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Abstract: Herein, we describe the synthesis of a variety of chiral hybrid pyrrolidine-chromanone
polycyclic derivatives. A convenient (3+2)-annulation of azomethine ylides with chromone-3-
carboxylic acid realized under Brønsted base catalysis produced highly functionalized products
in high yields with good stereoselectivities through asymmetric, intermolecular, and decarboxylative
(3+2)-cyclization.
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1. Introduction

Chroman-4-ones and related compounds are found in different bioactive molecules
relevant to the life-science industry [1–7]. Although these compounds are abundant in
nature, the synthetic methods for their preparation are not very common. The main
representatives of this class of compounds are two natural products: Flidersiachromon [4]
isolated from the bark of Flindersia laevicarpa and Corynechromone I derived from the
fungus Corynespora cassiicola [5] (Scheme 1).
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presence of a carboxylic acid group is beneficial for the process, providing an alternative 
method for the preparation of hybrid molecules 1 containing chromenopyrrolidine units 
with a quaternary stereogenic center, in some cases.  

2. Results 
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the activation of 2a through the introduction of the carboxylic acid moiety was attempted. 
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decarboxylation (Table 1, entry 2). Importantly, both the efficiency and the 
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Scheme 1. Representative examples of biologically relevant chroman-4-ones or pyrrolidine derivatives.

On the other hand, pyrrolidine derivatives have been extensively exploited because of
their applications as bioactive natural products, pharmaceuticals, and potential drug candi-
dates [8–17], their wide applications as chiral ligands [18,19], and their use as organocata-
lysts [20–22]. A pyrrolidine ring is the main constituent of Kainic acid, a natural product
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that can be found in marine algae, well recognized for its anthelmintic activity [14,15]. An-
other type of natural product with a pyrrolidine moiety is nicotine. It possesses antioxidant,
anti-inflammatory, and antihyperglycemic properties [17,23].

Due to the high significance of these two classes of compounds in drug discovery, the
synthesis of compounds containing both of these two moieties is highly desirable [24–29].
To achieve this goal, decarboxylative 1,3-dipolar cycloaddition (1,3-DC) between carboxylic-
acid-group-activated olefins and azomethine ylides was devised [23,30–38] (Scheme 2).
Decarboxylative reactions constitute a very useful strategy in organic synthesis including
stereoselective approaches [39–42]. They rely on the application of carboxylic-acid-activated
Michael acceptors or donors. In such a setup, a carboxylate moiety serves a double purpose.
It enhances the electrophilic or nucleophilic properties of the starting material and creates
the opportunity for its facile removal via decarboxylation.
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Herein, we present our studies on decarboxylative (3+2)-cycloaddition between
chromone-3-carboxylic acids 2 (acting as electron-poor dipolarophiles) and azomethine
ylides 3 or 4 derived from salicylaldehydes and appropriate amines (acting as a dipol)
proceeding under mild, basic conditions [43,44]. Our studies demonstrate that the presence
of a carboxylic acid group is beneficial for the process, providing an alternative method
for the preparation of hybrid molecules 1 containing chromenopyrrolidine units with a
quaternary stereogenic center, in some cases.

2. Results

Initially, the quinine-catalyzed cycloaddition between chromen-4-one 5 and imine 3a
was attempted (Table 1, entry 1). Disappointingly, no reaction was observed. Therefore, the
activation of 2a through the introduction of the carboxylic acid moiety was attempted. We
were pleased to observe that the devised decarboxylative cycloaddition with chromone-3-
carboxylic acid 2a proceeded efficiently and with concomitant decarboxylation (Table 1,
entry 2). Importantly, both the efficiency and the diastereoselectivity of the process were
excellent. However, the enantioselectivity required further optimization. Consequently,
in the first step, five different catalysts were tested (Table 1, entries 2–6). Optimization
studies indicated that bifunctional cinchona alkaloid derivatives 6b-e (Table 1, entries
3–6) were better when compared to simple alkaloids such as quinine 6a (Table 1, entry
2). It was found that the presence of a strong H-bonding unit in the catalyst structure
was beneficial for the enantiomeric ratio. Unfortunately, a significant decrease in the
diastereoselectivity of the cycloaddition was noted. Subsequently, solvent screening using
6c as the catalyst was performed (Table 1, entries 7–10). As a consequence, CHCl3 was
identified as the best solvent for the optimized cascade (Table 1, entry 8). The temperature
screening (Table 1, entries 8, 11, 12) indicated that the enantioselectivity of the process
can be slightly enhanced by lowering the reaction temperature to 0 ◦C (Table 1, entry 11).
Further reduction in the temperature to −20 ◦C did not affect the enantiomeric excess
(Table 1, entry 12). Importantly, both the amount of solvent used and the catalyst loading
can be reduced without any effect on the reaction outcome (Table 1, entries 12–16).
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Table 1. Enantioselective (3+2)-cycloaddition of chromone-3-carboxylic acids 2 and diethyl iminoma-
lonates 3—optimization studies a.
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No. Cat. Solvent X Temp. Yield
(%) dr er

1 6a CH2Cl2 5 (H) r.t. - - -
2 6a CH2Cl2 2a(COOH) r.t. 98% >20:1 52:48
3 6b CH2Cl2 2a(COOH) r.t. 97% 8:1 75:25
4 6c CH2Cl2 2a(COOH) r.t. 98% 4:1 80:20
5 6d CH2Cl2 2a(COOH) r.t. 97% 4:1 71:29
6 6e CH2Cl2 2a(COOH) r.t. 99% 17:1 61:39
7 6c THF 2a(COOH) r.t. 98% 4:1 82:18
8 6c CHCl3 2a(COOH) r.t. 93% 5:1 88:12
9 6c CH3CN 2a(COOH) r.t. 99% 3:1 54:46
10 6c CH2ClCH2Cl 2a(COOH) r.t. 98% 2:1 81:19
11 6c CHCl3 2a(COOH) 0 ◦C 92% 5:1 90:10
12 6c CHCl3 2a(COOH) −20 ◦C 82% 7:1 90:10

13 b 6c CHCl3 2a(COOH) 0 ◦C 90% 4:1 90:10
14 c 6c CHCl3 2a(COOH) 0 ◦C 93% 5:1 90:10

15 c,d 6c CHCl3 2a(COOH) 0 ◦C 94% 5:1 90:10
16 c,e 6c CHCl3 2a(COOH) 0 ◦C 93% 5:1 90:10

a All reactions were performed in a 0.10 mmol scale using 2a or 5 (1.0 equiv.) and 3a (1.0 equiv.) in the presence of
the corresponding catalyst 6a-e (20 mol%) in the solvent (0.2 mL) for 24h. b Reaction was performed in CHCl3
(0.4 mL). c Reaction was performed in CHCl3 (0.1 mL). d Reaction was performed using 10 mol % of 6c. e Reaction
was performed using 6c (5 mol %).

Having accomplished the optimization studies, the scope of the methodology with
regard to both reaction partners was studied (Schemes 3 and 4). Initially, various chromone-
3-carboxylic acids 2 were reacted with the imine 3a under optimized reaction conditions
(Scheme 3). In some of the cases (Scheme 3, products 1b,f) a longer reaction time and higher
amounts of catalyst were required in order to achieve full conversion. To our delight, the
decarboxylative (3+2)-cycloaddition proceeded efficiently, providing chromenopyrroles
1a-h in good to high yields. Moreover, the diastereoselectivity of the developed reaction
increased in all of the cases. In terms of enantioselectivity, the cycloaddition was found to
be unbiased towards the electronic properties of substituents on the aromatic ring in acids
2a-h, and it remained at a similar level to the model reaction.
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In the second part of the scope studies, the possibility of employing various diethyl
iminomalonates 3a-e in the devised strategy was tested (Scheme 4). It turned out that the
application of imines 3a-e had significant influences on both the yield and the enantioselec-
tivity of the methodology. The reaction efficiency decreased compared to that shown in the
first part of the optimization studies, and instead of obtaining the product quantitatively,
yields in the order of 70–80% were obtained. Moreover, when the branching of the alkyl
chain in 3d was introduced, enantioselectivity lowered to 75:25 er. Gratifyingly, strongly
electron-withdrawing substituent (NO2) 3e was tolerated in this reaction, and the desired
chromenopyrrole 1l was afforded with good yield. The diastereoselectivity of the method-
ology remained at a good level; in addition for the reaction with the tert-butyl substituent,
it was as high as 20:1 dr.

The possibility to replace the diethyl iminomalonates 3 scaffold with imines 4 bearing
γ-lactone rings was also evaluated, and studies were initiated with the goal of finding opti-
mal reaction conditions. In the first step, catalyst screening was performed, and gratifyingly,
it was found that cinchona alkaloids 6a promote cycloaddition (Table 2, entries 1–5). The
reaction was terminated within 24 h, and chromenopyrrole 1 was obtained as a mixture of
two diastereoisomers which differed in configuration on C-3 stereogenic centers with yields
within the range of 70–90%. In particular, the application of bifunctional catalysts 6b-e,
bearing either a thiourea or squaramide moiety, led to a significant increase in the reaction
enantioselectivity; however, its diastereoselectivity remained low. Among all catalysts
tested, derivative 6c proved optimal. With the best catalyst identified, solvent screening
was initiated (Table 2, entries 7–10); however, none of the tested solvents were found to
improve the reaction outcome, and therefore, further optimization was carried out using
CH2Cl2 (Table 2, entry 5). In order to obtain better diastereoselectivity, the temperature was
lowered to 0 ◦C (Table 2, entry 11). Carrying out the reaction at −20 ◦C did not provide any
product. In the next part of the optimization studies, the influence of the catalyst amount
and the concentration of the reaction were evaluated (Table 2, entries 13–16), leading to the
identification of the optimal reaction parameters (Table 2, entry 13). Finally, the reaction
time was extended from 24 to 48 h, which increased the reaction yield from 71 to 87%.

Having established the best reaction conditions, the scope of the methodology was
studied (Schemes 5 and 6). At the beginning, various chromone-3-carboxylic acids 2
containing either electron-withdrawing or donating substituents on the aromatic ring were
tested in the reaction (Scheme 5). It was found that the enantioselectivity of the cascade
remained at a similar level as for the model reaction; however, its efficiency decreased.
Target products 1m-s were obtained in yields within the range of 56–70% as a mixture of
two diastereoisomers which differed in their configuration on the C-3 stereogenic center
(only the main isomer was presented on Schemes 5 and 6). In this section, the studies
also indicated that the position of the substituent in chromone-3-carboxylic acids 2 had no
pronounced influence on the stereochemical reaction outcome, and the introduction of two
substituents on the aromatic ring was also possible (Scheme 5, product 1s).

Importantly, the incorporation of different functional groups on the aromatic ring
of iminodihydrofuran-2-ones 3 was also performed (Scheme 6). To our delight, apart
from the example with methyl group 4b, the annulative strategy took place with excellent
yields. Moreover, target products 1t-x were afforded with no significant influences either
on the diastereoselectivity or the enantioselectivity of the reaction. In all cases, the desired
chromenopyrroles 1t-x were obtained as two diastereoisomers at a ratio of around 2:1. For
the major diastereoisomer, the enantiomeric ratio was kept around 90:10 er, yet for the
minor diastereoisomer, the enantiomeric excess remained at an average level.
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Table 2. Enantioselective, decarboxylative (3+2)-cycloaddition of chromone-3-carboxylic acids 2 and
iminodihydrofuran-2-one 4—optimization studies a.
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stereogenic center (only the main isomer was presented on Schemes 5 and 6). In this 
section, the studies also indicated that the position of the substituent in chromone-3-
carboxylic acids 2 had no pronounced influence on the stereochemical reaction outcome, 

No. Catalyst Solvent Temp. Yield
[%] dr er (major/minor)

1 6a CH2Cl2 r.t. 85% 1.5:1 60:40/55:45
3 6b CH2Cl2 r.t. 71% 1.8:1 72:28/67:33
4 6c CH2Cl2 r.t. 82% 1.5:1 98:2/74:26
5 6d CH2Cl2 r.t. 70% 1.6:1 80:20/66:34
6 6e CH2Cl2 r.t. 90% 1.8:1 78:22/60:40
7 6c THF r.t. 87% 1.4:1 89:11/66:34
8 6c CHCl3 r.t. 83% 1.3:1 88:12/85:15
9 6c CH3CN r.t. 94% 1.5:1 62:38/59:41

10 6c ClCH2CH2Cl r.t. 88% 1.2:1 91:9/75:25
11 6c CH2Cl2 0 ◦C 71% 2:1 91.5:8.5/84:16
12 6c CH2Cl2 −20 ◦C - - -

13 b 6c CH2Cl2 0 ◦C 70% 2:1 91.5:8.5/84:16
14 c 6c CH2Cl2 0 ◦C 39% 2:1 91.5:8.5/84:16

15 b,d 6c CH2Cl2 0 ◦C 52% 2:1 91.5:8.5/84:16
16 b,e 6c CH2Cl2 0 ◦C 41% 2:1 91.5:8.5/84:16
17 b,f 6c CH2Cl2 0 ◦C 87% 2:1 91.5:8.5/84:16

a All reactions were performed on a 0.10 mmol scale using 2a (1.0 equiv.) and 4a (1.0 equiv.) in the presence of
the corresponding catalyst 6a-e (20 mol%) in the solvent (0.2 mL) for 24 h. b Reaction was performed in CH2Cl2
(0.4 mL). c Reaction was performed in CH2Cl2 (0.1 mL). d Reaction was performed using 6c (10 mol%). e Reaction
was performed using 6c (5 mol%). f Reaction performed for 48 h.
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The absolute configurations of the major stereoisomer of chromone 1m were unambigu-
ously assigned by single-crystal X-ray analysis (Scheme 7) [45]. The absolute configurations
of the remaining polycyclic products 1a-x were assigned by analogy. Given these configura-
tional assignments, the reaction mechanism explaining the observed stereochemistry of the
products was proposed (Scheme 7). The reaction was initiated through the deprotonation
of 4a by the Brønsted base catalyst 6c to give the corresponding azomethine ylide that
participated in a (3+2)-cycloaddition. Importantly, it was postulated that, in this reaction,
6c acted as a bifunctional catalyst. Firstly, a Brønsted base moiety in 6c deprotonated the
starting imine 4a to form the corresponding ion pair. Secondly, the H-bonding unit of 6c
recognized the chromone-3-carboxylic acid 2a. The subsequent cycloaddition of ylide with
chromone-3-carboxylic acid yielded 1m. The decarboxylation of 7 is the key step of the
reaction, allowing for the removal of the activating group. The protonation of the enolate 8
thus obtained yielded the desired chromanones 1m.
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3. Materials and Methods
3.1. General Methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument (Bruker Corpora-
tion, Billerica, MA, USA), running at 700 MHz for 1H and 176 MHz for 13C, respectively.
Chemical shifts (δ) were reported in ppm relative to residual solvent signals (CDCl3:
7.26 ppm for 1H NMR and 77.16 ppm for 13C NMR). Mass spectra were recorded on a
Bruker Maxis Impact spectrometer using electrospray (ES+) ionization (referenced to the
mass of the charged species). Analytical thin layer chromatography (TLC) was performed
using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by
ultraviolet irradiation. Unless otherwise noted, analytical-grade solvents and commer-
cially available reagents were used without further purification. For flash chromatography
(FC), silica gel (Silica gel 60, 230–400 mesh, Merck, Darmstadt, Germany) was used. The
enantiomeric ratio (er) of the products were determined by chiral stationary phase HPLC
by Ultra Performance Convergence Chromatography (UPCC), using Daicel Chiralpak
IA, IB, IC, and IG columns as chiral stationary phases. Diethyl iminomalonates 3 and
iminodihydrofuran-2-one 4 were prepared from the corresponding 2-hydroxyaldehyde
following the literature procedure [46]. Chromone-3-carboxylic acids 2 were prepared from
the corresponding 2-hydroxyacetophenones following the literature procedure [47].

3.2. General Procedure
3.2.1. General Procedure for the Synthesis of Substituted (1R,3aS,9aS)-Diethyl
1-(2-Hydroxyphenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno[2,3-c]pyrrole-3,3(3aH)-
dicarboxylate 1a-l

An ordinary screw-cap vial was charged with a magnetic stirring bar, the corresponding
chromone-3-carboxylic acid 2 (0.1 mmol, 1 equiv), CHCl3 (0.2 mL), catalyst 6c (0.005 mmol,
0.05 equiv), and the corresponding 2-hydroxyarylideneaminomalonates 3 (0.1 mmol, 1 equiv).
The reaction mixture was stirred at 0 ◦C and monitored by 1H NMR spectroscopy. After the
complete consumption of the chromone-3-carboxylic acid 2, the mixture was directly subjected
to FC on silica gel (hexane:ethyl acetate 5:1) to provide the desired products 1.

(1R,3aS,9aS)-Diethyl 1-(2-hydroxyphenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno[2,3-c]
pyrrole-3,3(3aH)-dicarboxylate 1a

Pure product was isolated via flash chromatography on silica gel (hexane/ethyl acetate
5:1) as yellow oil in 93% yield, 5:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 10.20 (s, 1H),
7.91 (ddd, J = 7.9, 1.8, 0.4 Hz, 1H), 7.55–7.50 (m, 1H), 7.17 (ddd, J = 8.1, 7.3, 1.8 Hz, 1H),
7.10 (ddd, J = 7.9, 7.3, 1.0 Hz, 1H), 6.93 (ddd, J = 8.4, 1.0, 0.5 Hz, 1H), 6.85 (dd, J = 8.2, 1.2 Hz,
1H), 6.74 (td, J = 7.4, 1.2 Hz, 1H), 6.59 (ddt, J = 7.6, 1.8, 0.5 Hz, 1H), 5.67 (dd, J = 3.5, 0.8 Hz,
1H), 4.91 (d, J = 11.3 Hz, 1H), 4.50 (dqd, J = 10.7, 7.1, 1.4 Hz, 1H), 4.43–4.38 (m, 1H), 4.33 (qd,
J = 7.1, 3.0 Hz, 2H), 3.34 (dd, J = 11.3, 3.5 Hz, 1H), 1.42 (t, J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz,
3H). 13C NMR (176 MHz, Chloroform-d) δ 188.04, 167.90, 166.75, 158.68, 157.29, 136.73, 129.72,
129.09, 127.31, 122.78, 120.44, 119.71, 119.37, 118.09, 117.84, 83.75, 76.16, 64.23, 63.42, 63.17,
55.29, 14.34, 14.07. HRMS calculated for [C23H24NO7

+]: 426.1553, found: 426.1550. The er was
determined by UPC2 using a chiral Chiralpack IB column gradient from 100% CO2 up to 40%;
MeCN, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.13 min, τminor = 2.96 min,
(90:10 er).〖[α]〗_Dˆ20 = −44.9 (c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 1-(2-hydroxyphenyl)-7-methyl-9-oxo-1,2,9,9a-tetrahydrochromeno[2,3-
c]pyrrole-3,3(3aH)-dicarboxylate 1b

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as yellow oil solid in 85% yield, 6:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 10.23 (s,
1H), 7.69 (dd, J = 2.3, 1.1 Hz, 1H), 7.33 (ddd, J = 8.4, 2.3, 0.8 Hz, 1H), 7.17 (ddd, J = 8.1, 7.4,
1.7 Hz, 1H), 6.84 (dd, J = 8.1, 1.2 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.73 (td, J = 7.4, 1.2 Hz,
1H), 6.59 (dd, J = 7.6, 1.6 Hz, 1H), 5.63 (d, J = 3.5 Hz, 1H), 4.89 (d, J = 11.3 Hz, 1H), 4.49 (dq,
J = 10.7, 7.1 Hz, 1H), 4.44–4.37 (m, 1H), 4.33 (qd, J = 7.1, 2.7 Hz, 6H), 4.29 (s, 1H), 3.31 (dd,
J = 11.3, 3.5 Hz, 1H), 2.33 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H). 13C NMR
(176 MHz, Chloroform-d) δ 188.27, 167.94, 166.80, 157.30, 156.71, 137.76, 132.35, 129.68, 129.11,
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126.86, 120.47, 119.33, 119.30, 117.87, 117.82, 83.69, 76.14, 64.25, 63.39, 63.13, 55.29, 20.58, 14.34,
14.06. HRMS calculated for [C24H26NO7

+]: 440.1709, found: 440.1711. The er was determined
by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH,
2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.54 min, τminor = 3.65 min, (87:13 er).
〖[α]〗_Dˆ20 = −49.9 (c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 1-(2-hydroxyphenyl)-6-methyl-9-oxo-1,2,9,9a-tetrahydrochromeno
[2,3-c]pyrrole-3,3(3aH)-dicarboxylate 1c

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as yellow solid m.p.: 201–203 ◦C in 90% yield, 9:1 dr. 1H NMR (700 MHz, Chloroform-d)
δ 10.21 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.17 (ddd, J = 8.4, 7.5, 1.7 Hz, 1H), 6.93–6.88 (m,
1H), 6.84 (dd, J = 8.4, 1.1 Hz, 1H), 6.76–6.70 (m, 2H), 6.59 (dd, J = 7.6, 1.7 Hz, 1H), 5.63
(d, J = 3.5 Hz, 1H), 4.88 (dd, J = 11.2, 6.6 Hz, 1H), 4.49 (dq, J = 10.6, 7.1 Hz, 1H), 4.42 (dq,
J = 10.6, 7.1 Hz, 1H), 4.33 (qd, J = 7.1, 2.1 Hz, 2H), 4.27 (d, J = 6.9 Hz, 1H), 3.31 (dd, J = 11.2,
3.5 Hz, 1H), 2.38 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H). 13C NMR (176 MHz,
Chloroform-d) δ 187.71, 167.93, 166.78, 158.69, 157.27, 148.46, 129.65, 129.07, 127.18, 124.09,
120.54, 119.34, 118.06, 117.80, 117.41, 83.71, 76.13, 64.30, 63.38, 63.12, 55.21, 22.10, 14.35, 14.06.
HRMS calculated for [C24H26NO7

+]: 440.1709, found: 440.1710. The er was determined by
UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH,
2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.54 min, τminor = 3.41 min, (86:14 er).
〖[α]〗_Dˆ20 = −38.6 (c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 7-fluoro-1-(2-hydroxyphenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno[2,3-
c]pyrrole-3,3(3aH)-dicarboxylate 1d

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as yellow solid m.p.: 84–86 ◦C in 91% yield, 13:1 dr. 1H NMR (700 MHz, Chloroform-d)
δ 10.11 (s, 1H), 7.55 (dd, J = 7.9, 3.2 Hz, 1H), 7.26–7.22 (m, 1H), 7.18 (td, J = 7.7, 1.6 Hz, 1H),
6.92 (dd, J = 9.0, 4.0 Hz, 1H), 6.84 (dd, J = 8.2, 1.1 Hz, 1H), 6.74 (td, J = 7.5, 1.1 Hz, 1H), 6.58 (dd,
J = 7.5, 1.6 Hz, 1H), 5.65 (d, J = 3.5 Hz, 1H), 4.88 (dd, J = 11.3, 5.1 Hz, 1H), 4.52–4.44 (m, 1H),
4.44–4.36 (m, 1H), 4.32 (dtt, J = 9.6, 5.7, 3.0 Hz, 3H), 3.34 (dd, J = 11.3, 3.5 Hz, 1H), 1.41 (t,
J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H). 13C NMR (176 MHz, Chloroform-d) δ 187.33, 167.22 (d,
J= 211.77 Hz), 158.70, 157.29, 157.26, 154.81, 129.82, 129.06, 124.24 (d, J = 24.4 Hz), 120.31 (d,
J = 6.6 Hz), 120.21, 119.89 (d, J = 7.4 Hz), 119.42, 117.88, 112.40 (d, J = 23.7 Hz), 84.00, 76.06,
64.08, 63.46, 63.22, 54.97, 14.33, 14.05. HRMS calculated for [C23H23FNO7

+]: 444.1459, found:
444.1458. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from
100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.21 min,
τminor = 3.34 min, (89:11 er).〖[α]〗_Dˆ20 = −46.0 (c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 7-bromo-1-(2-hydroxyphenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno[2,3-
c]pyrrole-3,3(3aH)-dicarboxylate 1e

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as pale yellow solid m.p.: 98–101 ◦C in 97% yield, 20:1 dr. 1H NMR (700 MHz, Chloroform-
d) δ 10.06 (s, 1H), 8.01 (d, J = 2.5 Hz, 1H), 7.61 (dd, J = 8.8, 2.5 Hz, 1H), 7.18 (ddd, J = 8.3,
7.5, 1.6 Hz, 1H), 6.86–6.81 (m, 2H), 6.74 (td, J = 7.5, 1.2 Hz, 1H), 6.58 (dd, J = 7.5, 1.6 Hz, 1H),
5.66 (d, J = 3.5 Hz, 1H), 4.86 (d, J = 11.3 Hz, 1H), 4.52–4.45 (m, 1H), 4.44–4.38 (m, 1H), 4.33
(qd, J = 7.1, 3.4 Hz, 2H), 4.30 (s, 1H), 3.35 (dd, J = 11.3, 3.5 Hz, 1H), 1.41 (t, J = 7.1 Hz, 3H),
1.34 (t, J = 7.1 Hz, 3H). 13C NMR (176 MHz, Chloroform-d) δ 186.86, 167.78, 166.57, 157.52,
157.23, 139.36, 129.87, 129.73, 129.05, 120.88, 120.16, 120.12, 119.46, 117.91, 115.54, 83.93, 76.10,
64.19, 63.51, 63.27, 54.95, 14.34, 14.06. HRMS calculated for [C23H23BrNO7

+]: 504.0658, found:
504.0661. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from
100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.76 min,
τminor = 3.92 min, (87:13 er).〖[α]〗_Dˆ20 = −40.7 (c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 7-chloro-1-(2-hydroxyphenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno[2,3-
c]pyrrole-3,3(3aH)-dicarboxylate 1f

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as pale yellow solid m.p.: 118–121 ◦C in 89% yield 9:1 dr. 1H NMR (700 MHz, Chloroform-
d) δ 10.07 (s, 1H), 7.86 (d, J = 2.7 Hz, 1H), 7.47 (dd, J = 8.8, 2.7 Hz, 1H), 7.21–7.16 (m, 1H), 6.90 (d,
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J = 8.8 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 6.74 (td, J = 7.6, 1.2 Hz, 1H), 6.58 (dd, J = 7.6, 1.6 Hz, 1H),
5.66 (d, J = 3.5 Hz, 1H), 4.87 (d, J = 10.5 Hz, 1H), 4.48 (dd, J = 10.7, 7.1 Hz, 1H), 4.41 (dd, J = 10.7,
7.1 Hz, 1H), 4.33 (qd, J = 7.1, 3.4 Hz, 2H), 4.29 (s, 1H), 3.35 (dd, J = 11.3, 3.5 Hz, 1H), 1.41 (t,
J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H). 13C NMR (176 MHz, Chloroform-d) δ 186.99, 167.79,
166.59, 157.24, 157.05, 136.57, 129.88, 129.05, 128.43, 126.64, 120.45, 120.12, 119.85, 119.46, 117.91,
83.97, 76.10, 64.19, 63.51, 63.27, 54.99, 14.35, 14.07. HRMS calculated for [C23H23ClNO7

+]:
474.1163, found: 474.1164. The er was determined by UPC2 using a chiral Chiralpack IA col-
umn gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm;
τmajor = 3.41 min, τminor = 3.58 min, (88:12 er).〖[α]〗_Dˆ20 = −54.0 (c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 7-chloro-1-(2-hydroxyphenyl)-6-methyl-9-oxo-1,2,9,9a-tetrahydroc
hromeno[2,3-c]pyrrole-3,3(3aH)-dicarboxylate 1g

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as pale yellow oil in 88% yield, 8:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 10.11 (s, 1H),
7.85 (s, 1H), 7.18 (ddd, J = 8.2, 7.3, 1.7 Hz, 1H), 6.84 (dd, J = 8.2, 1.2 Hz, 1H), 6.74 (td, J = 7.4,
1.2 Hz, 1H), 6.57 (dd, J = 7.7, 1.7 Hz, 1H), 5.63 (d, J = 3.5 Hz, 1H), 4.85 (d, J = 11.3 Hz, 1H), 4.48
(dq, J = 10.7, 7.1 Hz, 1H), 4.42 (dq, J = 10.7, 7.1 Hz, 1H), 4.33 (qd, J = 7.1, 2.4 Hz, 2H), 4.29 (s,
1H), 3.31 (dd, J = 11.3, 3.5 Hz, 1H), 2.40 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H).
13C NMR (176 MHz, Chloroform-d) δ 186.82, 167.83, 166.63, 157.23, 156.85, 146.03, 129.79,
129.05, 129.02, 126.94, 120.25, 120.15, 119.41, 118.60, 117.86, 83.90, 76.09, 64.26, 63.46, 63.21,
54.96, 21.01, 14.35, 14.05. HRMS calculated for [C24H25ClNO7

+]: 474.1320, found: 474.1319.
The er was determined by UPC2 using a chiral Chiralpack IG column gradient from 100%
CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 4.94 min,
τminor = 4.54 min, (88:12 er).〖[α]〗_Dˆ20 = −37.0 (c = 1.0, CH2Cl2).

(7aS,10R,10aS)-Diethyl 10-(2-hydroxyphenyl)-11-oxo-9,10,10a,11-tetrahydrobenzo[5,6]
chromeno[2,3-c]pyrrole-8,8(7aH)-dicarboxylate 1h

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as pale yellow oil in 90% yield 5:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 9.35 (ddd,
J = 8.6, 1.2, 0.6 Hz, 1H), 7.98 (dt, J = 9.0, 0.6 Hz, 1H), 7.78 (ddt, J = 8.1, 1.3, 0.6 Hz, 1H), 7.64 (ddd,
J = 8.6, 6.9, 1.4 Hz, 1H), 7.47 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.18 (ddd, J = 8.2, 7.4, 1.7 Hz, 1H),
7.03 (d, J = 8.9 Hz, 1H), 6.87 (dd, J = 8.2, 1.2 Hz, 1H), 6.72 (td, J = 7.4, 1.2 Hz, 1H), 6.60–6.58 (m,
1H), 5.78 (dd, J = 3.9, 0.8 Hz, 1H), 4.97 (d, J = 11.1 Hz, 1H), 4.52 (dq, J = 10.6, 7.1 Hz, 1H), 4.44
(dq, J = 10.6, 7.1 Hz, 1H), 4.35 (qq, J = 7.1, 3.6 Hz, 2H), 3.43 (dd, J = 11.1, 3.6 Hz, 1H), 1.45 (t,
J = 7.1 Hz, 3H), 1.36 (t, J = 7.1 Hz, 3H). 13C NMR (176 MHz, Chloroform-d) δ 189.78, 167.97,
165.87, 161.85, 157.22, 137.74, 130.44, 129.43, 129.30, 129.22, 128.96, 128.14, 125.53, 124.90, 119.20,
118.91, 118.39, 117.27, 111.79, 81.50, 78.05, 63.37, 63.30, 63.03, 53.40, 14.37, 14.21. HRMS calculated
for [C27H26NO7

+]: 475.1631, found: 475.1634. The er was determined by UPC2 using a chiral
Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection
wavelength = 245 nm; τmajor = 4.61 min, τminor = 4.44 min, (92:8 er).〖[α]〗_Dˆ20 = −48.6
(c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 1-(2-hydroxy-5-methylphenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno[2,3-
c]pyrrole-3,3(3aH)-dicarboxylate 1i

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate 5:1)
as pale yellow solid m.p.: 144–146 ◦C in 73% yield, 6:1 dr. 1H NMR (700 MHz, Chloroform-d)
δ 9.89 (s, 1H), 7.92 (dd, J = 7.8, 1.8 Hz, 1H), 7.54 (ddd, J = 8.5, 7.2, 1.8 Hz, 1H), 7.13–7.09 (m,
1H), 6.97 (dd, J = 8.2, 2.1 Hz, 1H), 6.93 (dd, J = 8.5, 0.9 Hz, 1H), 6.75 (d, J = 8.2 Hz, 1H), 6.39 (d,
J = 2.1 Hz, 1H), 5.66 (d, J = 3.5 Hz, 1H), 4.85 (d, J = 10.5 Hz, 1H), 4.52–4.47 (m, 1H), 4.43–4.37
(m, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.24 (s, 1H), 3.35 (dd, J = 10.5, 3.5 Hz, 1H), 2.17 (s, 3H), 1.42 (t,
J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H). 13C NMR (176 MHz, Chloroform-d) δ 188.05, 167.97,
166.84, 158.71, 154.88, 136.68, 130.32, 129.49, 128.43, 127.33, 122.75, 120.18, 119.76, 118.09, 117.64,
83.84, 76.09, 64.20, 63.39, 63.14, 55.22, 20.59, 14.35, 14.07. HRMS calculated for [C24H26NO7

+]:
440.1709, found: 440.1712. The er was determined by UPC2 using a chiral Chiralpack IB column
gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm;
τmajor = 2.96 min, τminor = 2.70 min, (82:18 er).〖[α]〗_Dˆ20 = −44.4 (c = 1.0, CH2Cl2).
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(1R,3aS,9aS)-Diethyl 1-(5-chloro-2-hydroxyphenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno[2,3-
c]pyrrole-3,3(3aH)-dicarboxylate 1j

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as white solid m.p.: 167–169 ◦C in 87% yield, 7:1 dr. 1H NMR (700 MHz, Chloroform-d)
δ 10.19 (s, 1H), 7.92 (dd, J = 7.8, 1.6 Hz, 1H), 7.56–7.51 (m, 1H), 7.14–7.09 (m, 2H), 6.92 (d, J =
8.3 Hz, 1H), 6.77 (d, J = 8.9 Hz, 1H), 6.60 (d, J = 2.5 Hz, 1H), 5.65 (d, J = 3.6 Hz, 1H), 4.84 (dd,
J = 11.3, 4.7 Hz, 1H), 4.48 (dq, J = 10.4, 7.1 Hz, 1H), 4.39 (dq, J = 10.4 7.1 Hz, 1H), 4.32 (qd, J
= 7.1, 3.9 Hz, 2H), 4.29 (s, 1H), 3.31 (dd, J = 11.3, 3.6 Hz, 1H), 1.41 (t, J = 7.1 Hz, 3H), 1.33 (t, J
= 7.1 Hz, 3H). 13C NMR (176 MHz, Chloroform-d) δ 187.77, 167.75, 166.58, 158.66, 155.91,
136.88, 129.53, 128.62, 127.43, 123.99, 122.92, 122.19, 119.60, 119.17, 118.08, 83.62, 76.15, 63.51,
63.48, 63.24, 55.11, 14.32, 14.04. HRMS calculated for [C23H23ClNO7

+]: 460.1163, found:
460.1162. The er was determined by UPC2 using a chiral Chiralpack IB column gradient
from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor =
2.94 min, τminor = 2.74 min, (88:12 er).〖[α]〗_Dˆ20 = −59.6 (c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 1-(5-(tert-butyl)-2-hydroxyphenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno
pyrrole-3,3(3aH)-dicarboxylate 1k

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as pale yellow oil in 75% yield, 20:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 10.04
(s, 1H), 7.92 (dd, J = 7.8, 1.7 Hz, 1H), 7.54 (ddd, J = 8.7, 7.2, 1.7 Hz, 1H), 7.18 (dd, J = 8.5,
2.5 Hz, 1H), 7.14–7.08 (m, 1H), 6.93 (dd, J = 8.3, 0.9 Hz, 1H), 6.77 (d, J = 8.5 Hz, 1H), 6.54
(d, J = 2.5 Hz, 1H), 5.67 (d, J = 3.6 Hz, 1H), 4.92 (d, J = 11.3 Hz, 1H), 4.50 (dq, J = 10.6, 7.1
Hz, 1H), 4.41 (dd, J = 10.6, 7.1 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 4.28 (s, 1H), 3.32 (dd, J =
11.3, 3.6 Hz, 1H), 1.42 (t, J = 7.1 Hz, 3H), 1.34 (t, J = 7.1 Hz, 3H), 1.21 (s, 9H). 13C NMR (176
MHz, Chloroform-d) δ 187.92, 167.93, 166.79, 158.64, 154.75, 141.73, 136.60, 127.09, 126.32,
126.07, 122.78, 119.79, 119.58, 118.10, 117.20, 83.81, 76.30, 64.68, 63.39, 63.12, 55.53, 33.98,
31.50, 14.34, 14.07. HRMS calculated for [C27H32NO7

+]: 482.2179, found: 482.2181. The er
was determined by UPC2 using a chiral Chiralpack IG column gradient from 100% CO2 up
to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.94 min, τminor =
4.14 min, (75:25 er). [α]20 = −43.4 (c = 1.0, CH2Cl2).

(1R,3aS,9aS)-Diethyl 1-(2-hydroxy-5-nitrophenyl)-9-oxo-1,2,9,9a-tetrahydrochromeno
pyrrole-3,3(3aH)-dicarboxylate 1l

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
5:1) as pale yellow solid m.p.: 152–154 ◦C in 68% yield, 7:1 dr. 1H NMR (700 MHz,
Chloroform-d) δ 11.44 (s, 1H), 8.09 (dd, J = 9.0, 2.7 Hz, 1H), 7.93 (dd, J = 7.8, 1.7 Hz, 1H),
7.60 (d, J = 2.7 Hz, 1H), 7.57 (ddd, J = 8.6, 7.2, 1.7 Hz, 1H), 7.17–7.14 (m, 1H), 6.95 (dd, J
= 8.6, 0.9 Hz, 1H), 6.90 (d, J = 9.0 Hz, 1H), 5.67 (d, J = 3.6 Hz, 1H), 4.98 (dd, J = 11.2, 6.1
Hz, 1H), 4.51 (dq, J = 10.6, 7.1 Hz, 1H), 4.46–4.39 (m, 2H), 4.38–4.30 (m, 2H), 3.29 (dd, J
= 11.2, 3.6 Hz, 1H), 1.43 (t, J = 7.1 Hz, 3H), 1.35 (t, J = 7.1 Hz, 3H). 13C NMR (176 MHz,
Chloroform-d) δ 187.50, 167.48, 166.23, 163.51, 158.65, 140.32, 137.18, 127.59, 125.84, 125.36,
123.24, 120.94, 119.51, 118.28, 118.12, 83.41, 76.30, 63.75, 63.47, 63.26, 55.25, 14.32, 14.03.
HRMS calculated for [C23H23N2O9

+]: 471.1402, found: 471.1403. The er was determined
by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-
PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.53 min, τminor = 3.64 min,
(70:30 er).〖[α]〗_Dˆ20 = −68.2 (c = 1.0, CH2Cl2).

3.2.2. General Procedure for the Synthesis of Substituted 1-(2-Hydroxyphenyl)-3a,4′,5′,9a-
tetrahydro-1H,2′H-spiro[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1m-x

An ordinary screw-cap vial was charged with a magnetic stirring bar, the corre-
sponding chromone-3-carboxylic acid 2 (0.1 mmol, 1 equiv), CH2Cl2 (0.4 mL), catalyst
6c (0.02 mmol, 0.02 equiv), and the corresponding 2-hydroxyarylideneaminolactones 4
(0.1 mmol, 1 equiv). The reaction mixture was stirred at 0 ◦C and monitored by 1H NMR
spectroscopy. After the complete consumption of the chromone-3-carboxylic acid 2, the
mixture was directly subjected to FC on silica gel (CH2Cl2:acetone 100:1) to provide the
desired products 1m-x.
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(1R,3R,3aS,9aS)-1-(2-Hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro[chromeno[2,3-
c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1m

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as white solid m.p.: 201–203 ◦C in 58% yield, 2:1 dr. 1H NMR (700 MHz, Chloroform-
d) δ 7.89 (dd, J = 7.8, 1.7 Hz, 1H), 7.54 (ddd, J = 8.4, 7.2, 1.7 Hz, 1H), 7.21 (ddd, J = 8.1, 7.4,
1.7 Hz, 1H), 7.09 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 7.01 (dd, J = 8.4, 1.0 Hz, 1H), 6.87 (ddd,
J = 8.1, 4.3, 1.5 Hz, 2H), 6.81 (td, J = 7.4, 1.2 Hz, 1H), 5.15 (d, J = 9.8 Hz, 1H), 5.10 (dd,
J = 5.7, 0.7 Hz, 1H), 4.53 (ddd, J = 9.6, 8.5, 1.3 Hz, 1H), 4.44 (ddd, J = 11.1, 9.6, 5.7 Hz, 1H),
3.34 (dd, J = 9.8, 5.6 Hz, 1H), 2.60 (ddd, J = 13.0, 11.1, 8.5 Hz, 1H), 2.53 (ddd, J = 13.0, 5.7,
1.3 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ 188.37, 174.69, 158.58, 157.05, 137.05,
129.80, 128.98, 127.15, 122.80, 121.80, 119.83, 119.40, 118.24, 117.77, 83.64, 69.40, 65.19,
63.91, 53.48, 36.37. HRMS calculated for [C20H18NO5

+]: 352.1185, found: 352.1185. The
er was determined by UPC2 using a chiral Chiralpack IB column gradient from 100%
CO2 up to 40%; MeCN, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.20 min,
τminor = 3.05 min, (91.5:8.5 er).

(1R,3S,3aS,9aS)-1-(2-Hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro[chromeno[2,3-
c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1m′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as white solid m.p.: 188–190 ◦C in 29% yield, 2:1 dr. 1H NMR (700 MHz, Chloroform-
d) δ 7.90 (ddd, J = 7.8, 1.8, 0.4 Hz, 1H), 7.57 (ddd, J = 8.4, 7.2, 1.8 Hz, 1H), 7.20 (ddd, J = 8.2,
7.2, 1.8 Hz, 1H), 7.12 (ddd, J = 7.8, 7.2, 1.0 Hz, 1H), 7.05 (ddd, J = 8.2, 1.0, 0.4 Hz, 1H), 6.91
(dd, J = 8.1, 1.2 Hz, 1H), 6.80–6.78 (m, 1H), 6.77–6.74 (m, 1H), 5.04 (dd, J = 4.6, 0.7 Hz, 1H),
4.88 (d, J = 10.8 Hz, 1H), 4.53–4.49 (m, 1H), 4.43 (td, J = 9.4, 6.4 Hz, 1H), 3.64 (dd, J = 10.8,
4.6 Hz, 1H), 3.21 (ddd, J = 13.3, 6.4, 3.1 Hz, 1H), 2.43–2.37 (m, 1H). 13C NMR (176 MHz,
Chloroform-d) δ 188.34, 177.30, 158.46, 156.92, 136.88, 129.97, 129.28, 127.52, 122.98, 121.02,
119.91, 119.47, 117.96, 117.95, 81.65, 69.06, 65.57, 63.70, 53.48, 30.57. HRMS calculated for
[C20H18NO5

+]: 352.1185, found: 352.1184. The er was determined by UPC2 using a chiral
Chiralpack IB column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection
wavelength = 245 nm; τmajor = 4.91 min, τminor = 5.19 min, (84:16 er).

(1R,3R,3aS,9aS)-1-(2-Hydroxyphenyl)-7-methyl-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1n

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as pale yellow oil in 47% yield, 2:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 10.27 (s,
1H), 7.67 (d, J = 1.2 Hz, 1H), 7.35 (ddd, J = 8.4, 2.4, 0.7 Hz, 1H), 7.20 (ddd, J = 8.0, 7.4, 1.7 Hz,
1H), 6.91 (d, J = 8.4 Hz, 1H), 6.87 (dt, J = 7.7, 1.7 Hz, 2H), 6.80 (td, J = 7.4, 1.2 Hz, 1H), 5.13
(d, J = 9.9 Hz, 1H), 5.06 (dd, J = 5.4, 0.7 Hz, 1H), 4.52 (ddd, J = 9.6, 8.6, 1.2 Hz, 1H), 4.43
(ddd, J = 11.2, 9.6, 5.6 Hz, 1H), 3.45 (s, 1H), 3.31 (dd, J = 9.9, 5.4 Hz, 1H), 2.59 (ddd, J = 13.1,
11.2, 8.6 Hz, 1H), 2.52 (ddd, J = 13.1, 5.6, 1.2 Hz, 1H), 2.32 (s, 3H). 13C NMR (176 MHz,
Chloroform-d) δ 188.60, 174.78, 157.05, 156.63, 138.11, 132.36, 129.74, 128.99, 126.66, 121.86,
119.77, 119.00, 118.02, 117.72, 83.62, 69.36, 65.19, 63.91, 53.51, 36.40, 20.57. HRMS calculated
for [C21H20NO5

+]: 366.1297, found: 366.1298. The er was determined by UPC2 using a
chiral Chiralpack IB column gradient from 100% CO2 up to 40%; MeCN, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 4.69 min, τminor = 4.55 min, (89:11 er).

(1R,3S,3aS,9aS)-1-(2-Hydroxyphenyl)-7-methyl-3a,4′,5′,9a-tetrah-ydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-di-one 1n′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone 100:1)
as pale yellow oil in 23% yield, 2:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 7.67 (d, J = 2.3 Hz,
1H), 7.37 (dd, J = 8.5, 2.3 Hz, 1H), 7.19 (ddd, J = 8.5, 7.1, 2.0 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H),
6.92–6.89 (m, 1H), 6.75 (dtd, J = 11.2, 7.6, 1.6 Hz, 2H), 4.99 (d, J = 4.5 Hz, 1H), 4.85 (d, J = 10.8 Hz,
1H), 4.50 (td, J = 8.8, 3.0 Hz, 1H), 4.41 (td, J = 9.3, 6.4 Hz, 1H), 3.59 (dd, J = 10.8, 4.5 Hz, 1H),
3.20 (ddd, J = 13.2, 6.4, 3.0 Hz, 1H), 2.38 (dt, J = 13.2, 8.9 Hz, 1H), 2.33 (d, J = 2.6 Hz, 3H). 13C
NMR (176 MHz, Chloroform-d) δ 188.56, 177.40, 156.94, 156.49, 137.90, 132.58, 129.91, 129.31,
127.08, 121.07, 119.52, 119.41, 117.93, 117.73, 81.57, 69.03, 65.56, 63.73, 53.51, 30.52, 20.59. HRMS
calculated for [C21H20NO5

+]: 366.1297, found: 366.1294. The er was determined by UPC2
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using a chiral Chiralpack IC column gradient from 100% CO2 up to 40%; MeCN, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 6.81 min, τminor = 6.16 min, (78:22 er).

(1R,3R,3aS,9aS)-1-(2-Hydroxyphenyl)-6-methyl-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1o

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone 100:1)
as pale yellow solid m.p.: 180–182 ◦C in 41% yield, 2:1 dr. 1H NMR (700 MHz, Chloroform-d)
δ 10.26 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.20 (ddd, J = 8.7, 7.4, 1.7 Hz, 1H), 6.90 (d, J = 8.0 Hz,
1H), 6.87 (m, 2H), 6.83 (s, 1H), 6.80 (td, J = 7.4, 1.2 Hz, 1H), 5.13 (d, J = 9.8 Hz, 1H), 5.06 (d,
J = 5.5 Hz, 1H), 4.53 (t, J = 9.0 Hz, 1H), 4.43 (ddd, J = 11.1, 9.6, 5.5 Hz, 1H), 3.43 (s, 1H), 3.31
(dd, J = 9.8, 5.5 Hz, 1H), 2.59 (ddd, J = 13.0, 10.9, 8.3 Hz, 1H), 2.52 (dd, J = 13.0, 5.5 Hz, 1H),
2.37 (s, 3H). 13C NMR (176 MHz, Chloroform-d) δ 188.04, 174.78, 158.58, 157.02, 148.88, 129.72,
128.94, 127.00, 124.12, 121.95, 119.78, 118.19, 117.71, 117.08, 83.65, 69.37, 65.19, 63.93, 53.38,
36.35, 22.11. HRMS calculated for [C21H20NO5

+]: 366.1297, found: 366.1295. The er was
determined by UPC2 using a chiral Chiralpack IC column gradient from 100% CO2 up to 40%;
MeCN, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 5.87 min, τminor = 4.93 min,
(88:12 er).

(1R,3S,3aS,9aS)-1-(2-Hydroxyphenyl)-6-methyl-3a,4′,5′,9a-tetrah-ydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1o′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as pale yellow solid m.p.: 135–137 ◦C in 21% yield, 2:1 dr. 1H NMR (700 MHz,
Chloroform-d) δ 9.46 (s, 1H), 7.78 (dd, J = 8.1, 3.2 Hz, 1H), 7.19 (ddd, J = 8.8, 7.4, 1.8 Hz,
1H), 6.91 (ddd, J = 13.1, 8.1, 1.4 Hz, 2H), 6.86 (s, 1H), 6.80 (dd, J = 7.5, 1.8 Hz, 1H), 6.75
(td, J = 7.4, 1.4 Hz, 1H), 5.01 (dd, J = 4.7, 0.7 Hz, 1H), 4.85 (d, J = 10.7 Hz, 1H), 4.50 (ddd,
J = 9.3, 8.3, 3.1 Hz, 1H), 4.41 (td, J = 9.3, 6.4 Hz, 1H), 3.59 (dd, J = 10.7, 4.7 Hz, 1H), 3.17 (ddd,
J = 13.2, 6.4, 3.1 Hz, 1H), 2.40 (d, J = 0.7 Hz, 3H), 2.38–2.35 (m, 1H). 13C NMR (176 MHz,
Chloroform-d) δ 188.54, 177.53, 158.65, 156.64, 148.40, 129.45, 129.34, 127.00, 123.82, 122.11,
119.27, 117.81, 117.39, 117.27, 81.84, 68.91, 65.76, 63.37, 53.18, 30.18, 21.97. HRMS calculated
for [C21H20NO5

+]: 366.1297, found: 366.1298. The er was determined by UPC2 using a
chiral Chiralpack IC column gradient from 100% CO2 up to 40%; MeCN, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 6.18 min, τminor = 5.06 min, (82.5:17.5 er).

(1R,3R,3aS,9aS)-7-Chloro-1-(2-hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1p

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as yellow solid m.p.: 164–166 ◦C in 36% yield, 1.5:1 dr. 1H NMR (700 MHz,
Chloroform-d) δ 7.84 (dd, J = 2.7, 1.6 Hz, 1H), 7.48 (ddd, J = 8.9, 2.7, 0.6 Hz, 1H), 7.21
(ddd, J = 8.0, 7.3, 1.6 Hz, 1H), 6.98 (d, J = 8.9 Hz, 1H), 6.87 (d, J = 1.0 Hz, 1H), 6.86 (d,
J = 1.2 Hz, 1H), 6.81 (td, J = 7.3, 1.2 Hz, 1H), 5.12 (d, J = 9.7 Hz, 1H), 5.10 (d, J = 5.7 Hz, 1H),
4.53 (ddd, J = 9.6, 8.4, 1.6 Hz, 1H), 4.43 (ddd, J = 10.9, 9.6, 5.8 Hz, 1H), 3.34 (dd, J = 9.7,
5.7 Hz, 1H), 2.62–2.56 (m, 1H), 2.54 (ddd, J = 13.1, 5.8, 1.6 Hz, 1H). 13C NMR (176 MHz,
Chloroform-d) δ 187.38, 174.60, 156.98, 156.96, 136.85, 129.93, 128.98, 128.39, 126.43, 121.60,
120.11, 119.96, 119.92, 117.80, 83.73, 69.35, 65.22, 63.87, 53.06, 36.22. HRMS calculated for
[C20H17ClNO5

+]: 387.0688, found: 387.0686. The er was determined by UPC2 using a chiral
Chiralpack IC column gradient from 100% CO2 up to 40%; MeCN, 2.5 mL/min; detection
wavelength = 245 nm; τmajor = 5.26 min, τminor = 4.64 min, (87:13 er).

(1R,3S,3aS,9aS)-7-Chloro-1-(2-hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1p′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as yellow solid m.p.: 155–157 ◦C in 24% yield, 1.5:1 dr. 1H NMR (700 MHz,
Chloroform-d) δ 7.86 (dd, J = 2.7, 0.4 Hz, 1H), 7.51 (dd, J = 8.8, 2.7 Hz, 1H), 7.23–7.19 (m, 1H),
7.02 (dd, J = 8.8, 0.4 Hz, 1H), 6.91 (dd, J = 7.8, 0.9 Hz, 1H), 6.77 (dd, J = 1.5, 0.9 Hz, 1H), 6.76
(dd, J = 2.1, 0.8 Hz, 1H), 5.03 (d, J = 4.4 Hz, 1H), 4.85 (dd, J = 10.9, 2.5 Hz, 1H), 4.52 (ddd,
J = 9.3, 8.3, 3.2 Hz, 1H), 4.43 (td, J = 9.3, 6.5 Hz, 1H), 3.66 (dd, J = 10.9, 4.4 Hz, 1H), 3.19
(ddd, J = 13.3, 6.5, 3.2 Hz, 1H), 2.41 (ddd, J = 13.3, 9.1, 8.3 Hz, 1H). 13C NMR (176 MHz,
Chloroform-d) δ 187.25, 177.10, 156.84, 156.82, 136.71, 130.15, 129.29, 128.66, 126.86, 120.68,
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120.64, 119.71, 119.58, 118.02, 81.95, 69.06, 65.55, 63.66, 53.25, 31.07. HRMS calculated for
[C20H17ClNO5

+]: 387.0688, found: 387.0691. The er was determined by UPC2 using a chiral
Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection
wavelength = 245 nm; τmajor = 5.39 min, τminor = 5.72 min, (71:29 er).

(1R,3R,3aS,9aS)-6-Fluoro-1-(2-hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1r

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone 100:1)
as pale yellow oil in 34% yield, 1.5:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 10.12 (s, 1H),
7.92 (dd, J = 8.8, 6.5 Hz, 1H), 7.21 (ddd, J = 8.1, 7.3, 1.7 Hz, 1H), 6.88 (ddd, J = 17.1, 7.9, 1.4 Hz,
2H), 6.84–6.78 (m, 1H), 6.71 (dd, J = 9.5, 2.3 Hz, 1H), 5.14 (d, J = 9.6 Hz, 1H), 5.12 (d, J = 5.8 Hz,
1H), 4.53 (ddd, J = 9.8, 8.4, 1.6 Hz, 1H), 4.44 (ddd, J = 10.8, 9.6, 5.8 Hz, 1H), 3.40 (s, 1H), 3.34
(dd, J = 9.6, 5.9 Hz, 1H), 2.60 (ddd, J = 13.1, 10.8, 8.4 Hz, 1H), 2.55 (ddd, J = 13.1, 5.9, 1.6 Hz,
1H). 13C NMR (176 MHz, Chloroform-d) δ 187.03, 174.60, 168.13, (d, J = 258.03 Hz), 160.24
(d, J = 13.9 Hz), 156.96, 129.89, 129.82 (d, J = 11.4 Hz), 128.90, 121.85, 119.90, 117.82, 116.27 (d,
J = 2.78 Hz), 111.28 (d, J = 22.6 Hz), 105.20 (d, J = 24.9 Hz), 84.09, 69.32, 65.21, 63.81, 53.01, 36.20.
HRMS calculated for [C20H17FNO5

+]: 370.1091, found: 370.1088. The er was determined
by UPC2 using a chiral Chiralpack IB column gradient from 100% CO2 up to 40%; MeCN,
2.5 mL/min; detection wavelength = 245 nm; τmajor = 4.59 min, τminor = 4.44 min, (86:14 er).

(1R,3S,3aS,9aS)-6-Fluoro-1-(2-hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1r′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as pale yellow oil in 22% yield, 1.5:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 7.54
(ddd, J = 8.0, 3.2, 1.4 Hz, 1H), 7.29 (ddd, J = 9.0, 7.5, 3.2 Hz, 1H), 7.21–7.17 (m, 1H), 7.05 (dd,
J = 9.0, 4.1 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.76–6.74 (m, 2H), 5.00 (d, J = 4.3 Hz, 1H), 4.84
(dd, J = 11.0, 3.0 Hz, 1H), 4.53–4.48 (m, 1H), 4.42 (td, J = 9.3, 6.4 Hz, 1H), 3.64 (dd, J = 11.0,
4.3 Hz, 1H), 3.19 (ddd, J = 13.3, 6.5, 3.0 Hz, 1H), 2.40 (dt, J = 13.3, 8.8 Hz, 1H). 13C NMR
(176 MHz, Chloroform-d) δ 187.57, 177.27, 158.10 (d, J = 247.4 Hz), 156.89, 154.56, 130.06,
129.33, 124.42, 124.28, 120.7, 119.77 (d, J = 7.5 Hz), 119.50, 117.95, 112.64 (d, J = 23.6 Hz),
81.93, 69.01, 65.58, 63.60, 53.28, 30.48. HRMS calculated for [C20H17FNO5

+]: 370.1091,
found: 370.1090. The er was determined by UPC2 using a chiral Chiralpack IC column
gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm;
τmajor = 6.30 min, τminor = 5.48 min, (72:28 er).

(1R,3R,3aS,9aS)-7-Chloro-1-(2-hydroxyphenyl)-6-methyl-3a,4′,5′,9a-tetrahydro-1H,2′H-
spiro[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1s

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as pale yellow oil in 43% yield, 2:1 dr. 1H NMR (700 MHz, DMSO-d6) δ 9.90 (s, 1H),
7.76 (s, 1H), 7.45 (dd, J = 7.6, 1.7 Hz, 1H), 7.24 (td, J = 7.7, 1.7 Hz, 1H), 7.22 (d, J = 0.9 Hz,
1H), 6.93 (td, J = 7.4, 1.2 Hz, 1H), 6.89 (dd, J = 8.0, 1.2 Hz, 1H), 5.50 (d, J = 6.9 Hz, 1H),
5.16 (dd, J = 8.9, 5.3 Hz, 1H), 4.60–4.45 (m, 2H), 3.46 (s, 1H), 3.44 (dd, J = 8.9, 6.9 Hz, 1H),
2.74 (ddd, J = 12.9, 5.9, 2.5 Hz, 2H), 2.65 (m, 3H), 2.59–2.53 (m, 1H). 13C NMR (176 MHz,
DMSO) δ 188.35, 175.49, 157.12, 155.51, 144.52, 128.37, 128.25, 126.27, 126.18, 125.21, 120.08,
118.83, 118.30, 115.40, 83.79, 69.22, 65.07, 59.17, 52.51, 34.84, 20.00. HRMS calculated for
[C21H19ClNO5

+]: 401.0844, found: 401.0842. The er was determined by UPC2 using a chiral
Chiralpack IC column gradient from 100% CO2 up to 40%; MeCN, 2.5 mL/min; detection
wavelength = 245 nm; τmajor = 5.78 min, τminor = 4.92 min, (87:13 er).

(1R,3S,3aS,9aS)-7-Chloro-1-(2-hydroxyphenyl)-6-methyl-3a,4′,5′,9a-tetrahydro-1H,2′H-
spiro[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1s′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as pale yellow oil in 21% yield, 2:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 8.08 (d,
J = 2.6 Hz, 1H), 7.84 (s, 1H), 7.20 (ddd, J = 8.2, 6.6, 2.3 Hz, 1H), 6.96 (s, 1H), 6.90 (dd, J = 8.2,
1.1 Hz, 1H), 6.78–6.74 (m, 1H), 5.01 (dd, J = 4.6, 0.7 Hz, 1H), 4.83 (d, J = 10.8 Hz, 1H), 4.67 (s,
1H), 4.50 (ddd, J = 9.3, 8.3, 3.2 Hz, 1H), 4.41 (td, J = 9.3, 6.5 Hz, 1H), 3.61 (dd, J = 10.8, 4.6 Hz,
1H), 3.16 (ddd, J = 13.2, 6.5, 3.2 Hz, 1H), 2.42 (s, 3H), 2.40–2.37 (m, 1H). 13C NMR (176 MHz,
Chloroform-d) δ 187.12, 177.17, 156.84, 156.66, 146.20, 130.05, 129.26, 129.22, 127.15, 120.85,
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120.04, 119.53, 118.81, 117.97, 81.86, 68.99, 65.54, 63.71, 53.18, 30.53, 29.85. HRMS calculated
for [C21H19ClNO5

+]: 401.0844, found: 401.0845. The er was determined by UPC2 using
a chiral Chiralpack IB column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 5.14 min, τminor = 5.52 min, (77:23 er).

(1R,3R,3aS,9aS)-1-(2-Hydroxy-5-methylphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H -spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1t

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone 100:1)
as yellow oil in 43% yield, 1.5:1 dr. A few drops of DMSO-d6 were added to increase the
solubility. 1H NMR (700 MHz, Chloroform-d) δ 9.80 (s, 1H), 7.71 (dd, J = 7.8, 1.8 Hz, 1H),
7.38 (ddd, J = 8.5, 7.2, 1.8 Hz, 1H), 6.92 (td, J = 7.5, 1.0 Hz, 1H), 6.84 (dd, J = 8.5, 1.0 Hz,
1H), 6.82 (dd, J = 8.2, 2.2 Hz, 1H), 6.72 (d, J = 2.1 Hz, 1H), 6.59 (d, J = 8.2 Hz, 1H), 5.04
(d, J = 6.9 Hz, 1H), 4.98 (d, J = 8.8 Hz, 1H), 4.35 (ddd, J = 9.2, 8.2, 2.6 Hz, 1H), 4.31 (td,
J = 9.6, 6.2 Hz, 1H), 3.59 (s, 1H), 3.22 (dd, J = 8.8, 6.9 Hz, 1H), 2.44–2.41 (m, 1H), 2.09 (s,
3H). 13C NMR (176 MHz, Chloroform-d) δ 188.89, 175.05, 158.45, 154.07, 136.35, 129.56,
129.09, 128.34, 126.53, 121.97, 119.20, 117.70, 116.77, 83.15, 69.02, 65.08, 62.65, 52.47, 35.26,
29.45, 20.33. HRMS calculated for [C21H20NO5

+]: 366.1341, found: 366.1333. The er was
determined by UPC2 using a chiral Chiralpack IB column gradient from 100% CO2 up to 40%;
i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 5.18 min, τminor = 4.87 min,
(86:14 er). (1R,3S,3aS,9aS)-1-(2-Hydroxy-5-methylphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-
spiro[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1t′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as yellow oil in 29% yield, 1.5:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 7.90 (dd,
J = 7.8, 1.8 Hz, 1H), 7.57 (ddd, J = 8.7, 7.2, 1.8 Hz, 1H), 7.14–7.11 (m, 1H), 7.04 (d, J = 7.8 Hz,
1H), 6.99 (dd, J = 8.3, 2.2 Hz, 1H), 6.81 (dd, J = 8.2, 2.2 Hz, 1H), 6.61 (d, J = 2.2 Hz, 1H),
5.05 (d, J = 4.8 Hz, 1H), 4.82 (dd, J = 10.6, 7.1 Hz, 1H), 4.50 (td, J = 8.8, 3.2 Hz, 1H), 4.42 (td,
J = 9.3, 6.5 Hz, 1H), 3.63 (dd, J = 10.6, 4.8 Hz, 1H), 3.17 (ddd, J = 13.2, 6.5, 3.2 Hz, 1H), 2.37
(dt, J = 13.2, 8.8 Hz, 1H), 2.18 (s, 3H). 13C NMR (176 MHz, Chloroform-d) δ 188.49, 177.36,
158.55, 154.45, 136.85, 130.53, 129.63, 128.59, 127.51, 122.90, 120.97, 117.92, 117.74, 81.79,
68.98, 65.59, 63.56, 53.34, 30.61, 29.85, 20.59. HRMS calculated for [C21H20NO5

+]: 366.1341,
found: 366.1338.

(1R,3R,3aS,9aS)-1-(5-Bromo-2-hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1u

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as white powder in 59% yield, 1.5:1 dr. A few drops of DMSO-d6 were added to
increase the solubility. 1H NMR (700 MHz, Chloroform-d) δ 9.73 (s, 1H), 7.44 (dd, J = 7.9,
1.7 Hz, 1H), 7.15 (ddd, J = 8.4, 7.1, 1.7 Hz, 1H), 7.04 (dd, J = 2.5, 0.6 Hz, 1H), 6.84 (dd,
J = 8.6, 2.5 Hz, 1H), 6.68 (ddd, J = 7.9, 7.1, 1.0 Hz, 1H), 6.59 (dd, J = 8.4, 1.0 Hz, 1H), 6.35 (d,
J = 8.6 Hz, 1H), 4.85 (d, J = 7.3 Hz, 1H), 4.79 (d, J = 8.4 Hz, 1H), 4.14–4.05 (m, 2H), 3.52 (s,
1H), 2.93 (dd, J = 8.3, 7.5 Hz, 1H), 2.27 (ddd, J = 13.0, 6.0, 3.0 Hz, 1H), 2.23–2.15 (m, 2H).
13C NMR (176 MHz, Chloroform-d) δ 188.83, 174.83, 158.09, 154.65, 135.70, 130.67, 130.29,
127.06, 125.78, 121.14, 118.60, 117.72, 117.09, 110.28, 82.46, 68.52, 64.62, 59.65, 51.82, 34.32.
HRMS calculated for [C20H17BrNO5

+]: 430.0290, found: 430.0285.
(1R,3S,3aS,9aS)-1-(5-Bromo-2-hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro

[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1u′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone 100:1)
as white powder in 39% yield, 1.5:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 9.53 (s, 1H), 7.91
(dt, J = 7.8, 1.9 Hz, 1H), 7.58 (ddd, J = 8.7, 7.2, 1.9 Hz, 1H), 7.27 (t, J = 2.8 Hz, 1H), 7.15–7.12 (m,
1H), 7.05 (dd, J = 8.3, 0.9 Hz, 1H), 6.92–6.89 (m, 1H), 6.78 (dd, J = 8.7, 5.9 Hz, 1H), 5.02 (dd,
J = 4.6, 2.5 Hz, 1H), 4.80 (dd, J = 10.7, 2.5 Hz, 1H), 4.51 (td, J = 8.9, 2.9 Hz, 1H), 4.42 (td, J = 9.4,
6.4 Hz, 1H), 3.60 (ddd, J = 10.7, 4.6, 1.9 Hz, 1H), 3.20 (ddd, J = 13.3, 6.4, 2.9 Hz, 1H), 2.69 (s,
1H), 2.39 (dt, J = 13.3, 8.9 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ 188.01, 177.36, 158.45,
156.08, 137.04, 132.69, 131.79, 127.62, 123.32, 123.14, 119.84, 117.95, 111.21, 81.47, 69.11, 65.62,
63.03, 53.26, 30.39, 29.85. HRMS calculated for [C20H17BrNO5

+]: 430.0290, found: 430.0283.
The er was determined by UPC2 using a chiral Chiralpack IC column gradient from 100%
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CO2 up to 40%; MeCN, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 5.67 min,
τminor = 4.98 min, (70.5:29.5 er).

(1R,3R,3aS,9aS)-1-(5-Chloro-2-hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1w

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as white powder in 63% yield, 2:1 dr. A few drops of DMSO-d6 were added to
increase the solubility. 1H NMR (700 MHz, Chloroform-d) δ 10.17 (s, 1H), 7.89 (dd, J = 7.9,
1.8 Hz, 1H), 7.53 (ddd, J = 8.4, 7.2, 1.8 Hz, 1H), 7.14 (dd, J = 8.6, 2.6 Hz, 1H), 7.09 (ddd, J = 7.9,
7.2, 1.0 Hz, 1H), 7.02–6.96 (m, 2H), 6.80 (d, J = 8.6 Hz, 1H), 5.13 (d, J = 8.8 Hz, 1H), 5.10 (d,
J = 6.6 Hz, 1H), 4.52–4.49 (m, 1H), 4.47–4.43 (m, 1H), 3.30 (dd, J = 8.8, 6.6 Hz, 1H), 3.28 (s,
1H), 2.60–2.54 (m, 2H). 13C NMR (176 MHz, Chloroform-d) δ 188.13, 174.17, 157.49, 153.34,
134.85, 126.73, 126.69, 126.65, 124.95, 121.84, 120.26, 117.97, 116.38, 116.12, 82.04, 67.92,
63.87, 58.14, 51.43, 33.79. HRMS calculated for [C20H17ClNO5

+]: 387.0688, found: 387.0694.
The er was determined by UPC2 using a chiral Chiralpack IC column gradient from 100%
CO2 up to 40%; MeCN, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 4.78 min,
τminor = 4.50 min, (99:1 er).

(1R,3S,3aS,9aS)-1-(5-Chloro-2-hydroxyphenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1w′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as white powder in 32% yield, 2:1 dr. A few drops of DMSO-d6 were added to
increase the solubility. 1H NMR (700 MHz, Chloroform-d) δ 9.44 (s, 1H), 7.92 (dd, J = 7.8,
1.7 Hz, 1H), 7.58 (ddd, J = 8.7, 7.2, 1.7 Hz, 1H), 7.16–7.13 (m, 2H), 7.05 (dd, J = 8.4, 0.9 Hz,
1H), 6.85 (dd, J = 8.7, 1.9 Hz, 1H), 6.79 (d, J = 2.5 Hz, 1H), 5.04 (d, J = 4.6 Hz, 1H), 4.82
(d, J = 10.7 Hz, 1H), 4.54–4.50 (m, 1H), 4.43 (td, J = 9.4, 6.4 Hz, 1H), 3.63 (dd, J = 10.7,
4.6 Hz, 1H), 3.21 (ddd, J = 13.3, 6.4, 2.9 Hz, 1H), 2.65 (s, 1H), 2.39 (dt, J = 13.3, 8.9 Hz,
1H). 13C NMR (176 MHz, Chloroform-d) δ 188.71, 177.29, 158.59, 154.99, 136.49, 128.77,
128.70, 126.85, 124.70, 123.52, 122.23, 119.43, 118.01, 117.72, 81.98, 68.80, 65.69, 61.67, 53.35,
30.00, 29.46. HRMS calculated for [C20H17ClNO5

+]: 387.0688, found: 387.0686. The er
was determined by UPC2 using a chiral Chiralpack IC column gradient from 100% CO2
up to 40%; MeCN, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 5.39 min,
τminor = 4.81 min, (75:25 er).

(1R,3R,3aS,9aS)-1-(2-Hydroxy-5-nitrophenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro
[chromeno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1x

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as pale yellow oil in 65% yield, 2:1 dr. A few drops of DMSO-d6 were added to
increase the solubility. 1H NMR (700 MHz, Chloroform-d) δ 11.30 (s, 1H), 8.13 (dd, J = 9.0,
2.8 Hz, 1H), 8.06 (dd, J = 2.8, 0.7 Hz, 1H), 7.93 (ddd, J = 8.0, 1.8, 0.5 Hz, 1H), 7.58 (ddd, J = 8.4,
7.2, 1.8 Hz, 1H), 7.13 (ddd, J = 8.0, 7.2, 1.0 Hz, 1H), 7.01 (ddd, J = 8.4, 1.0, 0.5 Hz, 1H), 6.96
(d, J = 9.0 Hz, 1H), 5.29 (d, J = 9.2 Hz, 1H), 5.12 (dd, J = 6.8, 0.6 Hz, 1H), 4.58–4.52 (m, 1H),
4.52–4.46 (m, 1H), 3.29 (dd, J = 8.5, 6.8 Hz, 1H), 3.28 (s, 1H), 2.68–2.59 (m, 2H). 13C NMR
(176 MHz, Chloroform-d) δ 188.70, 174.77, 161.62, 158.14, 139.50, 135.84, 126.04, 125.79,
124.20, 123.91, 121.24, 118.54, 117.20, 115.81, 82.73, 77.16, 68.63, 64.60, 58.64, 52.30, 34.72.
HRMS calculated for [C20H17N2O7

+]: 397.0991, found: 397.0994. The er was determined
by UPC2 using a chiral Chiralpack IB column gradient from 100% CO2 up to 40%; i-
PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 5.20 min, τminor = 5.38 min,
(89:11 er).

(1R,3S,3aS,9aS)-1-(2-Hydroxy-5-nitrophenyl)-3a,4′,5′,9a-tetrahydro-1H,2′H-spiro[chro
meno[2,3-c]pyrrole-3,3′-furan]-2′,9(2H)-dione 1x′

Pure product was isolated by flash chromatography on silica gel (CH2Cl2/acetone
100:1) as pale yellow oil in 33% yield, 2:1 dr. 1H NMR (700 MHz, Chloroform-d) δ 10.70 (s,
1H), 8.09 (ddd, J = 9.0, 2.7, 1.7 Hz, 1H), 7.91 (dd, J = 7.8, 1.7 Hz, 1H), 7.69 (dd, J = 2.7, 0.6 Hz,
1H), 7.61 (ddd, J = 8.4, 7.2, 1.7 Hz, 1H), 7.18–7.15 (m, 1H), 7.07 (dd, J = 8.4, 1.0 Hz, 1H), 6.94
(dd, J = 9.0, 1.5 Hz, 1H), 5.02 (d, J = 4.1 Hz, 1H), 4.94 (d, J = 11.1 Hz, 1H), 4.56 (ddd, J = 9.4,
8.5, 2.5 Hz, 1H), 4.46 (td, J = 9.7, 6.3 Hz, 1H), 3.59 (ddd, J = 11.1, 4.1, 0.5 Hz, 1H), 3.31–3.27
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(m, 1H), 2.46 (ddd, J = 13.3, 9.7, 8.5 Hz, 1H). 13C NMR (176 MHz, Chloroform-d) δ 187.58,
177.39, 163.16, 158.34, 140.30, 137.29, 127.73, 126.08, 125.80, 123.47, 121.32, 119.79, 118.52,
118.04, 81.11, 69.46, 65.71, 63.20, 53.46, 30.12. HRMS calculated for [C20H17N2O7

+]: 397.0991,
found: 397.0993. The er was determined by UPC2 using a chiral Chiralpack IB column
gradient from 100% CO2 up to 40%; MeOH, 2.5 mL/min; detection wavelength = 245 nm;
τmajor = 5.20 min, τminor = 5.38 min, (74:26 er).

3.2.3. General Procedure for the synthesis of the
Tetrahydro-spiro[benzo[e]chromeno[3′,2′:3,4]pyrrolo[1,2-c][1,3]oxazine 9a

An ordinary screw-cap vial was charged with a magnetic stirring bar, the correspond-
ing pyrrolidine 1k (0.1 mmol, 1 equiv), 37% aq solution of formaldehyde (0.1 mmol, 1 equiv),
trifluoroacetic acid (0.2 equiv), and CHCl3 (0.5 mL). The resulting mixture was stirred at
60 ◦C for 3 h. Subsequently, sat. aq NaHCO3 (1 mL) was added, phases were separated,
and the aqueous layer was extracted with CH2Cl2 (2 × 2 mL). The combined organic
layers were dried (anhyd. MgSO4). After filtration, volatiles were removed under reduced
pressure, and the residue was directly subjected to FC on silica gel (eluent: hexane/EtOAc)
to afford the desired product 9a.

(8aS,14aS,14bR)-Diethyl 2-(tert-butyl)-14-oxo-8a,14,14a,14b-tetrahydro-benzo[e]chromeno
pyrrolo[1,2-c][1,3]oxazine-8,8(6H)-dicarboxylate 9a

Pure product was isolated by flash chromatography on silica gel (hexane/ethyl acetate
15:1) as pale yellow oil in 95% yield. 1H NMR (700 MHz, Chloroform-d) δ 7.97 (ddd, J = 7.9,
1.8, 0.5 Hz, 1H), 7.60 (dd, J = 2.4, 0.9 Hz, 1H), 7.50 (ddd, J = 8.2, 7.2, 1.8 Hz, 1H), 7.13
(ddd, J = 8.5, 2.4, 0.7 Hz, 1H), 7.08 (ddd, J = 8.2, 7.2, 1.0 Hz, 1H), 6.91 (ddd, J = 8.5, 1.1,
0.5 Hz, 1H), 6.66 (d, J = 8.5 Hz, 1H), 5.38 (dt, J = 5.1, 0.6 Hz, 1H), 5.31 (dd, J = 11.4, 0.5
Hz, 1H), 5.14 (d, J = 7.4 Hz, 1H), 5.06 (dd, J = 11.4, 0.7 Hz, 1H), 4.49 (dq, J = 10.7, 7.1 Hz,
1H), 4.37 (dq, J = 10.7, 7.1 Hz, 1H), 4.15 (qd, J = 7.1, 2.2 Hz, 2H), 3.75 (dd, J = 7.4, 5.1 Hz,
1H). 13C NMR (176 MHz, Chloroform-d) δ 190.34, 168.58, 167.02, 160.20, 151.77, 144.93,
136.71, 127.41, 124.94, 124.61, 124.39, 122.51, 119.82, 118.37, 116.45, 83.94, 76.47, 62.94, 62.19,
59.95, 55.24, 34.56, 31.67 (3xC), 14.35, 13.59. HRMS calculated for [C28H32NO7

+]: 494.2134,
found: 494.2136. The er was determined by UPC2 using a chiral Chiralpack IA column
gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm;
τmajor = 2.93 min, τminor = 3.30 min, (75:25 er).

4. Conclusions

In conclusion, a new decarboxylative (3+2)-cycloaddition of azomethine ylides 3 or
4 with chromone-3-carboxylic acids 2 was developed. The scope studies confirmed the
high efficiency of the transformation with regard to both chromone-3-carboxylic acids and
diethyl iminomalonates 3 or iminodihydrofuran-2-one 4, providing access to a wide variety
of interesting hybrid molecules bearing two important heterocyclic scaffolds: chromanone–
pyrolidine ring systems.
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