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Precision oncology is an absolute need today due to the emergence of treatment
resistance and heterogeneity among cancerous profiles. Target-propelled cancer
therapy is one of the treasures of precision oncology which has come together with
substantial medical accomplishment. Prostate cancer is one of the most common
cancers in males, with tremendous biological heterogeneity in molecular and clinical
behavior. The spectrum of molecular abnormalities and varying clinical patterns in prostate
cancer suggest substantial heterogeneity among different profiles. To identify novel
therapeutic targets and precise biomarkers implicated with prostate cancer, we
performed a state-of-the-art bioinformatics study, beginning with analyzing high-
throughput genomic datasets from The Cancer Genome Atlas (TCGA). Weighted gene
co-expression network analysis (WGCNA) suggests a set of five dysregulated hub genes
(MAF, STAT6, SOX2, FOXO1, andWNT3A) that played crucial roles in biological pathways
associated with prostate cancer progression. We found overexpressed STAT6 and SOX2
and proposed them as candidate biomarkers and potential targets in prostate cancer.
Furthermore, the alteration frequencies in STAT6 and SOX2 and their impact on the
patients’ survival were explored through the cBioPortal platform. The Kaplan-Meier
survival analysis suggested that the alterations in the candidate genes were linked to
the decreased overall survival of the patients. Altogether, the results signify that STAT6
and SOX2 and their genomic alterations can be explored in therapeutic interventions of
prostate cancer for precision oncology, utilizing early diagnosis and target-
propelled therapy.

Keywords: prostate cancer, precision oncology, target-propelled therapy, The Cancer Genome Atlas, weighted
gene co-expression network analysis
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INTRODUCTION

Cancer is a highly complex, heterogeneous, and robust disease (1).
It arises due to the failure at multiple levels in multicellular
organisms. The failure at multiple levels includes genetic
alterations, differential gene expression, metabolic disorders, and
abnormal signal transduction processes at different signaling levels
(receptor/intracellular/effector levels, conformational change,
change in interactions) (2). The complexity of genomic profiles,
expression patterns, and cellular interactions within the tumor
microenvironment are the major challenges in understanding the
disease mechanism (3). This complexity results from intratumoral
heterogeneity (the substantial genetic diversity within tumors),
where cancer cells have distinct molecular and phenotypic features
established by different genetic alterations and environmental
factors (4).

Prostate cancer is one of the leading causes of malignancy
among men, with over 220,000 new cases diagnosed in 2015 in
the United States only (5). Based on Globocan 2020 estimates, it
is the second most common cancer (after lung cancer) in males
and the third most common cancer worldwide, with over 1.4
million new cases and 3.75 lakh deaths in 2020 (6). Whereas the
data regarding the factual incidences of prostate cancer in India
is limited, still, it is the most prevalent cancer in men apart from
skin cancer (7). For a prevalent malignancy like prostate cancer,
relatively little is known about its etiology. Proven risk factors are
inadequate to progressing age, family history, certain genetic
mutations, and dysfunction of some androgen receptor (AR)-
related genes. Also, a few lifestyle and environmental factors have
been identified that may increase the risk of advanced prostate
cancer, i.e., smoking, obesity, some nutritional factors, and
race (6).

The available target-based therapeutic strategies and prostate-
specific antigen (PSA)-based diagnostic approaches have come
up with various off-target side effects and false positives in
medical therapeutics of prostate cancer (8, 9). Considering this
opportunity, many research groups have focused on identifying
novel biomarkers and druggable targets of prostate cancer (10–
15). However, due to the heterogeneity of cancerous profiles, it is
tremendously unlikely to discover a single gene as a
representative marker or druggable target in prostate cancer
(16, 17). This heterogeneity may also underlie the high
inconsistency of prostate cancer therapeutic diagnostic and
clinical outcomes (18). Nonetheless, diagnostic kits made by
combining multiple genes have been utilized to raise the
prognostic power to detect prostate cancer, relapse, and
survival after using traditional methods (19–22). Their
commercial launch demonstrates the accomplishment of these
diagnostic kits as ProMark (23), Oncotype DX (24), Prolaris (25),
and Decipher (26). These kits may be upgraded by drawing from
molecular classifications using DEGs from cancerous profiles,
facilitating more precise outcomes, optimal therapies, and a
better understanding of the disease.

Precision oncology, also known as biomarker-driven
therapeutics, has significantly enhanced clinical outcomes in a
little while (27). It highlights the efficacy of steering biomarkers
Frontiers in Oncology | www.frontiersin.org 2
and druggable targets associated with a poor prognosis and
clinical outcomes affecting cancer patients’ healthy survival
(28). Advancements in diagnostics, drug development, and
biological research using modern approaches will greatly
contribute to the medical therapeutics against prostate cancer
under precision oncology (29). Genomic profiling of genetic
alterations and analysis of expression patterns helps to
understand prostate cancer ’s complexity in different
individuals (30). High-throughput next-generation sequencing
(NGS) has facilitated the generation of molecular signatures of
cancer. Here, differentially expressed genes (DEGs) between
cancerous and non-cancerous profiles are abundant sources of
putative biomarkers of cancer. Large-scale genomic
characterization of cancerous profiles has offered vital new
perceptions about the biological heterogeneity of prostate
cancer and has the potential to discover novel biomarkers and
druggable targets.

The high-throughput data of prostate cancer generated from
different experimentations by various research laboratories
across the world are publicly available at The Cancer Genome
Atlas (TCGA) and the Genomic Data Commons (GDC) data
portal (31). Genomic profiles in these repositories are
progressively being exploited for precisely targeted therapeutic
interventions in cancer research. Several studies have utilized
these repositories to explore the genetic basis of prostate cancer
and have found significant dysfunction of multiple genes (32–
36). Notably, no comprehensive study has used the recent high-
throughput data from the TCGA using an integrated
bioinformatics approach to assess the genomic profiles of
prostate cancer. Prostate cancer profiles show incredible
heterogeneity. Some patients die of the metastatic condition
within 2–3 years of diagnosis while others can survive for 10–
20 years, probably reflecting the genomic diversity of
profiles (37).

The genomic diversity can also be revealed by exploring gene
regulatory networks in cancerous profiles. Gene regulatory
networks are complex, and exploring their dynamics can
discover key regulatory genes in complex diseases, including
cancer (38). Studies on complex gene regulatory networks are
based typically on clustering and identifying the high degree
hubs, motif/modules from the network (39). These studies
constructed from the high-throughput genomic datasets are
used to understand better the key regulating genes in
cancerous profiles and their roles in disease inception and
progression (40–42). Integrated approaches, including
network-based and DEGs analyses, are more helpful to
optimize sensitivity and selectivity of diagnosis than
investigating only a group of potentially unrelated genes in
cancer. These approaches produce more robust outcomes,
advance disease classification, and reveal new insights into the
disease progression.

MicroRNAs (miRNAs) are small non-coding RNA molecules
that function in RNA silencing and post-transcriptional
regulation of gene expression. In contrast, transcription factors
(TFs) are protein molecules, excluding RNA polymerase, that
regulate the transcription of genes. miRNAs and TFs mutually
June 2022 | Volume 12 | Article 881246
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regulate each other in a tightly coupled manner to form feed-
forward loops (FFLs) or feed-back loops (FBLs) where a miRNA
represses a TF, or a TF regulates a miRNA and both of them co-
regulate a joint target (43). FFLs can be categorized into 3 types
corresponding to their master regulators: miRNA-FFL, TF-FFL,
and composite FFL (44). In a TF-FFL, TF is the master regulator
which regulates its partner miRNA and their joint target, while in
a miRNA-FFL, miRNA is the master regulator which represses
its partner TF and their joint target (45). TF-FFL and miRNA-
FFL merge to form a composite FFL, where TF and miRNA
regulate/repress each other and their joint target (46).

We implemented an unbiased, comprehensive approach to
get insights into prostate cancer’s biological heterogeneity and
genomic characterization. A high-throughput dataset containing
459 cancerous and 50 normal profiles from TCGA was retrieved
to analyze it using an integrated state-of-the-art computational
approach (47). We have systematically analyzed these samples to
find novel biomarkers and druggable targets for diagnostic,
prognostic, and therapeutic delamination of prostate cancer.
We carried out differential expression analysis and constructed
the protein-protein interaction network (PPIN) to analyze
DEGs. This integrated approach helps to reveal novel
molecular markers and druggable targets for potential
therapeutic approaches. Weighted gene co-expression network
analysis (WGCNA) is an algorithm widely used to discover co-
expressed modules correlated with phenotypes or traits based on
expression data (48). Detection of meaningful densely correlated
modules linked to specific clinical traits would be valuable for
deducing tumor progression mechanisms and proposing novel
hub targets that hamper vital signaling pathways. The differential
gene expression analysis was followed by weighted Gene Co-
expression Network (GCN) construction using a large-scale gene
expression profile and trait-linked hub module detection. Then,
we explored the alteration frequencies and performed survival
analysis of the patients carrying genetic alterations in the
identified candidate genes. This study provides a valuable
insight into the differential expression and network dynamics
of the genes associated with prostate cancer progression for the
genomics community.
MATERIALS AND METHODS

High-throughput RNA-Seq data of prostate cancer patients were
retrieved from the TCGA. First, the pre-processing was carried
out for quality checks, batch correction, ID mapping, and
normalization. For this purpose, various R packages such as
sva, DESeq2, and edgeR were used. To identify the DEGs, the
limma package was utilized. Visualization and data analysis,
including the clustered heatmaps, were carried out using
computational tools using ggplot2 and ComplexHeatmap
packages. Weighted GCN analysis of significantly dysregulated
genes was carried out to identify biomarkers and potential drug
targets. A network biology approach was utilized to construct
and analyze GCN, followed by PPIN construction and analysis.
The gene ontology (GO) and pathway enrichment analyses were
Frontiers in Oncology | www.frontiersin.org 3
performed using Enrichr, a web-based bioinformatics resource
for data mining (49). Here, monitoring the known signaling
systems downstream in different biological processes associated
with prostate cancer was carried out. Analyzing the network
dynamics of significantly dysregulated genes will lead to
identifying hub genes as biomarkers and potential druggable
targets in prostate cancer. Mutational landscape and survival
analyses of the cancerous profiles will contribute to
understanding prostate cancer at the molecular level. A typical
representation of the computational approach used in this study
is illustrated in Figure 1.

TCGA-PRAD RNA-Seq Data Extraction
and Differential Expression Analysis
UCSC Xena browser (https://xenabrowser.net/) (50) was queried
for extracting the messenger RNA (mRNA) HTSeq-counts
(based on IlluminaHiSeq platform) and miRNA-Seq data of
TCGA-prostate adenocarcinoma (PRAD) patient samples.
Sample phenotype data such as age at diagnosis, weight, batch
variables, and gender were also collected from Xena. Both these
datasets were back log-transformed in R to obtain raw integer
counts. To maintain an overall uniformity across samples,
samples from both these datasets were then cross-checked with
the mRNA-Seq and miRNA-Seq PRAD samples present in the
TCGA-GDC data portal. Only primary solid tumor and solid
tissue normal samples were retained in both datasets. ComBat-
Seq model (51) available in sva (52) R package was applied on
both datasets with known batches for correction. Low-count
Ensembl IDs in the batch-corrected mRNA dataset were
removed before normalization and log-transformation through
variance stabilizing transformation (vst) using the DESeq2
package (53) in R. The Ensembl IDs in the mRNA dataset
were mapped to their corresponding HUGO Gene
Nomenclature Committee (HGNC) symbol(s) using the
mapping file available from Xena. Expression of genes
mapping values to multiple Ensembl IDs were averaged across
all the samples to avoid redundancy. The edgeR package (54, 55)
in R was applied to batch-corrected miRNA data for obtaining
normalized (upper quartile) and log-transformed expression
values. Limma package (56) in R was used to identify the
DEGs (corresponding to a threshold of p-value<0.05 with |log2
(fold change) | >0.1)) and DEmiRs (corresponding to a threshold
of p-value<0.05). The criterion for low fold change was adopted
to expand the maximum number of DEGs between tumor and
normal sample groups. Since very few genes are differentially
expressed at this fold change, making the fold change threshold
more stringent would lead to nearly no DEGs or eliminate any
important genes (57).

Weighted Co-Expression Network
Construction and Hub
Module Identification
WGCNA R package (58) was utilized for weighted GCN
construction and representative module genes classification
correlated with clinical characteristics (59). The PRAD-specific
DEGs and samples were passed through the good Samples
June 2022 | Volume 12 | Article 881246
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Genes function to eliminate missing values. The samples were
clustered after that to eliminate outliers. The clinical trait data
(i.e., weight and age) of these PRAD-specific samples were also
considered before identifying modules. Mean expression per
array and the number of missing values per array were
recorded. Any arrays with an excessive number of missing data
were removed, followed by the deletion of any low variance
genes. The pickSoftThreshold function assisted in selecting
suitable soft-thresholding power (b) to which co-expression
similarity will be raised for computing adjacency. b was chosen
based on the approximate scale-free topology criterion. The
weighted adjacency matrix was transformed into a topological
overlap matrix (TOM), followed by a computation of
corresponding dissimilarity (dissTOM) to reduce noise and
false associations. The hclust function was utilized to generate
a hierarchical clustering tree (dendrogram) of genes considering
the dissTOM measure. A dynamic tree cut algorithm was
incorporated to identify densely interconnected, highly co-
expressed gene patterns (i.e., modules) from the branches of
the tree. Module eigengene (ME) and dissimilarity measures
between MEs were computed to merge the modules with highly
co-expressed genes. ME dendrogram was checked based on
Pearson correlation for merging multiple modules with
comparable expression profiles. Correlation-based absolute
module significance (GS) values (i.e., average gene significance
of participating genes in a given module) with our trait of
interest (i.e., weight) followed by module membership (MM)
(correlation of the ME and the gene expression profile) for all
were computed. The correlation of MM with GS was used to
identify the most significant associations. The module having the
significantly highest correlation with weight was chosen to be our
hub module.
Frontiers in Oncology | www.frontiersin.org 4
PPIN Construction and Hub
DEGs Selection
The DEGs present in our trait-linked hub module was subjected
to PPIN construction using the STRING v11.0 (https://string-db.
org/) web-based tool (60). The PPIN was formed at medium
confidence (corresponding to interaction score >0.4) and
afterward visualized using Cytoscape v3.8.2 (61). CytoHubba
application (62) in Cytoscape was used to rank the top 10 DEGs
corresponding to each centralities degree, namely - degree, stress,
bottleneck, betweenness, closeness, and maximal clique
centrality (MCC). The overlapping DEGs between these six
ranked genesets were regarded as the hub DEGs.

GO Term and Pathway
Enrichment Analyses
GO term and pathway enrichment data for hub DEGs were
compiled using GO-Biological Process (BP), GO-Molecular
Function (MF), GO-Cellular Compartment (CC), and Kyoto
Encylopedia of Genes and Genomes (KEGG) libraries available
in the Enrichr database (63). GO terms and pathways
corresponding to p-value <0.05 were statistically significant.
Top 10 pathways and GO terms within this significant
threshold were reported after that.
PRAD-Specific 3-Node miRNA
FFL Construction
Significant human TFs corresponding to score (p-value) <0.001
and regulating our hub DEGs were fetched from ChEA v3.0
database (64). Then, miRNAs (with a score >0.95 and binding
only on 3’UTR region) repressing our hub DEGs and TFs (from
ChEA) were extracted frommiRWalk v3.0 (65) and starBase v2.0
FIGURE 1 | Graphical flowchart of the methodology.
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(66) databases. These miRNAs were cross-checked with PRAD-
associated DEmiRs, and only the overlapping ones were
considered as final. All the interaction pairs (i.e., TF-DEG,
miRNA-DEG, and DEG-TF) were altered to final TFs and
miRNAs and merged to obtain a 3-node miRNA FFL (67).

Mutational Analysis
Mutational frequencies in the identified candidate genes were
explored in the TCGA dataset through cBioPortal (https://www.
cbioportal.org/) (68). Each mutation was mapped on the 2D
structure of the identified proteins, and their frequencies were
noted. The domain organization of the proteins structures was
generated to see each mutation in detail.

Survival Analysis
To explore the impact of alterations in the identified candidate
genes on the overall survival of patients with prostate cancer, we
have performed the survival analysis in analytical procedures
based on the TCGA dataset accessed from the cBioPortal. The
data was plotted in Kaplan–Meier (KM) estimator (69) by
applying the Logrank test P-value (70).
RESULTS AND DISCUSSION

TCGA-PRAD RNA-Seq Data Extraction
and Differential Expression Analysis
PRAD-specific mRNA and miRNA datasets comprised a total of
509 samples (459 tumor and 50 healthy normal samples)
following the search criteria specified. 51923 IDs were left after
deleting low count Ensembl IDs in the batch-corrected mRNA
dataset. After normalization and log transformation using
DESeq2, mapping of IDs to their corresponding genes was
performed. Lastly, 50711 unique genes were left after averaging
expression values of duplicate genes. We obtained 1097 miRNAs
after filtering the ones with low CPM values, followed by TMM
normalization and log transformation using edgeR. Now both
these miRNA and mRNA datasets were subjected to limma
where we obtained 1571 DEGs and 49 DEmiRs following the
threshold above, i.e., p-value<0.05 with |log2(fold change) | >0.1
(for DEGs) and p-value <0.05 (for DEmiRs). A total of 844 and
727 DEGs were bifurcated as up and downregulated,
respectively. In addition, 6 and 43 DEmiRs were bifurcated as
up and downregulated, respectively.

Weighted Co-Expression Network
Construction and Hub
Module Identification
From 1571 DEGs, the ones with non-protein-coding type and
identified as outliers were removed, leaving 221 DEGs for further
analyses. Also, 17 samples were identified as outliers from the
sample clustering dendrogram and were removed by cutting the
branch at height=24. The clinical information associated with
these 492 samples can be found in Supplementary Table S1.
None of the 221 DEGs had low-variance expression. Figure 2A
shows the principal component analysis (PCA) plot exhibiting
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the expression distribution of these DEGs across all samples. The
expression variability of all the DEGs was dimensionally reduced
to sample type leading to distinct cluster formations. Figure 2B
shows the expression heatmap of the top 10 up and
downregulated DEGs. Within all these 20 DEGs, CCK [log2
(fold change)=0.79] and TCAP [log2(fold change)=-0.57] were
most up and downregulated ones. The sample type and age
annotation bars were placed at the top of the heatmap. The age of
samples varied from 41 to 77, with the maximum number of
patients (i.e., 34) having age 66. The chromosome annotation bar
was shown on the right, where maximum genes were present on
chromosome number 1 (i.e., VANGL2, DUSP27, HFE2) and 7
(i.e., HECW1, PPP1R3A, CYP3A5), respectively. b=5 was chosen
(corresponding to scale-free R2=0.85) as the soft-thresholding
power for constructing a weighted co-expression network.
Supplementary Figures S1A, B shows plots for b in
consideration with scale-free topology criteria.

The hierarchical clustering tree and dynamic tree cut algorithm
revealed three color-coded modules (i.e., blue, turquoise, and
grey), as shown in Figure 3A. There was no need for merging
these modules due to the low merging height observed in the ME
dendrogram. Supplementary Figure S1C shows an association of
MEs for eachmodule with weight and age as the color-coded table.
Supplementary Figure S1D shows a Barplot of GS correlated with
we i gh t a c ro s s modu l e g ene s . The b lu e (modu l e
significance=0.082) and turquoise (module significance=0.081)
colored modules were the most promising. Supplementary
Figure S2A compares weighted and Pearson correlations. The
standard method (simple Pearson correlation) ignores ME
information. Multi-dimensional scaling (MDS) plot of all
modules in 3 scaling dimensions is shown in Supplementary
Figure S2B. Since the grey module consists of unassigned genes,
we discarded it for further analysis. Figures 3B, C shows a
scatterplot of GS for weight to MM in blue and turquoise
modules. Figure 3D shows the gene co-expression network as a
heatmap plot. It depicts TOM among the blue and turquoise
module genes. A significantly high correlation between GS and
MM is noticed in the turquoise (cor=0.33) as compared to the blue
(cor=0.25) module. Supplementary Figures S2C, D shows a
significant relationship between MM (raised to b=5) and
intramodular connectivity in blue and turquoise-colored
modules. Clearly, the turquoise module (cor=0.74) had a
stronger relationship than the blue module (cor=0.58) between
MM and intramodular connectivity. The turquoise module was
selected as our hub module based on all these results.

PPIN Analysis and Hub DEGs Selection
A total of 41 out of 102 DEGs within the turquoise hub module
participated in the PPIN corresponding to a STRING interaction
score >0.4. The PPIN, as shown in Figure 4A, comprises 41 nodes
and 48 edges. Figure 4B shows the Venn plot of six gene sets
ranked based on each centrality (i.e., degree, stress, bottleneck,
betweenness, closeness, MCC) within the PPIN. The 5 overlapping
hub DEGs within these gene sets were STAT6, WNT3A, MAF,
SOX2, and FOXO1 (Supplementary Table S2). Figure 4C shows
the PPI subnetwork comprising these 5 hub DEGs as nodes and
linked by 7 edges. A pairwise scatter plot matrix exhibiting
June 2022 | Volume 12 | Article 881246
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association among these five upregulated hub DEGs is shown in
Figure 4D. The highest correlation of 0.559 was observed within
the plot between SOX2 and WNT3A, while the lowest correlation
of 0.138 was observed between SOX2 and MAF.

GO Term and Pathway
Enrichment Analyses
All 5 hub DEGs participated in the top 10 significant pathways with
inflammatory bowel disease (p-value=1.03 x 10-4) being the most
Frontiers in Oncology | www.frontiersin.org 6
significant. A chord plot displaying the association of these 5 hub
DEGs with 10 significant pathways is shown in Figure 5A.
Interaction edges in the chord plot display that both WNT3A
and FOXO1 were present in the maximum number of pathways
(i.e., 5 pathways) whereas SOX2 was present in the minimum
number of pathways (i.e., 2 pathways). Within the abovementioned
significant threshold (i.e., p-value<0.05), top 10 BP, top 8 MF, and
top 2 CC terms were screened. Figures 5B, C shows 3-dimensional
stacked bar plots representing these top significant GO-BP, MF, and
A B

FIGURE 2 | (A) Principal component analysis (PCA) plot shows the expression variability of 221 DEGs across all samples. Each point in the plot signifies the relative
expression value of all DEGs dimensionally reduced to sample type leading to distinct cluster formations. Blue and red points signify normal and tumor samples,
respectively. The percentage of total variation accounted for by the 1st (30.2%) and 2nd (9.9%) principal components are shown on the x and y axes, respectively.
(B) Annotation heatmap showing the expression distribution of top 10 up and downregulated PRAD-specific DEGs. Cluster dendrograms representing Euclidean
distance-based hierarchical clustering for both rows and columns are presented along the left and top sides of the plot. Sample type (red for normal and violet for
tumor) and age annotation bars are presented at the top of the heatmap. The location of each gene on its respective chromosome number is presented in the right
panel as the row annotation bar (multi-colored bands).
A B

DC

FIGURE 3 | (A) Hierarchical clustering dendrogram of 221 PRAD-specific DEGs clustered based on the dissimilarity measure (dissTOM) along with 3 color-coded
modules (obtained using Dynamic Tree Cut). The modules contained highly similar expression profiles with the following sizes: turquoise (102), blue (97), and grey
(22). Scatterplots show a significant (p-value <0.05) correlation of Gene significance (GS) for weight with module membership (MM) in (B) blue and (C) turquoise
modules. (D) Topological Overlap Matrix (TOM) plot of the weighted gene co-expression network representing TOM among blue and turquoise module genes.
Hierarchically clustered gene dendrograms and module assignments are presented along the top and left sides of the plot. Lighter and darker shades signify lower
and higher overlap among the genes. Dark-colored blocks along the diagonal represent modules.
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CC terms (on the y-axis) with respect to their values (on the x-axis).
The most significant GO-BP, MF, and CC terms were positive
regulation of transcription from RNA polymerase II
promoter (p-value=1.55 x 10-5), protein phosphatase binding
Frontiers in Oncology | www.frontiersin.org 7
(p-value=2.07 x 10-4), and early endosome membrane
(p-value=1.81 x 10-2). SOX2 was a part of the highest number of
GO-BP terms (i.e., 10). SOX2 and FOXO1 were a part of the highest
number of GO-MF terms (i.e., 4).
A B

C

FIGURE 5 | (A) Chord plot showing the relation of 5 hub DEGs (on right semicircle track) with 10 significant pathways (on left semicircle track) via colored edges.
The edges initiate from unique colored strips present on the right semicircle (indicating genes) and converge to unique colored strips present on the left semicircle
(indicating pathways). Three-dimensional horizontal bar plots show top 10 significant (B) GO-BP and (C) GO-MF/CC terms on the y-axis regarding p-values on the
x-axis. Every unique colored block signifies a different GO term.
A B

DC

FIGURE 4 | (A) Protein-protein interaction (PPI) network comprising 41 nodes and 48 edges corresponding to STRING interaction score>0.4. Blue and green nodes
represent up and downregulated proteins, respectively. (B) Venn plot showing 5 overlapping hub DEGs within 6 centrality-based ranked genesets. The Venn plot’s
green, red, cyan, magenta, yellow, and violet areas represent stress, MCC, degree, betweenness, bottleneck, and closeness centrality-based ranked genesets.
(C) Highest-scoring PPI hub cluster comprises 5 nodes and 7 edges. (D) Pairwise scatter plot showing the associations amongst these 5 hubs upregulated DEGs.
The upper triangular section represents the Spearman correlation coefficients between these DEGs and expression boxplots for each DEG. The lower triangular
section represents the scatterplot and histogram distribution between these DEGs. The diagonal consists of kernel densities for each DEG. Significant levels at 0.05,
0.01, and 0.001 are represented by *, **, and ***, respectively.
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PRAD-Specific 3-Node miRNA
FFL Analysis
miRNAs are majorly found to be involved in the development
and progression of prostate cancer and are appealing as key
regulators in disease progression. The PRAD-specific 3-node
miRNA FFL as shown in Figure 6A, comprises 26 nodes and 58
edges. All the FFL edges, 14, 21, and 23, belonged to TF-DEG,
miRNA-TF, and miRNA-DEG pairs. Whereas 15, 5, and 6 nodes
belonged to miRNAs, DEGs, and TFs, respectively. Within the
TF-DEG pair, both SOX2 and MAF were regulated by a
maximum number of TFs (i.e., 4), while both OLIG3 and
POU3F1 regulated the maximum number of DEGs (i.e., 3).
Within the miRNA-TF pair, ETV1 was repressed by the
maximum number of miRNAs (i.e., 14), while miR-4728-5p
repressed the maximum TFs (i.e., 3). Lastly, within the miRNA-
DEG pair, MAF was repressed by the maximum number of
miRNAs (i.e., 8) while miR-1270 and miR-629-5p repressed the
maximum number of DEGs (i.e., 3). Overall FFL analysis
revealed a highest-order FFL subnetwork motif, as shown in
Figure 6B, comprising one joint TF (ETV1), two miRNAs (miR-
1270 and miR-629-5p), and two hub DEGs (SOX2 and STAT6)
joined with 6 interaction edges. The FFL analysis disclosed both
SOX2 and STAT6 as the most potential PRAD-specific hub
DEGs. The analyses revealed that SOX2 and STAT6 represent
themselves as potential candidates in prostate cancer profiles
explored under this study. The limited specificity of the available
tests conveys a requirement to develop novel and better
diagnostic tools. In modern science, bioinformatics approaches
provide significantly better biomarkers with improved features
that can not only be used for diagnostic purposes but also for
staging, evaluating aggressiveness and therapeutic procedures.
The poor prognostic value of PSA and available biomarkers in
clinical practices does not support timely therapy management
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and intervention. The study suggests that SOX2 and STAT6 can
be explored as novel biomarkers and potential targets in target-
propelled therapy against prostate cancer.

Targeting SOX2 and STAT6 in
Prostate Cancer
SOX2 [SRY (sex-determining region Y)-related high-mobility
box 2] is a crucial transcription factor that plays a vital role in
tissue homeostasis, embryonic development and maintenance of
undifferentiated embryonic stem cells (71). SOX2 amplification,
typically in pairs with abnormally increased expression, has been
found in human cancers, i.e., breast, prostate, lung, colon, and
ovarian (71). Overexpression of SOX2 endorses cancer
progression by stimulating cell proliferation, invasion,
migration, and sphere formation. It is causally linked with
developing the resistance of cancer cells to chemotherapy,
radiotherapy and targeted therapy in various cancers (72). It is
repressed by AR signaling, promoting castration-resistant
prostate cancer, where the percentage of SOX2-positive tumors
increases with Gleason Score and metastasis (73). Loss of SOX2
expression in the prostate cancer cell line resulted in cell growth
inhibition (73). In many cell lines studies, SOX2 and some other
genes endorse cell proliferation and survival and destruct normal
differentiation processes, hallmarks of cancer progression (71,
74–76). Thus, our study, along with the reports mentioned above
and some others, validates SOX2 as a significant marker and to
be used as a promising target in prostate cancer (77, 78).

STAT6 (signal transducer and activator of transcription 6) is
another transcription factor that plays a vital role in regulating
cell proliferation, differentiation, apoptosis and angiogenesis and
organizing the epigenetic setting of immune cells (79). It is
causally associated with cancer development, progression,
metastasis, resistance to treatment; thus is of interest in cancer
A B

FIGURE 6 | (A) PRAD-specific 3-node miRNA FFL network comprising 26 nodes and 58 edges. Red circular nodes represent TFs, green diamond nodes represent
PRAD-specific miRNAs, and magenta triangular nodes represent hub DEGs. (B) PRAD-specific highest-order subnetwork FFL motif comprising one joint TF (ETV1),
two miRNAs (miR-1270 and miR-629-5p), and two hub DEGs (SOX2 and STAT6).
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biology (80). High expression of STAT6 is associated with poor
clinical consequences in cancer patients (81). Studies have
reported that STAT6 signaling is vital for IL-4- and IL-13-
induced epithelial-mesenchymal transition and aggressiveness
of colorectal cancer cells (82, 83). Amplification of STAT6 has
been found in many dedifferentiated liposarcomas and solitary
fibrous tumors, leading to a NAB2-STAT6 oncogene fusion (84).
A few studies targeting STAT6 signaling reported reduced tumor
growth in gastric cancer (85), breast cancer (86), and prostate
cancer (87). In a scientific study, STAT6 expression was higher in
prostate cancer tissues than in normal tissues (88). Here, miRNA
−135a induced prostate cancer cell apoptosis via targeting
STAT6 (88). A study suggests that STAT6 acts as a survival
factor in prostate cancer and regulates the genetic transcriptional
driver responsible for cancer progression (80). Here, STAT6
expression was noticeably associated with high histological
grades of prostate cancer and tumor size (80). Another finding
suggests that STAT6 interaction with Annexin A2 could
potentially affect prostate cancer’s metastasis process (89). All
these studies associated with our study suggest that STAT6 might
be a potential target for prostate cancer.

Mutational Frequencies in SOX2
and STAT6
While exploring the TCGA datasets in cBioPortal, it was observed
that 11 and 12 mutations were located within different domains of
SOK2 and STAT6, respectively. These mutations were mapped
with their frequency in various cancerous profiles (Figure 7).
Overall, the somatic mutation frequencies in SOX2 and STAT6
were estimated to be 0.2%, which are adjacent to the regions critical
for the functional activity of the proteins. Mutations in SOX2
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(N187T, M235L, T126K, R56W, N187T, S258Y) and STAT6
(X39_splice, R294Q, D429G, W517C, P175S, A47T, A55S,
R294Q, D429G, A843V, V414I) were distributed throughout the
structure; among them, a missense mutationM235L in SOX2 and a
splice at X39 in STAT6 was found with maximum occurrence
(Figure 7). These mutations might be associated with the structural
alterations in SOX2 and STAT6 and thus their dysfunction leading
to prostate cancer progression. We have also compared the genetic
alteration in the elucidated biomarkers with the published
biomarkers in prostate cancer patients. We have generated an
OncoPrint showing the genomic alterations in prostate cancer
known biomarkers, KLK3 (PSA), PCA3, and DLX1 and elucidated
biomarkers, SOX2 and STAT6 (Figure S3). While querying 8259
patients/8549 samples in TCGA, we found genomic alterations in
KLK3, PCA3, DLX1, STAT6 and SOX2 in 46, 41, 60, 40 and 145
samples, respectively (TCGA accessed on 28 March 2022). The
highest genetic alterations were found in SOX2, one of the
elucidated biomarkers in our study, i.e., 1.8%, mainly by
amplification and deep deletion.

Survival of the Patients
The survival analysis of prostate cancer patients shows that the
alterations in SOX2 and STAT6 are efficiently responsible for the
decrement in the overall survival of the individuals. In KM
estimation survival analysis, the patients’ survival was
effectively reduced where 9 patients were deceased out of 27
cases where SOX2 was altered. This altered group shows 97
months of median survival. At the same time, 133 patients were
deceased out of 954 cases where SOX2 was not altered and
showed 131 months of median survival. In contrast, 3 patients
were deceased out of 22 cases where STAT6 was altered. At the
FIGURE 7 | Frequency of point mutations and their types of SOX2 and STAT6 in prostate cancer. The figure was generated through the cBioPortal based on the
TCGA datasets. Green lollipops represent the missense mutations in SOX2 and STAT6.
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same time, 140 patients were deceased out of 971 cases where
STAT6 was not altered and showed 131 months of median
survival. Overall, 11 death events were observed out of 36 cases
where both genes, SOX2 and STAT6, were altered. This altered
group shows 97 months of median survival. At the same time, a
total of 131 death events were observed out of 945 cases where
the selected genes were not altered and showed 131 months of
median survival. However, the KM estimation of progression-
free survival data is not enough to make an effective conclusive
remark. Still, the effect of the genomic alterations as a reduced
survival rate can be observed from the plots (Figure 8).
CONCLUSIONS

Understanding the genomic level complexity is one of the major
challenges in cancer research. This work provides a better
understanding of prostate cancer at the genomic level by finding
novel candidate genes and genomic lesions responsible for its
onset and progression. In addition, expression profiling of DEGs
in prostate cancer at the molecular level was utilized for gene
pathway analysis and finding biomarkers for therapeutic
applications. A TCGA PRAD dataset was analyzed using an
integrated bioinformatics approach, including WGCNA.
Initially, a set of 5 hub genes (MAF, STAT6, SOX2, FOXO1,
and WNT3A), and later 2 most dynamic hub genes, STAT56 and
SOX2, were identified. Both genes are significantly enriched in
various biological pathways, primarily linked to the cell cycle
process, chemokine-mediated signaling pathways in prostate
cancer. The point mutations and their types in SOX2 and
STAT6 in prostate cancer patients shows significant mutation
frequency. The KM survival shows that the patients with prostate
cancer held STAT6 and SOX2 alterations, linked to the decreased
survival of the patients. We described identifying novel
biomarkers followed by DEGs and WGCNA analyses. Our
study provides a deeper insight into the understanding of
heterogeneity and underlying molecular trials in prostate cancer.
This work’s social relevance and applications may reflect in early
detection and diagnosis of prostate cancer, personalized
Frontiers in Oncology | www.frontiersin.org 10
treatments, a selection of suitable model organisms, drug
development, and many more.
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