational analyses between 

accuracy in the low-intelligibility conditions and HbO change during these conditions. In 

the LNc condition, HbO change in the MFG was negatively associated with performance (r 
= −.458; p = .004; see Fig. 6). HbO change in the IFG was positively associated with LN 

performance (r = .393; p = .015), but the majority of HbO measures were less than zero. 

Change of HbO from LVc trials in the MFG was positively associated with performance (r 
= .430; p = .007), whereas HbO change was negatively associated with performance in the 

MTG (r = −.398; p = .013).

4. Discussion

4.1. Effects of distortion type and speech intelligibility on the cortical response

In the current report, we examined the effect of distortion, speech intelligibility, and 

performance outcome on the neural responses in left frontal and temporal cortices. 

Consistent with existing literature on speech processing, activation was found across large 

swaths of these regions (Golestani et al., 2013; Mattys et al., 2012; Peelle, 2018). This study 

sheds light on how the NH brain reacts to decreasing intelligibility and how compensatory 

mechanisms differ between distortion types. LN and LV conditions were designed to 

decrease average speech perception performance by approximately 50%, whereas their 

corresponding conditions with high intelligibility, HN and HV, yielded ceiling effects in 

behavioral performance (Table 2A). To assess activation during correct perception of speech 

in noise, HN and LNc conditions were contrasted with SQ (Table 1A). The noise effect in 

the MFG (Fig. 3, top) was driven by stronger activation to the LNc trials, relative to both 

HN and SQ. This is consistent with previous reports (Golestani et al., 2013; Wong et al., 

2008) and would suggest that the elevated activity is associated with neural mechanisms that 

support speech understanding during degraded listening conditions, and its absence amid 

highly intelligible speech in low-level noise (HN) suggests it’s not an obligatory response 

to the presence of noise. The second interaction seen in the IFG showed a nonconventional 

pattern of activity and was inverse of the response seen in the MFG cluster. That is, 

this region showed a significant decrease in HbO low-intelligibility noise (LN) condition. 

Decreases in HbO levels are not well understood (discussed in more detail in Section 4.4), 
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but one possibility is that MFG and IFG are vascularly coupled. More evidence of a possible 

relationship between the MFG and IFG during the processing of LN stimuli can be observed 

in the brain-behavior correlational analyses (see Section 4.4).

The corresponding analysis of vocoding speech effects (ANOVA in Table 1B) reveal an 

interaction in the MTG (Fig. 3), in which vocoded speech with low intelligibility (LVc) 

was associated with stronger activity relative to highly intelligible vocoded condition 

(HV). This region of the temporal lobe has been associated with combining phonetic 

and semantic cues, allowing for the recognition of sounds as words and comprehension 

of a word’s syntactic properties (Gow Jr., 2012; Graves et al., 2008; Majerus et al., 

2005). Conditions where the signal information is highly compromised would force the 

listener to rely more heavily on this mechanism. Hence, elevated MTG activity may reflect 

compensatory neural engagement associated with enhancing lexical interface between sound 

and meaning (Hickok and Poeppel, 2004). Interestingly, the Hb X Vocoding Level cluster 

also revealed that speech in quiet (SQ), or natural speech evoked significantly stronger 

activation relative to the HV condition as well. The integrity of spectral and temporal 

information is uncompromised in the SQ stimuli, and therefore, this activity may reflect 

the unrestricted lexical representation of phonemic and syllabic speech information in the 

temporal cortex (Poeppel et al., 2008). This finding is consistent with the Ease of Language 

Understanding (ELU) model, which suggests that activation associated with natural speech 

processing will be represented by mechanisms in the STG and MTG (Rönnberg et al., 

2013). If incoming speech information fails to rapidly and immediately map onto known 

phonemic/lexical representations in the temporal cortex, higher level linguistic mechanisms 

might then be recruited to exploit other available features of the speech, not unlike the 

pattern of activation seen in the Hemoglobin X Noise Level interaction in the MFG. It’s 

surprising to find that HV lacked activation relative to both SQ and LV. Even though 

HV sentences were highly intelligible, resulting in near ceiling performance, the speech 

was still compromised due to the vocoding process. Hence, we might expect that this 

degradation might interfere with matching phonemic/syllabic representations. It’s possible 

that the highly intelligible vocoded sentences-in-quiet aren’t sufficiently degraded to trigger 

compensatory strategies, but also lack the full perceptual qualities of natural speech to evoke 

typical speech processing mechanisms, as well.

The interesting difference between the Noise Level ANOVA and the Vocoding Level 

ANOVA is where these compensatory strategies are recruited. That is, directly comparing 

speech in noise with the baseline response to speech in quiet reveals that listeners, at a 

group level, tend to rely on top-down frontal speech processing to resolve noise-degraded 

speech. Understanding speech in background noise is made easier by recruiting linguistic 

mechanisms such as inference-making, inhibition, and switching attention. Consistent with 

previous imaging studies (Davis et al., 2011; Mattys et al., 2012; Scott et al., 2004; Wong 

et al., 2008), the present study shows elevated frontal activation in the MFG associated with 

recognizing speech degraded by noise. On the other hand, directly comparing vocoded 

speech with speech in quiet conditions indicate that listeners rely on initial cortical 

processing in the temporal lobe to resolve highly-degraded vocoded speech.
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Both types of distortion were contrasted with each other in ANOVA C, which was designed 

to evaluate whether cortical activation during accurate speech recognition interacted with the 

type of distortion and/or its level of intelligibility. Two interactions between Hemoglobin 

and Intelligibility appeared in the MTG and MFG, both demonstrating that regardless of 

the manner that the speech is distorted, conditions with low intelligibility are associated 

with significantly higher activity relative to conditions with high intelligibility. This is 

consistent with Davis and Johnsrude’s seminal fMRI investigation of hierarchical speech 

comprehension, which reported ‘form-independent’ (form of distortion) activation in the left 

middle and frontal gyri (Davis and Johnsrude, 2003). This means that the typical auditory 

system is able to resolve degraded speech (regardless of the type), by recruiting higher

level linguistic mechanisms when they are available. The contrast between noise-degraded 

speech and vocoded speech (regardless of intelligibility) reveals a Hemoglobin X Distortion 

interaction in the MTG, in which a stronger cortical response is observed during speech 

in noise relative to vocoded speech. This could be because the cortical responses of NH 

listeners are attuned to processing speech in noise, as this is a common experience in 

everyday life. Listeners show that they are able to exploit top-down mechanisms to optimize 

speech understanding even when the speech is vocoded, as evidenced by the Hemoglobin 

X Intelligibility interactions in the frontal lobe. However, due to subtractive nature of the 

vocoded speech combined with their lack of experience with vocoded stimuli, the neural 

pathways to access these top-down strategies are not stabilized, and therefore less reliable 

(explaining the lack of significant frontal activity when contrasting vocoded speech with 

baseline speech in quiet).

Overall, these findings reveal important differences in how the temporal lobe and 

frontal lobe resolve these two types of distortion. Previous research indicates that neural 

mechanisms of speech recognition adapt with task demands, the listeners’ motivation/

attention, and semantic knowledge from previous experience (Leonard et al., 2016; Rutten 

et al., 2019). Results of the current study are consistent with this account. Given a 

lifetime of conversations riding in the car, talking on the phone, eating at restaurants, or 

listening to the television over the hum of an air conditioner or vacuum cleaner, listeners 

with normal hearing have extensive, well-established neural representations and pathways 

associated with listening to speech in background noise. If incoming auditory information 

is compromised, listeners are able to pull from multiple cortical networks to optimize 

speech understanding. This explains the robust frontal response during low-intelligibility 

speech in noise when compared to high-intelligibility conditions (SQ, HN) (Hb X Noise 

Level interaction from ANOVA A), in addition to the increased temporal sensitivity to 

speech in noise when directly compared to vocoded speech (Hb X Distortion interaction 

from ANOVA C). However, when speech is simulated to reflect a more realistic listening 

condition experienced by CI listeners, NH listeners show less reliance on experience-driven, 

top-down pathways and more reliance on bottom-up auditory analysis and word meaning 

processing.

4.2. Effects of distortion type as a function of behavioral outcome

Consistent with previous reports that compare the neural response of correct and incorrect 

perception (Dimitrijevic et al., 2019; Lawrence et al., 2018), we observed a significant 
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interaction between Hemoglobin and Accuracy in the MFG (Fig. 5A), such that significant 

activity was observed during accurate speech recognition trials. This suggests that 

recruitment mechanisms in the frontal lobe are not obligatory responses that come online 

during more complex tasks, but instead, directly relate to whether subjects are doing the task 

successfully. This interaction is collapsed across type of distortion, suggesting that listeners 

are able to exploit similar MFG mechanisms when sufficient speech information is preserved 

in artificially distorted speech.

Given its domain-general functionality, the role of PFC activation has been associated with 

experimental tasks involving response conflict and error-detection (Carter et al., 1998; 

Rushworth et al., 2007). An elevated response during accurate performance, however, 

aligns with many neuroimaging accounts that associate left PFC activity with performance 

monitoring during tasks where attentional control is needed to optimize performance when 

the task is challenging but doable (M. X. Cohen et al., 2008; Dosenbach et al., 2008; 

Eckert et al., 2016; Kerns, 2006). The FUEL model (framework for understanding effortful 

listening) would further suggest that this activation is modulated by the listener’s motivation 

to perform the task (Pichora-Fuller, 2016). The cost of exerting attentional control is related 

to the reward-potential associated with the task (be it external or intrinsic) (Shenhav et 

al., 2013); therefore, activation increases in the frontal lobe during challenging cognitive 

tasks insomuch that the participant is sufficiently motivated and able to perform the task. 

It’s important to note that neither motivation nor effort was measured in the current 

study. Additionally, measures of effort have been shown to vary significantly between 

listening conditions where behavioral performance is otherwise equivalent, indicating that 

the negative impact of increasing cognitive demands can go unnoticed if simply assessing 

a performance score (Francis et al., 2016; Zekveld and Kramer, 2014). However, the FUEL 

account could, in part, explain the lack of activation during incorrect perception if listeners 

are disengaged during incorrect trials. Several studies have already documented the impact 

of decreasing intelligibility on measures of effort (Ohlenforst et al., 2018; Winn et al., 2015). 

Ongoing work (Defenderfer et al., 2020; Zekveld et al., 2014) using independent measures 

of effort, such as pupillometry, concurrently with neural measures may help to resolve the 

role of effort in the relationship between brain and behavior reported here.

It is interesting to note that we did not find a comparable result to the accuracy effect 

reported in a previous study (Defenderfer et al., 2017), where significantly greater activity 

in the temporal lobe was associated with correct speech-in-noise trials. Rather, the Hb X 

Accuracy cluster in the MTG shows a non-canonical response pattern with decreased HbO. 

Previous imaging studies of speech perception have reported left antero-lateral temporal 

activation to be associated with speech intelligibility (Evans et al., 2014; Narain et al., 2003; 

Obleser et al., 2007; Scott et al., 2000). While we found an accuracy effect (correct > 

incorrect, i.e., intelligible > unintelligible) in the frontal lobe, we did not find this effect in 

the STG. First, it’s possible that the noise/artifact associated with speaking may have been 

so pronounced, that after SS channel signals were corrected from the dataset, no meaningful 

effects could be recovered. Secondly, while the conditions used in Defenderfer et al. (2017) 

were nearly identical to speech-in-quiet (SQ), vocoded (HV), and speech-in-noise (LN) 

conditions of the current study, Defenderfer et al. (2017) used loudspeakers for stimulus 

presentation, whereas the current study used insert earphones. Thus, the manner of stimulus 
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presentation could have altered the quality of the stimulus and/or attentional strategies in this 

task.

4.3 Evidence of brain-behavior relationship with speech recognition

By examining the relationship between neural activation and behavioral performance in 

the low-intelligibility conditions, we were also able to gain insight into how individual 

differences in activation were associated with success on the low-intelligibility speech 

perception conditions (LNc and LVc). Average change in HbO was negatively correlated 

with speech scores in the MFG (Fig. 6A). This negative association suggests that listeners’ 

ability to recognize speech in noise is inversely related to the degree to which the region 

is engaged. Recall that group-level MFG activity is associated with processing of correct 

LN trials relative to the higher intelligibility conditions. Together, these results suggest 

that MFG activity supports speech recognition more strongly for individuals that perform 

more poorly in the LN condition. Neuroimaging evidence indicates that some listeners 

may exhibit neural adaptation such that neural responses decrease as listeners become 

accustomed to novel stimuli (Blanco-Elorrieta et al., 2021). Within the current task, response 

variability from this region may reflect cortical efficiency with which subjects are able to 

resolve the speech in noise, such that the poorest performers rely more heavily on MFG 

activation (with little to no adaptation), and better performers that have more efficient frontal 

mechanisms exhibit relatively lower activation. Second, a positive association between 

change HbO during LNc trials and LN performance was observed in the IFG. As shown 

in Fig. 6B, however, change in HbO tended to be negative and increased closer to zero with 

higher speech scores. In contrast to MFG, the Hb X Noise Level interactions from ANOVA 

A revealed a significant decrease in HbO on the LN condition which was inverse to the 

pattern of MFG. Thus, the coupling between these two regions is evident at the individual 

subject level, and the relationships with speech score and activation at the individual level is 

consistent with group level activation.

Average HbO change in the IFG during LVc trials was positively correlated with 

performance during the LV condition, while an inversed relationship was observed in the 

MTG (Fig. 6B). Previous work examining the learnability of vocoded speech stimuli report 

a similar correlation between comprehension of CI simulations and activity in the IFG 

(Eisner et al., 2010). Many methodological differences exist between the vocoded stimuli 

of the current study and that used in Eisner et al. (2010). However, it remains possible that 

this cluster in the IFG could be demonstrating variability in activation based on individual 

differences in learning capacity across the sample, as higher activity is associated with better 

performance. The negative correlation in the MTG suggests that better performers in the LV 

condition need not rely as heavily on the initial cortical processes of the temporal lobe, and 

are more readily able to recruit frontal mechanisms to resolve heavily degraded vocoded 

speech.

4.4 Non-canonical (inverted) hemodynamic responses

In this study, we observed inverted hemodynamic responses, demonstrating changes in 

hemoglobin opposite of the typical canonical response (e.g., negative HbO, positive HbR). 

The hemodynamic response that we measure with fNIRS is a secondary measure of 

Defenderfer et al. Page 17

Neuroimage. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the neuronal activity taking place in the cortex. The complex nature of neurovascular 

coupling often requires careful interpretation of results, as the neurophysiological basis 

of a negative or inverted response is not completely understood. Inverted responses are 

commonly reported in infants, and studies have suggested multiple possible explanations 

for such responses including changes in hemocrit during transition from fetal to adult 

hemoglobin (Zimmermann et al., 2012) or the interaction between ongoing developmental 

changes during infancy and the influences of stimulus complexity and experimental design 

(Issard and Gervain, 2018). However, the research on the relationship between inverted 

NIRS responses and cortical activity in adults is limited. Evidence from fMRI (Christoffels 

et al., 2007), magnetoencephalography (MEG) (Ventura et al., 2009), fNIRS (Defenderfer 

et al., 2017), and electroencephalography (EEG) (Chang et al., 2013) studies indicate that 

inverted response functions could reflect cortical suppression related to speech production 

processing. Given that the current study had participants vocalize their responses during 

the task, it’s possible that the inverted/non-canonical responses observed here could reflect 

such speech-related suppression. However, any influence of speaking-related artifact on 

the activity from responses during speech perception should have been mitigated, as we 

modeled the responses phase in the GLM, and every condition trial was followed by a 

vocal response (therefore, contrasting conditions should cancel out any effect of this). 

Alternatively, NIRS methodological studies demonstrate that muscle activity can cause 

increases in both HbR and HbO (Volkening et al., 2016; Zimeo Morais et al., 2017) and has 

been shown to influence NIRS data during tasks which involve overt speaking (Schecklmann 

et al., 2010). The inverted/non-canonical responses observed near the temporal muscle could 

reflect the influence of muscle-related activity. Channel-wise time series data demonstrating 

non-canonical and/or inverted hemodynamic responses are plotted at the bottom of Fig. 

2A. Additionally, the physical act of speaking can cause respiration-induced fluctuations of 

carbon dioxide (CO2) in the vascular system (Scholkmann et al., 2013). Decreases in CO2 

are associated with cerebral vasoconstriction and can result in a relative increase in HbR 

(Tisdall et al., 2009). All things considered, the inverted responses observed in the present 

study should be cautiously interpreted, as the neurophysiological mechanisms underlying 

non-canonical responses are not fully understood.

5. Limitations and future directions

While fNIRS presents numerous advantages relative to other imaging techniques, the 

nature of near infrared light poses inherent limitations to the technique. Generally, the 

measurement depth is limited to regions within 1.5 – 2 cm of the scalp; therefore, our 

interpretation of fNIRS recordings are limited to the cortical surface (Chance et al., 

1988). Additionally, the changes in optical density measure by fNIRS is a cumulative 

result, reflecting possible contributions from superficial blood flow, skin circulation, and 

cardiovascular effects (Quaresima et al., 2012). These limitations are addressed in the 

current study by experimental methods we implemented and application of rigorous artifact 

correction techniques prior to extracting hemodynamic estimates. Muscle artifact may have 

contaminated certain signals closer to the temporal muscle, and it’s possible that this 

contributed to the inversed responses observed in this study, as muscle artifact can lead 

to an inversed response of either HbO and/or HbR (Volkening et al., 2016). Incorporation 
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of a short distance probe over the temporal muscle mitigated the possible effects of muscle 

artifact.

Comparison of accurate and inaccurate trials during sentence recognition revealed neural 

response differences between behavioral outcomes. The criteria for accuracy measurement 

was uncompromising, as the entire sentence had to be repeated correctly to qualify as a 

correct response. This indicates that incorrect responses comprised a wide range of possible 

answers (e.g.; confidently but incorrectly repeating the sentence, with the presumption that 

an accurate response was given; repeating most of the sentence correctly and missing 

one word; simply saying, “I don’t know”, etc.). This method of coding neglects potential 

neural variations that may exist in such a wide variety of response types. Furthermore, 

vocalization of trial responses implicates other potential sources of artifact to fNIRS 

recordings (discussed in Section 4.4). In the future, we plan to explore use of silent response 

methods to report perception, such as closed set, forced choice methods, signal detection, or 

typing response on a keyboard (Faulkner et al., 2015).

Previous research shows evidence of both behavioral and neural adaptation during cognitive 

tasks (Guediche et al., 2015; Samuel and Kraljic, 2009). Specifically, behavioral adaptation 

to vocoded speech stimuli has shown significant improvements in perception accuracy 

after exposure and training with 30 vocoded sentences (Davis et al., 2005). Therefore, 

it is possible that activation to correct vocoded speech trials could be related either to 

participants’ learning of the stimuli and/or could have adapted over time (Eisner et al., 

2010).

Future research should investigate cortical associations with listening effort by using 

physiological measurements, such as pupillometry, to characterize fNIRS recordings. 

Simultaneous eye-tracking with fNIRS is exceptionally advantageous, as they both offer 

unrestrictive and convenient means of investigating cognitive function in typical and special 

populations. Neural measures that correlate with task performance are likely revealing 

cortical areas associated with behavioral outcome. However, performance measurements 

alone do not fully depict listening effort and emphasize the need for physiological 

markers to describe the cognitive demand encountered during effortful speech recognition. 

Preliminary results (Defenderfer et al., 2020) indicate that concurrent measurement of 

fNIRS and pupil data is feasible and reveal the potential to deepen our understanding of 

listening effort associated with simulated CI speech.

6. Conclusions

Overall, the current findings suggest that frontal and temporal cortices are differentially 

sensitive to the way speech signals are distorted. When speech is degraded with more natural 

forms of distortion (background noise), established neural channels in the frontal lobe enact 

top-down, attentional mechanisms to optimize speech recognition. However, this can be 

disrupted when the speech quality is deteriorated to the point where accurate perception is 

less likely, as cortical activation is significantly diminished during incorrect trials. Despite 

equivalent behavioral performance between speech-in-noise and vocoded speech conditions, 

cortical response patterns in NH adults suggest heavier reliance on temporal lobe function 
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during vocoded speech conditions. Diminished frontal cortex activity during vocoded speech 

conditions suggests that untrained listeners of vocoded stimuli do not as reliably recruit the 

same attentional mechanisms employed to resolve more natural forms of degraded speech. 

Finally, the correlations between speech perception scores and cortical activity motivate 

future research to examine individual differences more closely as the participants that 

performed better on the low-intelligibility condition differed in their reliance on cortical 

mechanisms from those indicated by group level activation.
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Fig. 1. 
A. Abbreviations and descriptions of task conditions. B. Custom headpiece positioned on 

representative participant (left). Sensitivity profile and projection of fNIRS probes onto 

cortical surface (right). Red and blue dots represent source lights and detectors, respectively. 

NIRS channels are labeled with white numbers (channel 5 is the short separation channel). 

The color scale indicates relative sensitivity to neural activation on a logarithmic scale.
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Fig. 2. 
A. Line plots of channel-wise time series data for all conditions from a representative 

frontal channel (channel 3, top left) and a representative temporal channel (channel 13, top 

right). Examples of non-canonical/inverted responses for conditions from the Intelligibility 

ANOVA are plotted from channel 6 (bottom left) and channel 9 (bottom right). The 

approximate location of each channel in relation to the probe configuration are denoted by 

white asterisks within the insets in the upper right hand corner of each plot. See Fig. 1A for 

condition abbreviations. Error bars represent the standard error of the mean. B. Histogram 

plotting the frequency of correlations between channel data and image-based data.
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Fig. 3. 
Results of ANOVAs A (Hemoglobin (2) X Noise Level (3)) and B (Hemoglobin (2) X 

Vocoding Level (3)). A. Hemoglobin X Noise Level interaction – Top bar plot shows 

average changes in HbO and HbR (ΔHb) during SQ, HN, and LNc conditions for the 

interaction in the MFG (z = 8); bottom bar plot shows the second interaction of this type in 

the IFG (z = −2). B. Hemoglobin X Vocoding Level interaction – Bar plot shows average 

changes in HbO and HbR during SQ, HV, and LVc conditions for the interaction in the MTG 

(z = −2). HbO, oxyhemoglobin (red squares); HbR, deoxyhemoglobin (blue stripes); IFG, 

inferior frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus. Error bars 

represent standard error of the mean. Significance was adjusted for multiple comparisons 

and is marked as follows: * p ≤ 0.05, * * p ≤ 0.01; * * * p ≤ 0.001; n.s., not significant.

Defenderfer et al. Page 30

Neuroimage. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Results of ANOVA C (Hemoglobin (2) X Distortion (2) X Intelligibility (2)). A. 
Hemoglobin X Intelligibility interaction – Left bar plot contrasts average changes in HbO 

and HbR (ΔHb) between high- (HN, HV) and low-intelligibility (LNc, LVc) trials for the 

interaction in the MTG (z = −4); right bar plot shows the second interaction of this 

type in MFG (z = 8). B. Hemoglobin X Distortion interaction – Left bar plot contrasts 

average changes in HbO and HbR between speech-in-noise (HN, LNc) and vocoded speech 

(HV, LVc) trials for the interaction in the IFG (z = 0); right bar plot shows the second 

interaction of this type in the MTG (z = −6). HbO, oxyhemoglobin (red squares); HbR, 

deoxyhemoglobin (blue stripes); IFG, inferior frontal gyrus; MFG, middle frontal gyrus; 

MTG, middle temporal gyrus. Error bars represent standard error of the mean. Significance 

is marked as follows: *p ≤ 0.05, **p ≤ 0.01; ***p ≤ 0.001; n.s., not significant.
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Fig. 5. 
Results of ANOVA D, Hemoglobin (2) X Distortion (2) X Accuracy (2) A. Hemoglobin 
X Accuracy interaction –Top bar plot contrast average changes in HbO and HbR (ΔHb) 

between correct (LNc, LVc) and incorrect (LNi, LVi) trials for the interaction in the MFG (z 

= 4); bottom bar plot shows the second interaction of that type in the MTG (z = −14). B. 
Hemoglobin X Distortion interaction –bar plot contrasts average changes in HbO and HbR 

between speech-in-noise (HN, LNc) and vocoded speech (HV, LVc) trials for the interaction 

in the IFG (z = 4). HbO, oxyhemoglobin (red squares); HbR, deoxyhemoglobin (blue 

stripes); IFG, inferior frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal 

gyrus. Error bars represent standard error of the mean. Significance is marked as follows: *p 

≤ 0.05, **p ≤ 0.01; *** p ≤ 0.001; n.s., not significant.
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Fig. 6. 
Results of brain/behavior correlational analyses between low-intelligibility conditions and 

their respective performance scores. A. Negative correlation in the MFG (left) and positive 

correlation in the IFG (right) are plotted for LN condition data. B. Positive correlation in the 

MFG (left) and negative correlation in the MTG (right) are plotted for LV condition data. 

Pearson Correlation (r) and significance shown inside each scatterplot. Linear trendline is in 

black. Clusters are denoted by black arrows.
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Table 2

Results of behavioral performance per condition and paired samples t-tests between each condition (mean/

standard deviation as percentage).

A. Performance B. Pairwise Comparisons

Condition Mean % (Std. Dev. +/−) Comparison t Sig. (2-tailed)

HN 99.7 (.01) HN – HV 7.97 <.001

HV 92.5 (.06) HN – SQ −2.09 .044

LN 47.7 (.12) HV – SQ −8.35 <.001

LV 50.3 (.11) LN – LV −1.599 .118
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Table 4

Results of follow-up paired samples t-tests for the interactions between Hb X Noise Level (ANOVA A) and 

Hb X Vocoding Level (ANOVA B).

Interaction Comparison
a t

Sig. (2-tailed)
b

Hb X Noise Level (cluster 1) SQ – HN .031 1.00

SQ – LNc −2.97 .015

HN – LNc −2.97 .015

Hb X Noise Level (cluster 2) SQ – HN 1.88 .201

SQ – LNc 2.95 .018

HN – LNc 2.15 .114

Hb X Vocoding Level (cluster 1) SQ – HV 2.99 .015

SQ – LVc −391 1.00

HV – LVc −3.23 .009

a
The values that are being compared are the mean differences between HbO and HbR for each condition.

b
Bonferoni correction applied for multiple comparisons.
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