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Abstract

The entire world has suffered a lot since the outbreak of the novel coronavirus (COVID-19)

in 2019, so simulation models of COVID-19 dynamics are urgently needed to understand

and control the pandemic better. Meanwhile, emotional contagion, the spread of vigilance or

panic, serves as a negative feedback to the epidemic, but few existing models take it into

consideration. In this study, we proposed an innovative multi-layer hybrid modelling and

simulation approach to simulate disease transmission and emotional contagion together. In

each layer, we used a hybrid simulation method combining agent-based modelling (ABM)

with system dynamics modelling (SDM), keeping spatial heterogeneity while reducing com-

putation costs. We designed a new emotion dynamics model IWAN (indifferent, worried,

afraid and numb) to simulate emotional contagion inside a community during an epidemic.

Our model was well fit to the data of China, the UK and the US during the COVID-19 pan-

demic. If there weren’t emotional contagion, our experiments showed that the confirmed

cases would increase rapidly, for instance, the total confirmed cases during simulation in

Guangzhou, China would grow from 334 to 2096, which increased by 528%. We compared

the calibrated emotional contagion parameters of different countries and found that the sup-

pression effect of emotional contagion in China is relatively more visible than that in the US

and the UK. Due to the experiment results, the proposed multi-layer network model with

hybrid simulation is valid and can be applied to the quantitative analysis of the epidemic

trends and the suppression effect of emotional contagion in different countries. Our model

can be modified for further research to study other social factors and intervention policies in

the COVID-19 pandemic or future epidemics.

Introduction

Since December 2019, the outbreak of the novel coronavirus, which later the World Health

Organization (WHO) named as severe acute respiratory syndrome-coronavirus-2 (SARS-

CoV-2), has affected the world tremendously. As the disease rapidly spread from one country
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to another, the WHO declared the COVID-19 pandemic on 11 March 2020 [1]. Up to 22 Janu-

ary 2021, SARS-CoV-2 has infected more than 97 million people [2]. Hence, it is quite essential

to establish a model to simulate the transmission of the virus and provide useful guidance for

public health decision-makers.

There are already many existing ways to model the process of disease transmission. For

instance, the Susceptible-Exposed-Infected-Recovered (SEIR) model [3], is based on system

dynamics modelling (SDM). With the simple structure, SEIR focuses on collective behaviors,

which means all the individuals’ behaviors are supposed to be the same [4]. Lai et al. utilized

the SEIR model to simulate and compare various non-pharmaceutical intervention methods

adopted by China to contain the COVID-19 pandemic [5]. Besides, Chinazzi et al. [6] and

Tian et al. [7] improved the traditional SEIR model and explored the suppression effect of traf-

fic control on the COVID-19 pandemic. Though SDM has been widely used in epidemic

modelling and analysis, individual heterogeneity is not considered because everyone is treated

equally in SDM. What’s more, only the overall infected number can be obtained by SDM, thus

the phenomenon of clustering outbreaks and the spatial distribution of the epidemic cannot

be observed.

Another simulation method agent-based modelling (ABM) could overcome the problems

mentioned above. In most of the existing literature, agent-based models take every individual

as an agent, so that each agent can have its own attributes. The links between the agents can

reflect the epidemic trajectory and the visualization of the agents makes it possible to illustrate

clustering outbreaks. Perez et al. combined ABM with GIS technology to visualize the spread

of infectious diseases in an urban environment [8]. And Cuevas et al. used ABM to evaluate

the COVID-19 transmission risks in facilities [9]. However, the experiments in [8, 9] only con-

sidered a small population of fewer than 1,000 people, when it comes to large-scale problems,

ABM may cost too much computation power, which is usually not affordable.

Whichever method is used to model the dynamics of epidemic spreading, most of the cur-

rent models only concentrate on disease transmission, omitting the important effects of the

human responses to epidemics. Emotional contagion is the spread of affect or behavior from

one in a crowd to another, serving as negative feedback to the epidemic [10]. Some researchers

have focused on the mathematical modelling of the mechanism of the emotion spreading itself

[11–14]. Mahmud et al. have adopted SDM to model the emotional contagion in the COVID-

19 pandemic but the disadvantages of SDM still exist [15]. A hybrid method combining SDM

with ABM could be applied to a comprehensive model to introduce emotional contagion into

the process of disease transmission. However, such a model is yet to be established and emo-

tional contagion has not been considered in the analysis of the COVID-19 pandemic, which

motivated the present study.

In this study, we proposed a multi-layer network model with hybrid simulation to simulate

disease transmission and emotional contagion at the same time, thus these two parts made up

of a closed-loop system, interacting with each other. By coupling SDM and ABM, hybrid simu-

lation in our model provided the advantages of each approach: spatial heterogeneity and clus-

tering outbreak phenomenon for ABM and larger simulation size and analytical solution for

SDM [16, 17]. Our model can be applied to mega-cities with more than ten million people and

finish the computation within a few minutes just using the ordinary CPU. Based on our

model, we further analysed the suppression effect of emotional contagion in the COVID-19

pandemic among different countries. The model was implemented in Anylogic software.

The paper is designed as follows. Section II describes the proposed multi-layer network

model and explains the hybrid simulation methods in detail. Section III presents the validation

results to evaluate the performance of our proposed model and studies the effect of emotional
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contagion. Section IV illustrates our conclusions, the advantages and disadvantages of our pro-

posed model as well as the future work based on our present study.

Methods

Data sources

We collected daily confirmed cases data of four cities in China: Guangzhou [18], Changsha

[19], Nanjing [20] and Zhengzhou [21], from the official regional municipal health commis-

sion websites. Daily confirmed cases data of cities in the UK and the US were from the official

UK Government website for data and insights on Coronavirus (COVID-19) [22] and COVID-

19 Map by County and State from USA facts [23], respectively. We collected the population

data of the cities in China, the UK and the US from National Bureau of Statistics of the People’s

Republic of China [24], Office for National Statistics of the UK [25] and the US Census Bureau

[26], respectively. The data have been cleaned and attached in S1 File.

Multi-layer network model

To independently analyse the spread of disease and emotion, we implemented a multi-layer

network model to separate the two processes. Specifically, the two layers are the disease trans-

mission layer and the emotional contagion layer. Each layer is a network and each node repre-

sents a group of people, such as a community, a university or a company, etc. Infection or

information sharing happens through the edges between these nodes. The networks in the two

layers are independent because the panic usually spreads by virtual links like the Internet

instead of physical contacts. The whole structure of our model is shown in Fig 1.

Fig 1. Overview of the multi-layer network model with hybrid simulation. SEIR (susceptible, exposed, infectious and recovered) and IWAN (indifferent,

worried, afraid and numb) denote the states of the people inside a node. The nodes in the emotional contagion layer have more large-distance links than

those in the disease transmission layer.

https://doi.org/10.1371/journal.pone.0253579.g001
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Hybrid simulation

Usually, a wave of epidemic starts with cluster infection. Likewise, rumor and gossip are usu-

ally spread in a small circle first [27]. Thus, it is necessary to apply different methods to model

the global and local transmission. We used agent-based modelling (ABM) to simulate the dis-

ease transmission and emotional contagion between the nodes at the community scale. And

within the node, system dynamics modelling (SDM) was adopted to calculate at the individual

level so that the simulation would be more accurate and would not bring too much extra

computational cost. People inside a node are separated into several subgroups due to their

infection state or emotion state. The state will change as the epidemic gets severe, following the

SDM models. Once the virus or the panic message is sent from one node to another, the

receiving node starts the local transmission and becomes able to spread, too. The global and

the local processes run in parallel.

Agent-based modelling

Agent-based modelling was applied at the global level. Agents are connected bidirectionally to

make up a network, thus each node in the network is an agent. If the nodes are linked ran-

domly, as shown in Fig 2a, most of the nodes have a similar number of connections and the

network is relatively homogeneous, which is not in accordance with our real world. According

to Albert et al. [28], the scale-free network has higher heterogeneity, with few nodes connected

by a lot of other nodes. The shape of scale-free networks is shown in Fig 2b. Approved by

Albert et al. [28] and Grieshober et al. [29], connections in human society are usually fit to

scale-free networks, like Facebook community networks. So in our model, the two networks in

both of the layers are scale-free networks. Though the two networks are of the same type, they

are independently generated and with different parameters, as there are distinct large-distance

social interactions in the emotional contagion layer.

The interaction between the nodes in the two layers are similar. In the disease transmission

layer, the node which has exposed or infected people inside is able to spread the virus to its

neighbor nodes. We assumed that the neighbor was randomly chosen and as the time step of

the simulation was one day, we assumed that the frequency of spreading was once a day. Simi-

larly, the node with worried people can send panic messages to its neighbors to spread the

emotion.

System dynamics modelling: Disease transmission

System dynamics modelling was used inside every node. Given in Fig 2c, we applied the tradi-

tional SEIR (susceptible, exposed, infectious and recovered) model to the disease transmission

layer. People in one node are separated into these four groups (S, E, I, R), and the state changes

by Eqs (1)–(5):

dSðtÞ
dt
¼ �

bSðtÞIðtÞ
N

; ð1Þ

dEðtÞ
dt
¼
bSðtÞIðtÞ

N
� sEðtÞ; ð2Þ

dIðtÞ
dt
¼ sEðtÞ � gIðtÞ; ð3Þ
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dRðtÞ
dt
¼ gIðtÞ; ð4Þ

N ¼ SðtÞ þ EðtÞ þ IðtÞ þ RðtÞ; ð5Þ

Here, the exposed population (E) are the ones infected but asymptomatic, while the infec-

tious population (I) refers to the symptomatic population. The dead people are included in the

R state.

Fig 2. Illustration of the concepts and structures in our model. (a) Illustration of random network structure; (b) illustration of scale-free network

structure; (c) illustration of SEIR (susceptible, exposed, infectious and recovered) model; (d) illustration of IWAN (indifferent, worried, afraid and numb)

model. ‘+’ denotes increase and ‘-’ denotes decrease. Network visualization in (a) and (b) was done using the Pajek program for large network analysis [30].

https://doi.org/10.1371/journal.pone.0253579.g002
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At first, all the population in a node are all in the S state. If the node receives the virus from

another, then the SEIR transmission starts in this node: the exposed amount becomes one, and

then more and more susceptible people in the node turn exposed, while the exposed turn

infectious and then recovered. We list the notations used in the model in Table 1.

System dynamics modelling: Emotional contagion

The emotional contagion layer serves as negative feedback to the disease transmission layer.

The more panic one feels, the more actions will be taken to prevent infection, such as washing

hands more frequently, putting on a mask, etc. More specifically, these actions will reduce the

infection rate β in the local disease transmission. So how can we quantitatively represent the

emotion and the contagion process of emotion?

As shown in Fig 2d, we introduced a new SDM model, IWAN (indifferent, worried, afraid

and numb) model, to divide individuals in the node into four classes based on the magnitude

of emotion, and set up the bridges for different classes to transfer [13]. The four classes are

indifferent (Ie), worried (W), afraid (A) and numb (Ne). As long as the node receives a panic

message from another node, this process will come into operation with the change of one indi-

vidual’s state to W. Our IWAN model is given by Eqs (6)–(10):

dIeðtÞ
dt
¼ �

vWðtÞIeðtÞ
N

�
vAðtÞIeðtÞ

N
; ð6Þ

dWðtÞ
dt

¼
vAðtÞIeðtÞ

N
þ
vWðtÞIeðtÞ

N
�
vAðtÞWðtÞ

N
; ð7Þ

dAðtÞ
dt
¼

vAðtÞWðtÞ
N

�
vNeðtÞAðtÞ

N
; ð8Þ

dNeðtÞ
dt

¼
vNeðtÞAðtÞ

N
; ð9Þ

N ¼ IeðtÞ þWðtÞ þ AðtÞ þ NeðtÞ; ð10Þ

Table 1. Description of the notations used in our model.

Notation Description

S, E, I, R The states of disease transmission: susceptible, exposed, infectious, recovered

β, σ, γ The infection rate, the incubation rate, the probability of recovery or death

N The population of a node

Ie, W, A, Ne The states of emotional contagion: indifferent, worried, afraid, numb

v The transfer rate between the states of emotional contagion

c The concern level in a node

n, m The number of new confirmed cases in the city, the panic messages received by a node

wn, wm The weights of n and m to calculate c
wd The weight that c decays in a day

wc, t The weight and threshold of c to calculate v
r1, r2 The reduction rate of β when one is in the worried state and afraid state

https://doi.org/10.1371/journal.pone.0253579.t001
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Different from the SEIR model in the disease transmission layer, here the transfer rate v is

not a constant, instead, it varies as the virus spreads. To calculate the transfer rate v, we defined

a new variable, concern level (c), to quantitatively describe the overall panic of a node. The

relation between v and c can be defined as Eq (11):

v ¼

(wc log ðcÞ; c � t

0; c < t
; ð11Þ

Namely, if the concern level is lower than the threshold t, v will remain zero until the con-

cern level is high enough. Then we assume v and c follow a logarithmic function, with a linear

weight wc.

The concern level mainly comes from two sources: publicly available information (global)

and information which comes from the social neighborhood (local). In our model, we chose

two representative kinds of information as the sources: number of newly confirmed cases in

this city (n) at the global level and panic messages spread from neighbor nodes (m) at the local

level [31]. The corresponding weights for the two sources are denoted by wn and wm. When

the concern level increases because of the outside sources, it will also decrease as time passes

by. We assumed that the concern level decreased uniformly by wd every day. In sum, the con-

cern level can be obtained by Eq (12):

c ¼
Z

ðmwn þmwm � wdÞdt; ð12Þ

Then we are able to design the feedback mechanism from emotional contagion to disease

transmission. When there’s no interference, let the infection rate be β0. We assumed that peo-

ple will put on masks in the worried state, reducing the infection rate by a constant r1. If people

get into the afraid state, they are not going out unless necessary, causing a reduction of the

infection rate by a constant r2. But people may get numb and relaxed as time passes by, and do

not take actions to protect themselves anymore. According to Wang et al. [32], we set r1 as 0.2,

and we assumed r2 as 0.02. In this way, we can get the updated infection rate β(t) by Eq (13):

bðtÞ ¼
b0

N
IeðtÞ þ r1 WðtÞ þ r2 AðtÞ þ NeðtÞð Þ; ð13Þ

Results

Parameter assumption

We list the assumptions in our model when conducting experiments on the actual data of the

COVID-19 pandemic as follows. The infection rate β0 is 0.05249 according to Yang et al. [33].

The incubation period of SARS-CoV-2 is believed to be between 2 days and 14 days [34–36],

so we assumed the incubation period 1

s
complies with a triangle distribution ranging from 2 to

14 with a vertex at 7. Similarly, we assumed the duration of infection 1

g
complies with a triangle

distribution ranging from 7 to 28 with a vertex at 14. The initial susceptible population was set

as the resident population and we assumed that there were 500 communities in a city, so the

number of nodes in a network was set as 500. We assumed that the first exposed case appeared

7 days before the first infected case confirmed and we set the number of initial exposed indi-

viduals as three. We assumed that people who recovered would not get infected again.
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Simulation results in China

Our model performed well on the actual data from China, here we illustrate the simulation

results of several cities in Fig 3, including Guangzhou, Nanjing, Zhengzhou and Changsha.

We ran the Monte Carlo simulations 100 times from 14 January 2020 to 21 February 2020,

after which the spread of the virus was basically controlled. We also tested our model at the

provincial level in China and the results are shown in S2 File. The patterns of simulation results

are close to that of the actual data. In Table 2, we compared the peak of the cumulative number

of infected persons during the simulation period with the actual data and we listed the 95%

credible interval of the simulation results. It can be seen that our model basically reflects the

epidemic trends and is valid on different scales.

Fig 3. The cumulative number of infected persons in the cities of China. (a) Guangzhou, (b) Nanjing, (c) Zhengzhou, (d) Changsha. Actual data are

fitted onto the curve (red circles).

https://doi.org/10.1371/journal.pone.0253579.g003
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Emotional contagion in different countries

We also tested our model on the data from the UK and the US. The simulation duration was

the same as the cities in China: 22 February 2020 to 1 April 2020 for London and 8 March

2020 to 15 April 2020 for New York. From Fig 4, we can see that the generalization of our

model is good enough to suit different countries, even though the total confirmed cases and

how people react to the epidemic may be quite different.

As analysed above, the emotional contagion layer slows down the original disease transmis-

sion. To verify the suppression effect, we conducted ablation experiments on the three cities in

different countries, removing the emotional contagion layer while keeping all the rest parame-

ters the same, shown as the dotted lines in Fig 4. Obviously, without considering the emotion,

the simulation results would deviate greatly from the actual situation. The confirmed cases

would grow exponentially and it took more time to reach the peak. For instance, the total con-

firmed cases in Guangzhou on 21 February 2020 grew from 334 to 2096, which increased by

528%. We can see that the suppression effect of emotional contagion cannot be ignored and it

varies from country to country. This also leads us to think in another way, that it may be possi-

ble to quantitatively analyse the emotion variation by the parameters of the emotional conta-

gion layer.

We compared the calibrated parameters in Guangzhou, London and New York in Table 3,

and we got more evidence to prove that Guangzhou’s emotional inhibition is relatively more

effective among the three, while New York’s is the least and London’s is between them. Take a

look at the two sources of the concern level in the city, the weights of panic caused by new con-

firmed cases news (10.0) and panic messages from other nodes (10.7) in New York are less

than those in London (19.7 and 29.7, respectively) and Guangzhou (13.9 and 128.9, respec-

tively), which means people in New York comparatively are not scared of the pandemic. When

Table 2. The peak of cumulative number of infected persons in the four cities of China: Guangzhou, Nanjing,

Zhengzhou and Changsha.

City Actual data Simulation result

Guangzhou 345 334 (95% CI: 324–346)

Nanjing 93 93 (95% CI: 90–97)

Zhengzhou 158 159 (95% CI: 152–167)

Changsha 242 244 (95% CI: 230–259)

https://doi.org/10.1371/journal.pone.0253579.t002

Fig 4. The suppression effect of emotional contagion. (a) Guangzhou, China, (b) London, the UK and (c) New York, the US. The solid lines denote

simulation results with the emotional contagion layer and the dotted lines denote results without the emotional contagion layer. Red circles denote the

actual data.

https://doi.org/10.1371/journal.pone.0253579.g004
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considering the emotion spreading inside a node, the threshold for indifferent people to get

worried (t) in New York is the highest (1049.0) while the transfer weight (wc, 0.2) is lower than

the other two. So it may take more time for people in New York to feel worried and put on

masks to suppress the virus.

Sensitivity analysis

We also conducted a series of sensitivity analysis to understand the impact of changing emo-

tional parameters on the simulation results. Take Guangzhou as an example, sensitivity analy-

sis results of wn, wm and wc are shown in Fig 5. When keeping other parameters fixed, the

increase of any of these three parameters would reduce the peak number of cases and flatten

the curve. That the confirmed cases are sensitive to the emotional parameters also provides

good evidence that the suppression effect of emotional contagion is notable and should be con-

sidered when modelling the epidemic.

Discussion and conclusion

The outbreak of COVID-19 has caused great suffering to the human being. Due to the neces-

sity and emergence of exploring the epidemic pattern, we proposed a multi-layer hybrid

modelling and simulation approach to simulate disease transmission and emotional contagion

together. Emotional contagion influences the self-protection degree of individuals and thus

could suppress disease transmission. And the hybrid simulation method combines ABM and

SDM to save computational cost while keeping the spatial heterogeneity, so our model can be

applied to large-scale data, while the pure ABM is almost impossible for the high computation

overhead. Besides, we designed a new emotion dynamics model IWAN (indifferent, worried,

afraid and numb) to simulate emotional contagion inside a community during an epidemic.

Table 3. The emotional contagion parameters in Guangzhou, London and New York. The up arrow denotes that

the higher the parameter is, the more effective the emotional contagion will be and vice versa. Here, wn and wm denote

the weights of the number of new confirmed cases in the city and the panic messages received. And wc and t denote the

weight and the threshold of the concern level.

City wn" wm" wc" t#

Guangzhou 13.9 128.9 40.0 119.2

London 19.7 29.7 18.2 222.0

New York 10.0 10.7 0.2 1049.0

https://doi.org/10.1371/journal.pone.0253579.t003

Fig 5. The sensitivity analysis of (a) wn, (b) wm and (c) wc in Guangzhou.

https://doi.org/10.1371/journal.pone.0253579.g005
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With calibration, the simulation results of our model were close to the actual data. Based on

the simulation and sensitivity analysis, we proved the effects of emotional contagion in the pre-

vention of disease spreading. We also found that people in China are most influenced by the

emotion to take self-protection measures, compared with the US and the UK. The parameters

in our model could explain the difference among the countries from different aspects, includ-

ing new confirmed cases news and panic messages from neighbors.

The findings in our study suggest that decision-makers should take advantage of the sup-

pression effect of emotional contagion to control the epidemic. For instance, rapid epidemic

notification systems should be established and people should be encouraged to spread objec-

tive and accurate epidemic news, so that emotional contagion may be more effective to sup-

press the disease.

Our model still has some shortages. We only chose two kinds of information as the sources

of the concern level, and in fact, the computation of emotion is much more complex and there

may be some other factors. Besides, we did not adopt the real community distribution data so

there may be differences with the actual situation.

A future direction for this study could be conducting experiments of different interventions

based on our model, such as restricting the traffic among the communities or quarantining the

community with a confirmed case, etc. More factors influencing emotion could also be added

into our model, e.g. the effects of media during the pandemic may be revealed using the multi-

layer network model.

In sum, the proposed multi-layer network model with hybrid simulation is valid and could

be applied to the quantitative analysis of the epidemic trends and the suppression effect of

emotional contagion.
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