ELSEVIER

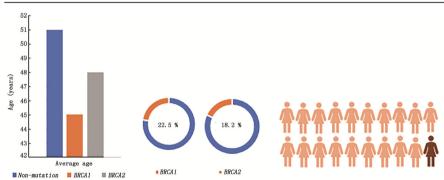
Contents lists available at ScienceDirect

Cancer Pathogenesis and Therapy

journal homepage: www.journals.elsevier.com/cancer-pathogenesis-and-therapy

Research article

Breast cancer risk associated with *BRCA1* and *BRCA2* pathogenic variants in the Eastern Chinese population


Sanjian Yu a,b,1 , Xia Qiu c,1 , Zezhou Wang b,d , Jialong Xiao b,d , Hui Ji e , Hailin Shan f , Qing Shao f , Heng Xia g , Feng Cao h , Jun Li i , Cuixia Fu b,j , Liqin Chen b,j , Xiaofang Lu b,j , Tingting Su b,j , Qianqian Yu b,j , Shengqun Hou b,j , Honglian Wang k , Ying Zheng b,d , Zhimin Shao a,b , Yun Liu l , Zhen Hu a,b,*

- ^a Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- ^b Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- ^c Department of Breast Surgery, Zhoushan Hospital, Zhoushan, Zhejiang 31600, China
- ^d Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- e Department of General Surgery, Shanghai Tenth People's Hospital, Chongming Branch, Shanghai 202157, China
- ^f Department of Thyroid and Breast Surgery, Jiangyin People's Hospital, Southeast University, Jiangyin, Jiangsu 214499, China
- g Department of Thyroid and Breast Surgery, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
- h Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
- i Department of General Surgery, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, China
- ^j Department of Nursing, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- ^k AITA Biomedical Research Institute, Shanghai 201101, China
- ¹ Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

HIGHLIGHTS

- The study investigated breast cancer gene 1/2 (BRCA1/2) mutation penetrance in the Eastern Chinese population.
- Of the 2216 breast cancer probands, 109 (4.90%) carried BRCA1/2 mutations.
- Penetrance of breast cancer was 22.50% and 18.20% in BRCA1 and BRCA2 carriers, respectively.
- The results suggest prophylactic mastectomy may not be necessary for *BRCA1/2* carriers.
- The findings provide new insights for breast cancer prevention in Chinese patients who are BRCA1/2 mutation carriers.

G R A P H I C A L A B S T R A C T

Breast cancer risk associated with *BRCA1* and *BRCA2* pathogenic variants in the Eastern Chinese population. Lower penetrance of breast cancer in Chinese individuals carrying these mutations was observed compared to that in Western populations. *BRCA*: Breast cancer gene

^{*} Corresponding author: Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Rd, Shanghai 200032, China. E-mail address: zhenhu@fudan.edu.cn (Z. Hu).

¹ Sanjian Yu and Xia Qiu contributed equally to this work.

ARTICLE INFO

Managing Editor: Peng Lyu

Keywords: BRCA1/2 gene mutations Breast cancer Chinese population Population-based studies

ABSTRACT

Background: Population-based penetrance studies of breast cancer gene 1/2 (BRCA1/2) pathogenic or likely pathogenic (P/LP) variants in the Eastern Chinese population are currently lacking; thus, we aimed to investigate the penetrance of breast cancer and other malignant tumors among BRCA1/2 P/LP variant carriers using a population-based breast cancer cohort from communities in Eastern China.

Methods: Between July 2019 and March 2021, we tested 2216 breast cancer probands from Chinese communities for BRCA1/2 mutations and collected detailed information on the age, survival status, and malignancy history of first-degree relatives. The kin-cohort method was used to calculate the penetrance of breast cancer and other malignant tumors.

Results: Of the 2216 breast cancer probands, 109 (4.90%) carried BRCA1/2 P/LP variants, 49 in the BRCA1 gene and 60 in the BRCA2 gene. The penetrance of female breast cancer by 85 years of age was 22.50% and 18.20% in BRCA1 and BRCA2 P/LP variant carriers, respectively. The penetrance of ovarian cancer by 85 years of age was 26.00% in BRCA1 P/LP variant carriers. The penetrance of other malignancies did not reach statistical significance owing to the small number of events.

Conclusions: Our findings showed that breast cancer penetrance among BRCA1 and BRCA2 P/LP variant carriers was 22.50% and 18.20%, respectively, which suggests that prophylactic mastectomy may not be necessary for such Chinese individuals.

Trial registration: ClinicalTrials.gov; https://clinicaltrials.gov/ct2/show/NCT04265937.

Introduction

Germline pathogenic or likely pathogenic (P/LP) variants of the tumor suppressor genes *BRCA1* and *BRCA2* have been recognized as genetic susceptibility factors for breast cancer. These genes play vital roles in DNA repair and maintenance of genomic stability, and the presence of P/LP variants in *BRCA1/2* significantly increases the lifetime risk of developing breast cancer. Therefore, an accurate estimation of breast cancer penetrance in individuals carrying *BRCA1/2* P/LP variants is essential for guiding preventive measures and clinical interventions.

Previous studies conducted in Western populations have shown that the cumulative risk of breast cancer by the age of 70 years in breast cancer gene 1/2 (BRCA1/2) P/LP variant carriers ranges from 40 to 65%.^{2–5} However, risk estimates can vary across studies owing to differences in study populations, sampling schemes, and statistical methods.⁷ The high cumulative lifetime risk of breast cancer in individuals carrying BRCA1/2 P/LP variants has prompted aggressive approaches to breast cancer prevention, including bilateral prophylactic mastectomy, highlighting the importance of accurate penetrance estimation.⁶

Despite a comparatively lower burden of breast cancer in China than in developed nations, there has been a notable increase in both the incidence and mortality rates of the disease over the past decade. ⁸ Large-scale studies focusing on BRCA1/2 P/LP variants have been conducted in the Chinese populations ^{9–12} but only two studies have investigated the penetrance of these variants. ^{13,14} Both studies used the kin-cohort statistical method and included participants from hereditary breast cancer family registries or consecutive patients with breast cancer in hospitals. The cumulative lifetime breast cancer risk among carriers of BRCA1/2 P/LP variants in the Chinese population ranged from 36.5 to 53.7%. ^{13,14}

Owing to the typically more severe condition of patients, hospital-based studies show biases that result in overestimated disease prevalence, severity, and treatment effects, leading to a higher observed penetrance than that in community-based studies. ¹⁵ Population-based penetrance studies of *BRCA1/2* P/LP variants in China are currently lacking. The Screening of Genetic Susceptibility Genes for Breast Cancer Patients and Establishment of High-Risk Populations in Chinese Communities, also known as the SIGHT study, aims to recruit population-based breast cancer survivors in Jiangsu, Zhejiang, and Shanghai in Eastern China to estimate the penetrance of breast cancer and other malignant tumors in carriers of *BRCA1/2* P/LP variants. ¹⁶ Hence, this study aimed to investigate the penetrance of breast cancer and other malignant tumors among *BRCA1/2* P/LP variant carriers using a population-based breast cancer cohort from communities in Eastern China.

Methods

Study cohort

The SIGHT study aimed to recruit female breast cancer survivors residing in the Jiangsu Province, Zhejiang Province, and Shanghai Municipality. To identify and inform eligible participants, the study team utilized various sources, including the local Center for Disease Control and Prevention (CDC), community health service centers, and patient anticancer clubs. All female breast cancer survivors in the communities were contacted via phone and letters. On the day of sampling, the study team collected clinical data, genetic information, family history, and blood samples. The information of first-degree relatives was recorded in detail, and a detailed pedigree was drawn for those with a family history of malignancy. In cases in which two or more participants belonged to the same family and shared a blood relationship, only the first participant was included [Figure 1]. The detailed study protocol is found in our published article. 16

A total of 3520 female breast cancer survivors were notified during the study period, of which 2251 patients agreed to participate and had their clinical data and blood samples collected. Four participants were excluded because of incomplete data collection, and an additional 31 patients were excluded because of their blood relationships with the enrolled proband. A total of 2216 probands were included in the final data analysis, resulting in an overall participation rate of 63.0% compared with the total number of breast cancer survivors in the communities, as reported by the local CDC. Table 1 provides detailed information on the comparison of the enrolled patients with breast cancer in this study with all patients in the communities.

BRCA1 and BRCA2 analysis

Sample preparation and next-generation sequencing were conducted at the Shanghai AITA Biomedical Research Institute following a previously published protocol. 16

Statistical analysis

Statistical analyses were conducted to estimate the penetrance of breast cancer and other common malignant tumors in individuals carrying *BRCA1/2* P/LP variants. The kin-cohort method, based on Mendelian inheritance patterns, regardless of genetic testing results, was used to estimate the cumulative risk of disease in carrier and non-carrier kin. Age at onset served as the time variable, and time was censored at the age

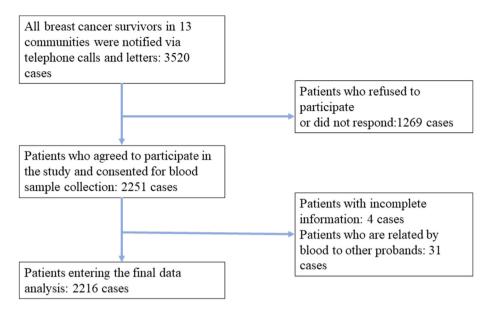


Figure 1. Flowchart illustrating the recruitment of patients with breast cancer.

of last contact or death for disease-free individuals. Participants with missing data were excluded from the analysis. Bootstrap methods were used to calculate 95% confidence intervals (CIs) through 1000 random samplings of the data, with the family as the unit of analysis. The cumulative risk ratio was used to compare the penetrance of *BRCA1/2* P/LP variant carriers and non-carriers of different ages. Age knots were set at 20 years, with intervals of 5 years, up to 85 years. A statistically significant 95% CI of the cumulative risk ratio was calculated, excluding a null value of one. The statistical analysis was performed using the R software and t and the previously established kin-cohort package (version 0.7-2015). 17,18

Results

This study was conducted in the Eastern Chinese population and included 2216 breast cancer probands, with 109 *BRCA1/2* P/LP variants identified (4.90%). Of the total, 49 and 60 probands had *BRCA1* and *BRCA2* variants, respectively [Table 2]. The mean age at onset for the probands without *BRCA1/2* P/LP variants was 52 years. For probands with *BRCA1* mutations, the mean age at onset was 45 years, whereas probands with *BRCA2* mutations exhibited a mean age at onset of 48 years [Figure 2]. The study also included 13,957 first-degree relatives, including 7138 males and 6819 females. Of these, 280 first-degree relatives were identified as *BRCA1* P/LP variant carriers, including 146 males and 134 females, while 354 first-degree relatives were identified as *BRCA2* P/LP variant carriers, including 189 males and 165 females.

Among first-degree relatives, 160 female breast cancer cases were observed. Specifically, there were nine cases in *BRCA1* families, 11 cases

in *BRCA2* families, and 140 cases in non-carrier families. Additionally, there were 24 cases of ovarian cancer in first-degree relatives, with seven cases in *BRCA1* families, one case in *BRCA2* families, and 16 cases in non-carrier families [Table 3].

Using the kin-cohort method, we estimated that the penetrance of female breast cancer by the age of 85 years was 22.50% (cumulative risk ratio: 4.02, 95% CI: 1.56–7.56) for *BRCA1* P/LP variant carriers and 18.20% (cumulative risk ratio: 3.21, 95% CI: 1.35–5.72) for *BRCA2* P/LP variant carriers. For *BRCA1* P/LP variant carriers, the penetrance of ovarian cancer by the age of 85 years was 26.00% (cumulative risk ratio: 44.65, 95% CI: 9.98–202.49), but the penetrance of ovarian cancer in *BRCA2* P/LP variant carriers did not reach statistical significance because of the small number of events. For noncarriers, the penetrance of breast and ovarian cancer was 5.70% and 0.50%, respectively. These rates were similar to the cumulative incidence of breast and ovarian cancers among Shanghai residents aged 85 years in 2016 (breast cancer, 4.60%; ovarian cancer, 0.70%) [Table 3]. 19

Owing to the limited number of events, statistical significance could not be determined for the penetrance of the other nine common malignancies in *BRCA1/2* P/LP variant carriers. However, the penetrance rates of these nine common malignancies in non-carriers were relatively close to the cumulative incidence in Shanghai residents aged 85 years in 2016 [Table 3]. ¹⁹

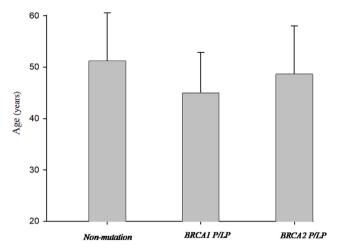
Table 4 displays the changes in breast cancer penetrance among *BRCA1/2* P/LP variant carriers by age. For *BRCA1* P/LP variant carriers, breast cancer penetrance increased from 1.90% at 35 years to 22.50% at 85 years, while for *BRCA2* P/LP variant carriers, it increased from 1.60% at 35 years to 18.20% at 85 years. Compared to non-carriers, the most

Table 1
The comparison between the data of breast cancer survivors recruited from this study and the data of all breast cancer survivors in the communities provided by local CDC.

Patient's area	Breast cancer	survivors in this stu	dy ^a	Breast cancer survivors registered by local CDC ^b			Participation rate in this study, %
(municipality/province)	No. of case	Proportion of patients by age of on set, %		No. of case	Proportion of patients by age of on set, %		
		<50 years	≥50 years		<50 years	≥50 years	
Shanghai	689	33.2	66.8	1085	38.8	61.2	63.5
Jiangsu	470	52.6	47.4	846	37.1	62.9	55.6
Zhejiang	1057	47.9	52.1	1589	36.2	63.8	66.5
Total	2216	44.2	55.8	3520	37.1	62.9	63.0

^a The time of recruitment is from July 2019 to March 2021; ^b The time cut-off point for breast cancer survivors data provided by local CDC is June 2021. CDC: Center for Disease Control and Prevention.

Table 2The P/LP variants of *BRCA1/2* gene found in this study.


BRCA1			BRCA2		
Age of onset (years)	Mutation	Origin of patient	Age of onset (years)	Mutation	Origin of patient
41	BRCA1 c.894delT	Shanghai Municipality	39	BRCA2 c.37G>T	Jiangsu Province
51	BRCA1 c.894delT	Shanghai Municipality	54	BRCA2 c.37G>T	Jiangsu Province
66	BRCA1 c.869delT	Zhejiang Province	62	BRCA2 c.262–263delCT	Shanghai Municipali
36	BRCA1 c.981–982delAT	Zhejiang Province	39	BRCA2 c.433dupG	Zhejiang Province
27	BRCA1 c.1132delA	Zhejiang Province	51	BRCA2 c.439C>T	Jiangsu Province
3	BRCA1 c.1132delA	Zhejiang Province	68	BRCA2 c.470–474delAGTCA	Jiangsu Province
13	BRCA1 c.1132delA	Zhejiang Province	56	BRCA2 c.470–474delAGTCA	Jiangsu Province
7	BRCA1 c.1252G>T	Jiangsu Province	46	BRCA2 c.470–474delAGTCA	Jiangsu Province
9	BRCA1 c.1252G>T	Jiangsu Province	42	BRCA2 c.771–775delTCAAA	Jiangsu Province
50	BRCA1 c.1252G>T	Jiangsu Province	42	BRCA2 c.1055dupA	Zhejiang Province
7	BRCA1 c.1252G>T	Jiangsu Province	42	BRCA2 c.1465–1471delTCTGGAA	Zhejiang Province
1	BRCA1 c.1608delT	Jiangsu Province	51	BRCA2 c.2471T>G	Shanghai Municipal
1	BRCA1 c.1608delT	Jiangsu Province	51	BRCA2 c.2514dupA	Zhejiang Province
4	BRCA1 c.1953–1956delGAAA	Zhejiang Province	73	BRCA2 c.2657dupA	Shanghai Municipal
3	BRCA1 c.1961dupA	Jiangsu Province	50	BRCA2 c.2845delT	Shanghai Municipal
3	BRCA1 c.2090–2091delTC	Jiangsu Province	56	BRCA2 c.2845delT	Shanghai Municipal
3	BRCA1 c.2110–2111delAA	Zhejiang Province	42	BRCA2 c.2845delT	Shanghai Municipal
8	BRCA1 c.2110–2111delAA	Zhejiang Province	51	BRCA2 c.2845delT	Shanghai Municipa
2	BRCA1 c.2217dupA	Zhejiang Province	48	BRCA2 c.3109C>T	Jiangsu Province
8	BRCA1 c.2740G>T	Jiangsu Province	54	BRCA2 c.3109C>T	Jiangsu Province
9	BRCA1 c.2866-2870delTCTCA	Zhejiang Province	35	BRCA2 c.3109C>T	Jiangsu Province
6	BRCA1 c.3329delA	Zhejiang Province	62	BRCA2 c.3189-3192delGTCA	Zhejiang Province
8	BRCA1 c.3329dupA	Shanghai Municipality	34	BRCA2 c.3189-3192delGTCA	Zhejiang Province
4	BRCA1 c.3359–3363delTTAAT	Zhejiang Province	50	BRCA2 c.3256dupA	Shanghai Municipal
0	BRCA1 c.3607C>T	Zhejiang Province	53	BRCA2 c.3256dupA	Shanghai Municipal
5	BRCA1 c.3607C>T	Jiangsu Province	43	BRCA2 c.3365delG	Shanghai Municipa
8	BRCA1 c.3607C>T	Jiangsu Province	39	BRCA2 c.3365delG	Shanghai Municipal
4	BRCA1 c.3770-3771delAG	Zhejiang Province	49	BRCA2 c.3599-3600delGT	Jiangsu Province
0	BRCA1 c.3959delC	Zhejiang Province	46	BRCA2 c.3865-3868delAAAT	Zhejiang Province
64	BRCA1 c.4065-4068delTCAA	Zhejiang Province	33	BRCA2 c.5351dupA	Jiangsu Province
10	BRCA1 c.4228delG	Zhejiang Province	56	BRCA2 c.5576–5579delTTAA	Shanghai Municipal
15	BRCA1 c.4293delC	Jiangsu Province	55	BRCA2 c.5682C>G	Shanghai Municipal
4	BRCA1 c.4362-4386del25	Zhejiang Province	43	BRCA2 c.5682C>G	Zhejiang Province
9	BRCA1 c.4819G>T	Jiangsu Province	38	BRCA2 c.5682C>G	Zhejiang Province
6	BRCA1 c.5138-1G>T	Shanghai Municipality	664	BRCA2 c.5682C>G	Zhejiang Province
8	BRCA1 c.5154G>A	Jiangsu Province	52	BRCA2 c.5682C>G	Zhejiang Province
9	BRCA1 c.5154G>A	Jiangsu Province	53	BRCA2 c.6205-6206delTT	Shanghai Municipal
2	BRCA1 c.5154G>A	Jiangsu Province	45	BRCA2 c.6302dupA	Jiangsu Province
3	BRCA1 c.5215+2dupT	Shanghai Municipality	44	BRCA2 c.6405–6409delCTTAA	Jiangsu Province
4	BRCA1 c.5215+2dupT	Shanghai Municipality	37	BRCA2 c.6547delG	Jiangsu Province
1	BRCA1 c.5216-2delA	Shanghai Municipality	38	BRCA2 c.6547delG	Jiangsu Province
5	BRCA1 c.5470–5477delATTGGGCA	Jiangsu Province	59	BRCA2 c.6486–6489delACAA	Shanghai Municipal
9	BRCA1 c.5470–5477delATTGGGCA	Jiangsu Province	58	BRCA2 c.6486–6489delACAA	Shanghai Municipal
8	BRCA1 c.5533–5540delATTGGGCA	Shanghai Municipality	56	BRCA2 c.7090G>T	Shanghai Municipal
3	BRCA1 c.5533–5540delATTGGGCA	Shanghai Municipality	27	BRCA2 c.7142delC	Shanghai Municipal
5	BRCA1 c.5533–5540delATTGGGCA BRCA1 c.5533–5540delATTGGGCA	Zhejiang Province	59	BRCA2 c.7142detC BRCA2 c.7409dupT	Zhejiang Province
7	BRCA1 c.5533–5540delATTGGGCA BRCA1 c.5533–5540delATTGGGCA	Zhejiang Province	46	BRCA2 c.7409dupT	Zhejiang Province
3	BRCA1 c.5533–5540delATTGGGCA BRCA1 c.5533–5540delATTGGGCA	Shanghai Municipality	38	1	
5 7	BRCA1 c.5566C>T	Shanghai Municipality	49	BRCA2 c.7409dupT BRCA2 c.7409dupT	Zhejiang Province
/	BRCA1 0.3300C>1	Shanghai Municipanty		BRCA2 c.7409dttpT BRCA2 c.7409dttpT	Zhejiang Province
			47	1	Zhejiang Province
			40	BRCA2 c.7409dupT	Zhejiang Province
			36	BRCA2 c.7409dupT	Jiangsu Province
			57	BRCA2 c.7409dupT	Jiangsu Province
			55	BRCA2 c.7673-7674delAG	Shanghai Municipa
			60	BRCA2 c.8234dupT	Shanghai Municipa
			53	BRCA2 c.8377G>T	Zhejiang Province
			49	BRCA2 c.8377G>T	Zhejiang Province
			57	BRCA2 c.8584dupC	Shanghai Municipa
			50	BRCA2 c.8687–8690delGTGC	Shanghai Municipal
			43	BRCA2 c.10150C>T	Shanghai Municipal

 $\it BRCA$: Breast cancer gene; P/LP: Pathogenic or likely pathogenic.

rapid increase in breast cancer penetrance among *BRCA1* P/LP variant carriers occurred around the age of 35 years, with a cumulative risk ratio of 29.85, which then leveled off and reached a cumulative risk ratio of 4.02 at 85 years. For *BRCA2* P/LP variant carriers, the rapid increase in breast cancer penetrance started around 35 years and continued until 45 years, with a cumulative risk ratio of 32.90, before slowing down to a cumulative risk ratio of 3.21 at 85 years. The cumulative risk of breast cancer did not change significantly from 65 to 85 years of age for both *BRCA1* and *BRCA2* P/LP variant carriers.

Discussion

To the best of our knowledge, this study is the first population-based investigation of the penetrance of BRCA1/2 P/LP variants in a Chinese population comprising patients with breast cancer from community sources. The findings demonstrated that by the age of 85 years, the penetrance of breast cancer among Chinese individuals carrying BRCA1/2 P/LP variants was 22.50% and 18.20%, respectively. These rates are notably lower than those reported in Caucasian populations and previous studies

Figure 2. The average age of the probands. There was no statistically significant difference among the groups. *BRCA*: Breast cancer gene; P/LP: Pathogenic or likely pathogenic.

conducted in Chinese populations. The observed differences may be attributed to variations in the study samples and research methodologies.

Family history of the proband is crucial for calculating the penetrance of mutation carriers. However, it is important to note that this method assumes an equal risk of breast cancer among family members of carriers, regardless of whether they have been diagnosed with breast cancer during the study. ¹⁵ Therefore, sample selection is essential to ensure that the selected samples accurately represent the entire population.

Otherwise, there may be inaccuracies in the penetrance results owing to sampling errors.

Previous studies on the penetrance of BRCA1/2 P/LP variant carriers in the Chinese population primarily focused on hospital-based patients. Among these studies, two employed the kin-cohort method. 13,14 Zhang et al. mined a total of 1635 breast-ovarian cancer families registered in the Hong Kong Hereditary Breast Cancer Family Registry (China) and reported a breast cancer penetrance of 53.7% and 48.3% for BRCA1 and BRCA2 P/LP variant carriers, respectively, by the age of 70. However, the breast cancer penetrance of non-carriers in this study was as high as 16.1% by the age of 70 years. Considering that the lifetime risk of breast cancer in Hong Kong (China) women was 7.1% in 2019, ²⁰ the sample used in this study may not accurately represent the general population of Hong Kong, China, potentially leading to an overestimation of the penetrance of BRCA1 and BRCA2 P/LP variant carriers. Yao et al. 14 investigated 1821 patients with breast cancer from the Breast Center at Peking University Cancer Hospital and reported breast cancer penetrance of 37.9% and 36.5% for BRCA1 and BRCA2 P/LP variant carriers. respectively, by the age of 70 years. However, this study did not explicitly provide information on the penetrance in noncarriers, as calculated using the kin-cohort method. Government reports indicated a breast cancer risk of 3.6% among women aged 70 years in the general population of Beijing in 2013.²¹ Consequently, it is not feasible to directly compare the breast cancer incidence in the general population of Beijing with the penetrance among non-carriers in this study to determine the presence of any sampling bias that may have affected the accuracy of calculating the penetrance of P/LP variant carriers.

Our study was conducted in the economically developed areas of Eastern China, specifically in the Jiangsu Province, Zhejiang Province,

Table 3

Penetrance and cumulative risk ratio of cancer to age 85 years, by mutation status and cancer site in this study and cumulative incidence of cancer among Shanghai residents aged 85 years in 2016 by cancer site.

Cancer site	BRCA1			BRCA2			No mutation		Cumulative
	No. of relatives with cancer	Cumulative incidence, % (95% CI)	Cumulative risk ratio (95% CI)	No. of relatives with cancer	Cumulative incidence, % (95% CI)	Cumulative risk ratio (95% CI)	No. of relatives with cancer	Cumulative incidence, % (95% CI)	incidence in Shanghai 2016, % ¹⁶
Female Breast ^a	9	22.50 (9.50–37.40)	4.02 (1.56–7.56)	11	18.20 (8.20–29.00)	3.21 (1.35–5.72)	140	5.70 (4.40–6.90)	4.60
Ovary ^a	7	26.00 (5.60-35.90)	44.65 (9.98-202.49)	1	5.20 (0.001-12.30)	8.29 (0.0014-24.87)	16	0.50 (0.09-0.90)	0.70
Prostate ^b	1	9.50 (0-34.20)	3.72 (0-19.23)	2	9.70 (0-18.80)	3.84 (0-9.70)	21	2.60 (1.10-4.20)	4.40
Pancreas ^c	2	11.00 (0-22.80)	6.09 (0-14.96)	4	31.10 (0.002-56.60)	26.95 (0.0015-60.39)	43	1.80 (1.20-2.80)	1.80
Lung ^c	8	12.10 (3.80-22.60)	1.45 (0.47-2.82)	8	35.70 (5.20-74.30)	4.52 (0.64-10.58)	221	8.60 (7.10-9.80)	8.50
Liver, gallbladder, bile duct ^c	3	6.50 (0–18.22)	1.36 (0.00002–4.15)	6	15.80 (3.60–37.60)	3.44 (0.74–9.27)	162	4.80 (3.80–6.50)	3.10
Colorectum ^c	7	29.40 (2.40-82.70)	8.68 (0.55-29.96)	5	8.90 (1.70-21.10)	2.27 (0.39-6.17)	109	3.40 (2.50-4.70)	5.00
Stomach ^c	3	10.20 (0.002-25.5)	1.82 (0-5.10)	10	15.10 (4.30-29.90)	2.72 (0.72-6.24)	204	5.60 (4.60-6.70)	3.60
Esophagus ^c	3	1.60 (0-3.80)	1.02 (0-2.92)	3	6.40 (0-16.80)	4.49 (0-13.95)	64	1.60 (1.10-2.20)	0.90
Kidney, bladder ^c	2	5.70 (0-13.90)	4.61 (0-15.04)	2	2.90 (0-6.70)	2.26 (0.00006-6.51)	27	1.30 (0.60-2.00)	1.80
Leukemias, lymphomas ^c	5	10.60 (1.0–17.90)	8.60 (0.57–19.46)	0	0	-	36	1.20 (0.60–2.10)	1.40

^a Only female first-degree relatives were analyzed; ^b Only male first-degree relatives were analyzed; ^c All first-degree relatives were analyzed. *BRCA*: Breast cancer gene.

 Table 4

 Penetrance and cumulative risk ratio of breast cancer by age and mutation status.

Age (years)	BRCA1		BRCA2	Breast cancer risk of non-carriers, %	
	Breast cancer risk, % (95% CI)	Cumulative risk ratio	Breast cancer risk, % (95% CI)	Cumulative risk ratio	(95% CI)
By age 35	1.90 (0–4.00)	29.85	1.60 (0–3.90)	22.93	0.08 (0-0.20)
By age 45	1.90 (0-4.00)	4.11	11.50 (9.90-37.50)	32.90	0.60 (0.40-0.80)
By age 55	11.30 (2.10-22.70)	6.95	14.40 (5.20-21.40)	9.18	1.80 (1.30-2.30)
By age 65	22.50 (9.50-37.40)	6.95	18.20 (8.20-29.00)	5.48	3.40 (2.60-4.20)
By age 75	22.50 (9.50-37.40)	5.58	18.20 (8.20–29.00)	4.42	4.20 (3.30-5.10)
By age 85	22.50 (9.50-37.40)	4.02	18.20 (8.20-29.00)	3.21	5.70 (4.40-6.90)

BRCA: Breast cancer gene.

and Shanghai Municipality. These three areas are geographically adjacent, share the same nationality and culture, and exhibit consistent levels of economic development. To facilitate patient recruitment, breast cancer survivors from these regions were selected as the study population. The participation rate in our study was high, with 63.00% of eligible individuals participating in the study. The cumulative incidence of 11 different types of malignant tumors, including breast cancer, in noncarriers in our study was highly similar to that in Shanghai residents in 2016. This indicates that patients with breast cancer from specific geographic areas within the communities selected in our study accurately represent the general population.

In our study, the cumulative risk ratios of breast cancer at 85 years were 4.02 and 3.21 for BRCA1 and BRCA2, respectively. Similar results were reported in studies conducted by Yao et al. 14 in Beijing (odds ratios, 3.77 and 4.42 for BRCA1 and BRCA2 P/LP variants in breast cancer. respectively) and by Zhang et al. 13 in Hong Kong, China (breast cancer risk ratio, 3.31 for BRCA1/2 P/LP variants). These findings are consistent with the results of the present study. Hu et al. 22 reported slightly higher odds ratios for BRCA1 and BRCA2 in a large-scale case-control study conducted in a United States (US) population (7.62 and 5.23, respectively) compared to those in a Chinese population, but the relative risks were still similar. These results suggest that the relative risk of breast cancer associated with BRCA1/2 P/LP variants may remain constant in the population, which could explain why the penetrance of these variants is lower in the Chinese population than in the US population. In the US, the lifetime risk of breast cancer in the general population is approximately 10-12%, whereas for BRCA1/2 P/LP variant carriers, it is approximately 50%.²² In 2016, the cumulative risk of breast cancer among Shanghai residents aged 85 years was 4.6%. ¹⁹ Assuming a similar relative risk, the lifetime risk of breast cancer in BRCA1/2 P/LP variant carriers in our study was 22.50% and 18.20%, respectively. Several other studies have reported similar findings. Tryggvadottir et al.²³ observed an increase in the cumulative incidence of breast cancer before the age of 70 years in BRCA2 P/LP variant carriers in Iceland, from 18.6% in 1920 to 71.9% in 2002, compared to an increase from 2.6% to 10.7% in non-carriers and from 1.8% to 7.5% in the general population. The risk of disease increased four-fold during this period. However, it should be noted that breast cancer is likely influenced by complex interactions between genetic and environmental factors, and it is not yet conclusive that the relative risk of genetic factors remains constant. Further studies are required to confirm these findings.

We observed that the incidence of ovarian cancer among carriers of *BRCA1* P/LP variants was 26.00%, which was considerably lower than that the rates reported in Western populations. ²⁴ However, the number of ovarian cancer cases among the carriers of *BRCA2* P/LP variants was insufficient to draw statistically significant conclusions. Wu et al. ²⁵ reported the detection of *BRCA1/2* germline P/LP variants in 28.50% of Chinese patients with ovarian cancer, with the detection rate of *BRCA2* P/LP variants being only 7.60%, accounting for only 26.7% of all P/LP variants. In contrast, studies in Western patients with ovarian cancer have found that *BRCA2* P/LP variants account for approximately 40% of all P/LP variants. ^{26,27} This inconsistency may explain the lower number of ovarian cancer cases carrying *BRCA2* P/LP variants in our study. Increasing the sample size could help address this issue.

Recent studies have also shown that *BRCA1/2* P/LP variants are linked with an elevated risk of pancreatic and gastric cancers and *BRCA2* P/LP variants with prostate cancer. ²⁸ However, we did not observe any statistically significant patterns in our study, possibly due to the limited sample size. Further investigation is necessary to gather more data on these associations.

In our study, breast cancer penetrance among carriers of BRCA1 and BRCA2 P/LP variants was 22.50% and 18.20%, respectively. These rates are close to or even below the high-risk threshold of absolute breast cancer risk at the age of 80 years, as defined by the guidelines of the National Institute for Health and Care Excellence in the United Kingdom. ²⁹ However, it is important to note that breast cancer incidence in China is still on

the rise. As indicated by Tryggvadottir et al., 23 with an increasing risk of breast cancer in the general population, the risk of breast cancer among carriers of BRCA1/2 P/LP variants is expected to increase. Therefore, it is imperative to continually monitor data in the Chinese population and adjust breast cancer prevention strategies accordingly.

The study has some limitations. First, the patients selected for this study only represent Jiangsu, Zhejiang, and Shanghai in Eastern China but not other regions. The vast majority of residents in Eastern China are of Han nationality. As a multiethnic country, the diversity of genetic backgrounds in China is beyond the scope of this study. Second, family history information in this study was obtained through interviews with the probands and was not supported by medical records. Some studies have confirmed that the sensitivity of family history reports differs for various cancers^{30,31}; however, the accuracy of family histories of first-degree relatives is significantly higher than that of second-degree relatives.³⁰ This study only used family history information from first-degree relatives, which was expected to be more accurate. Moreover, the similarity between the penetrance of non-carriers of BRCA1/2 P/LP variants in our study and the breast cancer incidence among Shanghai residents in 2016¹⁹ provides additional support for the trustworthiness of our family history data. Finally, the BRCA1/2 P/LP variants analyzed in this study were obtained from patients with breast cancer. The presence of breast cancer cluster regions (BCCRs) and ovarian cancer cluster regions (OCCRs) within the BRCA1/2 gene³² may affect the accuracy of the results when gene mutations obtained from patients with breast cancer are used to calculate the penetrance of other malignant tumors, such as ovarian cancer. Risch et al. 26 reported a similar phenomenon. Hence, increasing the sample size may have reduced these effects.

In conclusion, in this population-based study, we found a notably lower incidence of breast cancer in Chinese BRCA1/2 P/LP variant carriers than in the Western population or hospital-based Chinese studies. This discovery suggests the need for re-evaluation of preventive measures, such as aggressive prophylactic mastectomy, for breast cancer prevention in these individuals.

Authors contribution

Conception and design: Zhen Hu and Yun Liu; administrative support: Zhen Hu; collection and assembly of data: all authors; data analysis and interpretation: Sanjian Yu, Zezhou Wang, Jialong Xiao, Liqin Chen, Xiaofang Lu, Tingting Su, Qianqian Yu, Honglian Wang, Ying Zheng, Yun Liu, and Zhen Hu; manuscript writing: Sanjian Yu, Zezhou Wang, Honglian Wang, Ying Zheng, Yun Liu, and Zhen Hu. All the authors critically revised and approved the final version of the manuscript.

Ethics statement

Following the *Declaration of Helsinki* and Good Clinical Practice guidelines, the study protocol was approved by the Institutional Review Board of Fudan University Shanghai Cancer Center (registration number: 1905202-3). All participants provided written informed consent prior to enrollment.

Declaration of generative AI and AI-assisted technologies in the writing process

The authors declare that generative artificial intelligence (AI) and AI assisted technologies were not used in the writing process or any other process during the preparation of this manuscript.

Funding

This work was supported by the Shanghai Committee of Science and Technology Funds (No. 14441901402), the National Natural Science Foundation of China (No. 181972468), and the AITA Biomedical Research Institute Breast Cancer Genetic Susceptibility Gene Research Fund.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank all the investigators, nurses, patients, and their family members who participated in this study.

Data availability statement

The data generated in this study are available within the article and it will be available from the corresponding author upon request.

References

- Nathanson KL, Wooster R, Weber BL. Breast cancer genetics: What we know and what we need. Nat Med. 2001;7:552–556. https://doi.org/10.1038/87876.
- Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: A combined analysis of 22 studies. Am J Hum Genet. 2003;72: 1117–1130. https://doi.org/10.1086/375033.
- Begg CB, Haile RW, Borg A, et al. Variation of breast cancer risk among BRCA1/2 carriers. JAMA. 2008;299:194–201. https://doi.org/10.1001/jama.2007.55-a.
- Chen S, Iversen ES, Friebel T, et al. Characterization of BRCA1 and BRCA2 mutations in a large United States sample. *J Clin Oncol*. 2006;24:863–871. https://doi.org/ 10.1200/JCO.2005.03.6772.
- Gabai-Kapara E, Lahad A, Kaufman B, et al. Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2. Proc Natl Acad Sci U S A. 2014; 111:14205–14210. https://doi.org/10.1073/pnas.1415979111.
- Hartmann LC, Lindor NM. The role of risk-reducing surgery in hereditary breast and ovarian cancer. N Engl J Med. 2016;374:454

 –468. https://doi.org/10.1056/ NEJMra1503523.
- Milne RL, Antoniou AC. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr Relat Cancer. 2016;23:T69–T84. https://doi.org/ 10.1530/ERC-16-0277.
- Zhang S, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2015. J Natl Cancer Cent. 2021;1:2–11. https://doi.org/10.1016/j.jncc.2020.12.001.
- Li WF, Hu Z, Rao NY, et al. The prevalence of BRCA1 and BRCA2 germline mutations in high-risk breast cancer patients of Chinese Han nationality: Two recurrent mutations were identified. *Breast Cancer Res Treat*. 2008;110:99–109. https://doi.org/10.1007/s10549-007-9708-3.
- Yang X, Wu J, Lu J, et al. Identification of a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population by next-generation sequencing. *PLoS One.* 2015;10:e0125571. https://doi.org/10.1371/ journal.pone.0125571.
- Bhaskaran SP, Chandratre K, Gupta H, et al. Germline variation in BRCA1/2 is highly ethnic-specific: Evidence from over 30,000 Chinese hereditary breast and ovarian cancer patients. Int J Cancer. 2019;145:962–973. https://doi.org/10.1002/ijc.32176.
- Liu Y, Wang H, Wang X, et al. Prevalence and reclassification of BRCA1 and BRCA2 variants in a large, unselected Chinese Han breast cancer cohort. *J Hematol Oncol*. 2021;14:18. https://doi.org/10.1186/s13045-020-01010-0.
- Zhang L, Shin VY, Chai X, et al. Breast and ovarian cancer penetrance of BRCA1/2 mutations among Hong Kong women. Oncotarget. 2018;9:25025–25033. https://doi.org/10.18632/oncotarget.24382.

- Yao L, Sun J, Zhang J, et al. Breast cancer risk in Chinese women with BRCA1 or BRCA2 mutations. Breast Cancer Res Treat. 2016;156:441–445. https://doi.org/ 10.1007/s10549-016-3766-3.
- Begg CB. On the use of familial aggregation in population-based case probands for calculating penetrance. *J Natl Cancer Inst.* 2002;94:1221–1226. https://doi.org/ 10.1093/jnci/94.16.1221.
- Wang Z, Yu S, Feng X, et al. Protocol: Screening of genetic susceptibility genes for breast cancer patients and establishment of genetic high-risk populations cohort in east china communities. *Precis Cancer Med.* 2022;5:36. https://doi.org/10.21037/ pcm-22-36.
- Chatterjee N, Wacholder S. A marginal likelihood approach for estimating penetrance from kin-cohort designs. *Biometrics*. 2001;57:245–252. https://doi.org/ 10.1111/j.0006-341x.2001.00245.x.
- Wacholder S, Hartge P, Struewing JP, et al. The kin-cohort study for estimating penetrance. Am J Epidemiol. 1998;148:623–630. https://doi.org/10.1093/aje/ 148.7.623
- Shanghai Municipal Center for Disease Control and Prevention. Shanghai cancer report 2017. Shanghai Municipal Center for Disease Control and Prevention Scientific Report. Shanghai: Shanghai Municipal Center for Disease Control and Prevention; 2017. [Accessed November 17, 2023].
- Hong Kong Female Breast Cancer in 2019: Hong Kong Cancer Registry; 2021. Available from https://www3.ha.org.hk/cancereg/pdf/factsheet/2019/breast_2019pdf. [Accessed June 13, 2023].
- Beijing Municipal People's Government. Beijing municipal health and population health report. Beijing: People's Medical Publishing House; 2013. [Accessed July 7, 2023].
- Hu C, Hart SN, Gnanaolivu R, et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med. 2021;384:440–451. https://doi.org/ 10.1056/NEJMoa2005936.
- Tryggvadottir L, Sigvaldason H, Olafsdottir GH, et al. Population-based study of changing breast cancer risk in Icelandic BRCA2 mutation carriers, 1920–2000. J Natl Cancer Inst. 2006;98:116–122. https://doi.org/10.1093/jnci/djj012.
- Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. *JAMA*. 2017; 317:2402–2416. https://doi.org/10.1001/jama.2017.7112.
- Wu X, Wu L, Kong B, et al. The first nationwide multicenter prevalence study of germline BRCA1 and BRCA2 mutations in Chinese ovarian cancer patients. Int J Gynecol Cancer. 2017;27:1650–1657. https://doi.org/10.1097/ IGC.0000000000001065.
- Risch HA, McLaughlin JR, Cole DE, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: A kin-cohort study in Ontario, Canada. J Natl Cancer Inst. 2006;98:1694–1706. https://doi.org/10.1093/inci/dii465.
- Zhang S, Royer R, Li S, et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. *Gynecol Oncol.* 2011;121: 353–357. https://doi.org/10.1016/j.ygyno.2011.01.020.
- Li S, Silvestri V, Leslie G, et al. Cancer risks associated with BRCA1 and BRCA2 pathogenic variants. J Clin Oncol. 2022;40:1529–1541. https://doi.org/10.1200/ JCO.21.02112.
- National Institute for Health and Care Excellence. Familial breast cancer: Classification, care and managing breast cancer and related risks in people with a family history of breast cancer. Manchester: National Institute for Health and Care Excellence; 2019.
 Available from https://www.nice.org.uk/guidance/cg164. [Accessed December 7, 2023].
- Mai PL, Garceau AO, Graubard BI, et al. Confirmation of family cancer history reported in a population-based survey. J Natl Cancer Inst. 2011;103:788–797. https://doi.org/10.1093/jnci/djr114.
- Wood ME, Kadlubek P, Pham TH, et al. Quality of cancer family history and referral for genetic counseling and testing among oncology practices: A pilot test of quality measures as part of the American Society of Clinical Oncology Quality Oncology Practice Initiative. J Clin Oncol. 2014;32:824–829. https://doi.org/10.1200/ JCO.2013.51.4661.
- Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. *JAMA*. 2015;313: 1347–1361. https://doi.org/10.1001/jama.2014.5985.