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Neuroscience is transforming. Brain data collected in multitudes of individuals and institutions
around the world are being openly shared, moved from office desks and personal storage devices
to institutionally supported cloud systems and public repositories—effectively bringing

Neuroscience into the era of Big Data. This is an important evolution in Neuroscience, since the value of
open data sharing has not always been recognized1–5. Indeed, the value of neuroscience data sharing was
highlighted in a recent Special Focus issue in Nature Neuroscience6. As a leading example of this trend,
this month Scientific Data is launching a collection of articles presenting diverse brain imaging data sets,
which collectively provide valuable resources for validation and reproduction of neuroscience findings
based on human magnetic resonance imaging (hMRI).

hMRI stands out from the neuroscientific crowd because standards have begun to be established for
hardware, file formats (for example, see DICOM, http://dicom.nema.org/ and NIfTI, http://nifti.nimh.
nih.gov/) and acquisition protocols7–9. Many hopes are also being put on large-scale processing of big
neuroimaging data and the potential impact it will have on understanding the human brain. But, while
there is clear value in data standardization, there is also value in collecting and sharing heterogeneous
datasets generated from a variety of hardware and acquisition protocols. This is precisely the strength of
the datasets published within the Scientific Data MRI Reproducibility Collection.

The datasets in the Collection provide unique hMRI measurements collected using different modalities,
including both functional and structural magnetic resonance imaging as well as associated physiological
and behavioral data. Central to this Collection are data aggregated and released by the Consortium for
Reliability and Reproducibility (CoRR), which has grown out of the established 1000 Functional
Connectomes Project10. The CoRR measurements were repeated at least twice providing the foundations
for test-retest reliability estimates that can be used in combination with modern statistical methods to
validate and reproduce scientific results. The manuscript by Zuo et al.11 provides an overview of the
CoRR project, and describes data collected by 36 research groups in 18 institutions and three continents
(America, Asia and Europe). Also in association with CoRR, Gorgolewski et al.12 report functional
imaging data acquired with spatial resolutions higher than current standards (1.5 and 0.75 mm3). Data
were collected repeatedly in the same individuals and accompanied by physiological measurements (such
as subjects’ respiration and heartbeat) and cognitive and affective measures. Overall, the large sample size,
rich diversity and the repeated measurements across the CoRR datasets provide the multiplicity and scale
necessary for building, evaluating and testing models of human brain functional connectivity. Also
included in the launch of this Collection, Maclaren et al.13 collected human brain anatomy data using the
standard protocol established by the Alzheimers’ Disease Neuroimaging Initiative (ADNI)14. Importantly,
data acquisition was repeated multiple times in each individual brain providing first hand resources for
test-retest reliability estimates on the protocol. Additional articles describing valuable brain imaging
datasets will be added to this Collection in a rolling manner.

Scientific enterprises are limited by the nature of the available data; the signal and noise in the data limit
understanding. For this reason, scientists strive to measure new signals and collect better data to provide
new scientific insights or validate previous findings. Neuroscience has traditionally stood on the relatively
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strong shoulders of postmortem tissue measurement. Such methods are still often accepted as the gold
standard for anatomical measurements of the brain and form the basis of numerous theoretical accounts
of brain function. But modern measurement technologies are bringing strong value to digital,
in vivo neuroscience, because it can chart the relation between human brain anatomy, brain function, and
behavior within the same individual. These technologies allow repeated measurements in the same
individual as well as in large human populations. Digitally stored data can be easily shared and accessed.
Measurements can be replicated in new populations and results can be challenged or replicated by new
datasets. Large, high-resolution, heterogeneous data resources like those presented in Scientific Data MRI
Reproducibility Collection, will be particularly valuable to investigators working in the modern era of
digital neuroscience.
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Figure 1. Linear Fascicle Evaluation (LiFE) an example of digital validation for human connectomes.

Diffusion-weighted magnetic resonance imaging (dMRI) and fiber tractography allow in vivo mapping of

human white-matter fascicles and connections. Tractography takes diffusion measurements as input and

produces a large collection of white-matter fascicles as output, the connectome. The LiFE method evaluates the

evidence in favor of different connectomes. LiFE takes full connectomes as inputs and predicts diffusion

measurements as output. The difference between the measured and predicted diffusion is used to compute the

connectome prediction error and the evidence in favor of a connectome. The prediction error is also used to

evaluate the evidence supporting properties of the connectome such as the evidence for a tract or connection.

(a) Building a forward model of diffusion data from a human connectome. Test data: a map of measured

diffusion MRI modulation is presented in a typical coronal brain slice and for a single diffusion direction, left

panel. Model: A whole brain connectome is estimated using fiber tractography and the Test data, middle panel.

Prediction: LiFE uses the individual fascicles in the connectome to generate the predicted diffusion modulation

in the same brain. Fascicles not contributing successfully to the Prediction are eliminated, right panel.

(b) Evaluating the connectome model using the retest data and cross validation. Retest data: A map of a second

measurement of diffusion MRI modulation made in the same individual brain and slice. The noise in the data

introduces differences in the measured diffusion modulation, left panel. Visually compare Test and Retest data

to appreciate the difference. Cross validation error: The Prediction and the Retest data are compared to

evaluate the accuracy of the model, right panel. (c) Evaluating the evidence for the vertical occipital fasciculus.

The neighborhood of fascicles belonging to the posterior portion of the connectome is overlaid on brain slices,

left top panel, blue. The portion of the vertical occipital fasciculus (VOF) is identified in red, top middle panel.

The VOF is shown with the rest of connectome fascicles passing through the same white matter region, right

top panel, red and blue. To test the evidence in favor of the VOF, the fascicles in red are removed from the

connectome model and the cross-validated prediction error is compared for the full connectome model (red

and blue fascicles) and for the model without the VOF (blue fascicles alone). The cross-validated prediction

error increases when the VOF is removed, bottom panel red, this indicates that the data offer evidence for the

VOF. Portions of this figure have been adapted from Fig. 2 in ref. 15.
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Modern digital neuroscience necessitates new methods for results evaluation and validation. These
methods can use the signal and noise in the data to distinguish true neurobiological features from
artifactual ones. In recent work15, we have developed a method called LiFE (Linear Fascicle Evaluation;
https://francopestilli.github.io/life/) to evaluate the accuracy of brain connectomes16 built using diffusion
imaging (dMRI) and computational tractography. The method, briefly summarized in Fig. 1, uses a
forward model approach and repeated measurements similar to the ones in the Scientific Data MRI
Reproducibility Collection. First, a model of brain connections is built from one dataset using available
tractography algorithms. The model is then evaluated by measuring how well it predicts a second,
independent dataset (cross-validation). The idea here is that a neuroscience model should predict the
signal but not the noise in the data. So, when built on test data, the model can be validated by measuring
how well it predicts retest data—data that contain presumably similar signal, but different noise. If the
model predicts both test and retest datasets well, it can be interpreted as accurate, as it captures the
relevant signal without bias from the noise. However, a bad model built on the test dataset may capture
both the signal and noise in the test data, and will inaccurately predict the retest data, which contains
different noise. This process is limited only by the ‘signal’ information content in the data. Other
approaches to validation compare estimates from in-vivo neuroimaging data to independent postmortem
or synthetic data (see ref. 15 for a discussion) but these cannot be applied routinely to living brains, nor
correlated to human health and behavior. We have used LiFE and digital-validation to identify the
anatomy of a major human brain fascicle missed by postmortem measurements (refs 15,17, Fig. 1c) and
to improve our understanding of the network of human white matter fascicles supporting face and place
processing18, providing an example of how data such as that published in the Scientific Data MRI
Reproducibility Collection, in combination with modern statistics, can benefit the neuroscience
community.

Whereas the value of open data sharing is clear, advances are still needed to support wider sharing—one
being better ways to publish data. Investigators collecting data, those interested in using the data and their
funding bodies, all benefit from data publishing. Among the many benefits of data publication are credits
for authors, the review process and data availability19. Published data become searchable using standard
mechanisms of scientific referencing (for example, PubMed and Google Scholar). Published data can be
naturally cross-linked with research articles, potentially increasing both neuroscientific understanding
and reproduction of results.

The US National Institutes of Health has recently issued a funding initiative focused on cooperative
neuroimaging efforts between investigators in Neuroscience and Clinical Sciences (https://grants.nih.gov/
grants/guide/pa-files/PAR-14-281.html), asking that data be collected using the same protocols developed
for the Human Connectome Project (HCP) (ref. 8). The NIH program is an excellent opportunity for
enforcing new standards for quality of data collection initiated by the HCP, with benefits for both clinical
and basic researchers. These data will be made public and add to the growing body of efforts collecting
neuroscientific data. Along the same lines the UK Medical Research Council is promoting as part of its
2014–2019 strategic plan both the collection of large genetic and neuroimaging phenotypic datasets to
understand predisposition to disease, as well as the creation of a common platform for dementia research
within the UK (http://www.mrc.ac.uk/news-events/publications/strategic-plan-2014-19/).

Another project of particular note, the BRAIN initiative (http://www.braininitiative.nih.gov/2025/), is
promoting the collection of yottabytes (1024) of data20. Analyzing these data effectively will require large
computers and fast computing methods. Because moving such large datasets will be prohibitive, software
and computations will have to move to computers physically close to the stored data. This is the current
model in Big Data analytics where distributed data are analyzed by software deployment without moving
data (see for example, Spark and Hadoop). Dataset size will likely require changes to the common
centralized database architectures, promoting distributed or ‘federated’ models. Federated databases
stored at multiple institutions, and facilitated by modern computing tools, could provide rich datasets
with heterogeneous multimodal measurements that investigators will access publicly or as part of
research consortia by deploying computational software. Furthermore, increased standards for
reproducibility of neuroscience results will require data and the computations applied to them to be
tracked and linked together permanently. Computing environments that can implement this properly are
already emergin21, (see for example, IPython, http://ipython.org/ and Docker, https://www.docker.com/),
and may become particularly useful when combined with concepts from highly parallel computing.
A federated database for neuroscience (NIMS, Neurobiological Image Management System, https://
scitran.stanford.edu/nims/) is currently being developed as part of the Stanford Project on Scientific
Transparency using precisely these technologies.

Finally, the next challenge for Big Data Neuroscience will be capturing the human behavior associated
with brain measurements. Standards for sharing brain data are already being developed, but standards for
behavioral data sharing will be more challenging because consensus about file formats, software for data
collection and tasks remain elusive. This is a serious challenge for the whole enterprise, as it has been
noted that, ‘nothing in neuroscience makes sense except in the light of behavior’22, reported in ref. 23.
The future of neuroscience will comprise coordinated efforts for collecting multiple, standardized and
heterogeneous datasets, as well as developing analytic tools for understanding them. This task will require
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dedicated funding schemes for training and sustaining new generations of investigators with skillsets to
lead these efforts23.
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