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a b s t r a c t 

In multiple regression Y ~ β0 + β1 X 1 + β2 X 2 + β3 X 1 X 2 + ɛ ., the interaction term is quantified as the product 

of X 1 and X 2 . We developed fractional-power interaction regression (FPIR), using βX 1 
M X 2 

N as the interaction 

term. The rationale of FPIR is that the slopes of Y-X 1 regression along the X 2 gradient are modeled using the 

nonlinear function (Slope = β1 + β3 MX 1 
M-1 X 2 

N ), instead of the linear function (Slope = β1 + β3 X 2 ) that 

regular regressions normally implement. The ranges of M and N are from -56 to 56 with 550 candidate values, 

respectively. We applied FPIR using a well-studied dataset, nest sites of the crested ibis ( Nipponia nippon ).We 

further tested FPIR by other 4692 regression models. FPIRs have lower AIC values (-302 ± 5003.5) than regular 

regressions (-168.4 ± 4561.6), and the effect size of AIC values between FPIR and regular regression is 0.07 (95% 

CI: 0.04–0.10). We also compared FPIR with complex models such as polynomial regression, generalized additive 

model, and random forest. FPIR is flexible and interpretable, using a minimum number of degrees of freedom to 

maximize variance explained. We have provided a new R package, interactionFPIR, to estimate the values of M 

and N , and suggest using FPIR whenever the interaction term is likely to be significant. 
• Introduced fractional-power interaction regression (FPIR) as Y ~ β0 + β1 X 1 + β2 X 2 + β3 X 1 

M X 2 
N + ɛ to 

replace the current regression model Y ~ β0 + β1 X 1 + β2 X 2 + β3 X 1 X 2 + ɛ ; 
• Clarified the rationale of FPIR, and compared it with regular regression model, polynomial regression, 

generalized additive model, and random forest using regression models for 4692 species; 
• Provided an R package, interactionFPIR, to calculate the values of M and N , and other model parameters. 
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Specifications table 

Subject Area Agricultural and Biological Sciences 

More specific subject area Statistics 

Method name Fractional-power interaction regression (FPIR) 

Name and reference of original method Polynomial regressions can calculate high order interaction effects such as 

X 1 
M X 2 

N , yet M and N are limited within a few integers. Compared with 

polynomial regressions, fractional polynomial regressions (FPRs) were proposed 

to model the effects of explanatory variables beyond integer exponents [1 , 2] . 

Royston and Sauerbrei [3] further invented multivariable fractional polynomials 

interaction (MFPI), which can handle interactions of continuous predictors in 

the form of fractional polynomials. The algorithm of MFPI is available in Stata 

[4] , which however gives limited options (i.e. −2, − 1, − 0.5, 0, 0.5, 1, 2, 3) for 

the powers of a predictor. The package for R, mfp [5] , was designed to run 

MFPI, yet the function for treating interaction terms is still absent [6] . 

References 

[1] P. Royston, D.G. Altman, Regression using fractional polynomials of 

continuous covariates: Parsimonious parametric modelling, Applied Statistics 

43(3) (1994) 429. 

[2] P. Royston, D.G. Altman, Approximating statistical functions by using 

fractional polynomial regression, Statistician 46(3) (1997) 411-422. 

[3] P. Royston, W. Sauerbrei, A new measure of prognostic separation in 

survival data, Stat. Med. 23(5) (2004) 723-48. 

[4] P. Royston, MFPIGEN: Stata module for modelling and displaying 

interactions between continuous predictors, Statistical Software Components 

S457439, Boston College Department of Economics, revised 31 Oct 2012, 2012. 

[5] R Core Team, R: A language and environment for statistical computing, R 

Foundation for Statistical Computing, Vienna, Austria, 2019. 

[6] Original by Gareth Ambler and modified by Axel Benner, mfp: Multivariable 

Fractional Polynomials, R package version 1.5.2. 

https://CRAN.R-project.org/package=mfp2015 . 

Resource availability The R package interactionFPIR can be installed from GitHub using the code: 

install_github("Xinhai-Li/interaction"). 

Method details 

In general linear models (GLMs), the variance of the dependent variable can be explained by a

number of explanatory variables, in the form of linear terms, quadratic or other high order terms,

and interaction terms [1–3] . When an interaction term has a significant contribution to the model,

it means the effect of one explanatory variable on the dependent variable changes depending on

that of another explanatory variable. In other words, the interaction effect indicates the simultaneous 

influence of two variables on the dependent variable is not additive, and a nonlinear relationship is

expected [4 , 5] . 

In most algorithms developed for regressions, the interaction effect is quantified as the product 

of two associated explanatory variables, in the form of βX 1 X 2 , where β is the coefficient, X 1 and

X 2 are explanatory variables [4 , 6–8] . In multivariable fractional polynomials interaction (MFPI), the

interaction term is quantified as βX 1 
M X 2 

N , but the potential values for M and N are too limited, only

having eight numbers [9] , which has no advantage over ordinary polynomial regressions. 

To address this issue, we developed a method named fractional-power interaction regression 

(FPIR), using a grid search to estimate the values of M and N (each with 550 candidate values from

-56 to 56) in the model Y ~ β0 + β1X1 + β2X2 + β3 X 1 
M X 

2 N 
+ ɛ . FPIR dramatically extends the shapes

of interaction effect in multiple regressions. 

https://CRAN.R-project.org/package=mfp2015
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Table 1 

The occurrence data of taxa downloaded from GBIF website. 

Class Order Family Species Occurrences GBIF DOI 

Clitellata / / 334 175435 https://doi.org/10.15468/dl.4vlmaw 

Insecta Hymenoptera Formicidae 2153 290125 https://doi.org/10.15468/dl.c9o5mh 

Insecta Hemiptera Cicadidae 174 14585 https://doi.org/10.15468/dl.mqaniq 

Arachnida Araneae Salticidae 281 48792 https://doi.org/10.15468/dl.383zw0 

Amphibia Anura Hylidae 348 193922 https://doi.org/10.15468/dl.qjwkh1 

Reptilia Squamata Colubridae 295 128290 https://doi.org/10.15468/dl.okmmxx 

Reptilia Squamata Scincidae 595 244326 https://doi.org/10.15468/dl.nnyj0o 

Aves Galliformes / 256 1151250 https://doi.org/10.15468/dl.lwji3z 

Mammalia Lagomorpha / 50 198132 https://doi.org/10.15468/dl.oqcwcl 

Mammalia Artiodactyla / 206 283468 https://doi.org/10.15468/dl.mj88eh 
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ata of the crested ibis for developing FPIR 

FPIR can be applied for any data with several continuous variables. However, the interaction effect

s complicated, so we selected ecological meaningful data to test FPIR and interpreted the results. In

act, the idea of FPIR was triggered by strong interaction effect in the model of the nest site selection

y the crested ibis ( Nipponia nippon ). 

The crested ibis was once critically endangered, with only two pairs left in the wild [10] , and

ow the population has increased rapidly to over 20 0 0 [11] and was reintroduced to many other

laces [12] . The majority of the wild crested ibis population is concentrated in Yang County, Hanzhong

refecture, Shaanxi Province in Central China [13] , within 95 watersheds (Supplementary Fig. 1). The

verage area of watersheds is 154 km 

2 [14] . Previous studies indicated that two types of wetlands

ere important for the birds, rice paddies and waterbodies (e.g. lakes, ponds, and rivers) [15 , 16] , and

he interaction term of two types of wetlands has a significant contribution to the habitat quality,

eaning the most suitable watersheds should have certain areas of both rice paddies and waterbodies

Supplementary Fig. 1). 

In FPIR, the dependent variable Y is the number of nests within each of the 95 adjacent

atersheds, and it ranges from 0 to 65. One independent variable X 1 is the area of rice paddies,

ary from 0 to 12.95 km 

2 . Another independent variable is waterbody area, which varied from 0

o 1.03 km 

2 . Since the distributions of the three variables were concentrated at small values, we

erformed a log transformation (e.g. Y t = log(Y + 1)) for all dependent and independent variables

o make their distributions more spread out. 

ata of GBIF species occurrences for testing FPIR 

We conducted massive model comparisons using the occurrence data of 4692 species ( Table 1 )

ownloaded from the Global Biodiversity Information Facility (GBIF) website, and developed multiple

egressions to answer the question: how much an animal was tolerant of human impacts on our

uman-dominated planet, and how elevation and precipitation influenced such tolerance. We chose

axa from insects to mammals that occurred in terrestrial ecosystems. These animals do not move

uch, so that the occurrences could be assumed independent and identical, not like migratory birds

aving breeding, migratory, and overwintering occurrences. For example, Galliformes are sedentary

irds with limited movement ability and Cicadidea is a family of insects that spend most of their life

nderground. The original occurrences were filtered as follows: potentially redundant records within

 ha were removed, and species with < 20 occurrence records were excluded (see Supplementary

xcel table). 

We assumed that species occurrences represented their habitat preference. Environmental

ariables such as human footprint index [17] , elevation [18] , and annual total precipitation [19] were

xtracted on these occurrence sites. 

https://doi.org/10.15468/dl.4vlmaw
https://doi.org/10.15468/dl.c9o5mh
https://doi.org/10.15468/dl.mqaniq
https://doi.org/10.15468/dl.383zw0
https://doi.org/10.15468/dl.qjwkh1
https://doi.org/10.15468/dl.okmmxx
https://doi.org/10.15468/dl.nnyj0o
https://doi.org/10.15468/dl.lwji3z
https://doi.org/10.15468/dl.oqcwcl
https://doi.org/10.15468/dl.mj88eh
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Table 2 

Comparison of each term between the regular multiple regression and fractional-power interaction regression (FPIR) using the 

nest site selection data of the crested ibis. 

Terms Coefficients ± SE Sum of square R 2 AIC DF ∗

Regular regression model Rice paddy −0.04 ± 0.15 7.64 0.39 220.2 91 

Waterbody −1.73 ± 0.98 13.53 

Interaction 6.38 ± 1.22 15.33 

Residual / 50.84 

Polynomial regression † Model / 49.22 0.48 214.9 80 

Residual 38.13 

FPIR Rice paddy 0.11 ± 0.13 7.64 0.43 210.4 89 

Waterbody 0.9 ± 0.59 13.53 

Interaction 9.83 ± 1.67 18.34 

Residual / 47.83 

∗ Degree of freedom of the residuals 
† Fourth order polynomial regression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the species are randomly distributed on the earth, their occurrences just represent the 

background environmental variation. As such, we selected 15,677 evenly distributed sites on the 

planet’s terrestrial ecosystem as a specific case showing the default species-environment relationship. 

Building FPIR 

For any given dataset with a continuous dependent variable Y and two continuous explanatory 

variables X 1 and X 2 , when the interaction term results in a lower AIC value, we build FPRI as: 

Y ∼ β0 + β1 X 1 + β2 X 2 + β3 X 

M 

1 X 

N 
2 + ε (1) 

To estimate the parameters M and N , we first gave them gradient values from -52.5 to 52.5, each

with 55 values. The values near zero were sampled with higher density (Supplementary Fig. 2). The

selection of such ranges and number of values were arbitrary, and they covered a very wide range

of potential M and N values, in contrast with the default value one in regular regressions. Now

we obtained 3025 combinations of the exponents of X 1 and X 2 in the interaction term. We fitted

these 3025 corresponding models and selected the best model, defined as that with the highest R 

2 

value. We further tuned the values of M and N respectively, using 10 evenly distributed values around

those in the initial best model, and therefore built 100 models for comparison to obtain final values

of M and N . The total potential values for M and N are 550, ranging from -56 to 56, respectively,

representing a FPIR with 302,500 candidate combinations of M and N . 

We built an R package interactionFPIR to estimate the values of M and N , and obtained

the regression coefficients for all terms. The R 

2 values, the proportion of variance explained by

the interaction term, all regression coefficients and associated p values in both FPIR and regular

regressions were also recorded. The package has three functions: FPIR1twoway() estimates initial 

values of M and N , FPIR1twowaytune() estimates tuned values M and N , and FPIR1threeway()

estimates parameters for a three-way interaction. The package can be installed from GitHub server 

using the code install_github("Xinhai-Li/interaction") (R package devtools is needed here). 

FPIR application for nest site selection of the crested ibis 

For the nest site selection, two explanatory variables X 1 (log-transformed areas of rice paddies)

and X 2 (log-transformed areas of waterbodies) had strong interaction effect on Y (log-transformed 

number of nests within watersheds), as the interaction term explained more variance than any of the

main effect (linear) terms in both FPIR and the regular regression ( Table 2 ). FPIR indicated the model

Y = 0.25 + 11.4X 1 
4.9 X 2 

2.6 had the best performance. Compared to the regular multiple regression, the

R 

2 in FPIR increased from 0.399 to 0.434; AIC decreased from 220.2 to 214.4 ( Table 2 ). 
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Fig. 1. The R 2 values (changing from green to red) of the regression model Y ~ β0 + β1X1 + β2X2 + β3 X 1 
M X 2 N + ε ( M, N ∈ 0.1, 

0.2, …, 19.9, 20) for the nest site selection of crested ibis calculated by fractional-power interaction regression (FPIR), where Y, 

X 1 , and X 2 are the log-transformed number of nests, areas of rice paddies, and areas of waterbodies within each watersheds, 

respectively. The black dot indicates the R 2 value of the regular regression (M = N = 1) and the black triangle indicates the R 2 

value of FPIR with the optimal M and N values. 
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To illustrate the model performance of all combinations of the exponents of rice paddy and

aterbody, we plotted the R 

2 values at the gradients of M and N in Y ~ β0 + β1X1 + β2X2 + β3 X 1 
M

 2 
N (M, N ∈ 0.1, 0.2, …, 19.9, 20). It is shown that the R 

2 value of the model performance was

igh when the exponents of the areas of rice paddies was about twice that of the exponents of

he areas of waterbodies (e.g., 4.9 vs. 2.6) ( Fig. 1 ). The actual interaction effect was nonlinear (Slope

or Y-X 1 relationship = β1 + β3 MX 1 
M-1 X 2 

N ) at the gradient of X 2 , instead of the linear functions

Slope = β1 + β3 X 2 ) that the regular regression normally implements for interaction effect (see

raphical abstract). 

esting FPIR using GBIF species occurrences data 

To further test FPIR, we used following regression models to study the association of human

ctivities with elevation and precipitation at the wildlife occurrences: 

HFI ∼β0 + β1 E+ β2 P+ β3 E 
M ×P N + ε (2 for FPIR)

here HFI is human footprint index at the species occurrences, representing human impacts. E

s elevation (m), P is annual total precipitation (mm/year), and βs are coefficients. To make the

egression coefficients comparable, we standardized the three variables to the scale of 0–1. The model

as applied to 4692 species, which are available from GBIF database ( Table 1 ). For the purpose of
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Table 3 

The mean R 2 values and associated standard deviations of the model HFI = f(E, P) using multiple regression, FPIR, FPIRP, fourth 

order polynomial regression, the generalized additive model (GAM), and random forest respectively for each of the 4692 species, 

and the 15,677 evenly distributed sites on earth as a background. 

Multiple 

regression 

FPIR FPIRP Polynomial 

regression 

GAM Random forest 

Focal species 

(N = 4692) 

0.126 ± 0.164 0.267 ± 0.204 0.273 ± 0.208 0.353 ± 0.264 0.340 ± 0.243 0.813 ± 0.073 

Focal species ∗

(N = 1153) 

0.217 ± 0.193 0.314 ± 0.233 0.311 ± 0.233 0.399 ± 0.285 0.367 ± 0.246 0.840 ± 0.069 

Background 0.046 0.109 0.109 0.136 0.170 0.745 

∗ The species with significant ( α = 0.05) interaction effect (based on multiple regression) were selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

comparisons, the regular regression model and fourth order polynomial regression were also applied 

using the same dataset. Considering the nonlinear effect of elevation and precipitation, we added the

quadratic terms of E and P to FPIR, and named this model as FPIR plus (FPIRP): 

HFI ∼β0 + β1 E+ β2 P+ β3 E 
M ×P N + β4 E 

2 + β5 P 
2 + ε (3 for FPIRP) 

Furthermore, we implemented two complex models for comparison: generalized additive model 

and random forest. R packages mgcv and randomForest were used for the two models. For all

the 28,152 (4692 × 6) models, we recorded the adjusted R square values, as the index of model

performance, and the Akaike information criterion (AIC) for linear models (see Supplementary Excel 

table). 

For different species, the influence of elevation and precipitation on tolerance to human impact

varied. Using regular regression models (HFI ~ E + P + E × P + ɛ ), we found, in 490 species,

individuals at higher elevation were significantly closer to human populations (positive coefficient 

of E, p value < 0.05). In 908 species, individuals at lower elevation were significantly closer to human

populations. For the environment variable precipitation, 789 species had individuals in wetter areas 

that were significantly closer to human populations; compared with 679 species that had individuals 

in drier areas were significantly closer to human populations. The AIC values of FPIRs (-302 ± 5003.5)

were lower than those of regular regressions (-168.4 ± 4561.6). The effect size of AIC values between

FPIRs and regular regressions was 0.07 (95% CI: 0.04–0.10), calculated using the function effectsize()

in R package effectsize [20] . The interaction term in FPIRs explained more variance than in regular

regressions (Supplementary Fig. 3). 

If the species randomly select their habitat, the human footprint index at their occurrence sites

would be independent of elevation and precipitation. We showed the pattern using 15677 evenly- 

distributed sites across our planet’s terrestrial ecosystems ( Fig. 2 ). In the multiple regression, elevation

( E ) explained 0.296% of the variance of HFI , precipitation ( P ) explained 4.27%, and the interaction

term only explained 0.063% of the variance. The Pearson correlation coefficient for elevation and

precipitation is -0.054. Regular regression, FPIR, GAM, and random forest quantified the relationship 

between human footprint index, elevation and precipitation in different patterns ( Fig. 2 ). 

The estimated values of M and N in 4692 FPIRs (see Supplementary Excel table) were concentrated

within the range from -10 to 10, yet stayed away from the default value of one ( Fig. 3 ). 

FPIR performance compared with other models 

The average R 

2 values of FPIRs were always higher than those of regular regressions ( Fig. 4 ).

As linear models, FPIRs had lower R 

2 values than those of complex models such as polynomial

regressions, generalized additive models, and random forest ( Table 3 ). Fig. 4 further showed the

distribution of R 

2 values in those models. FPIRP, which has quadratic terms, is only slightly better

than FPIR ( Fig. 4 ). 

We selected nine Galliformes species, which had high interaction effects that contributed to over 

25% of the total variance of the dependent variable (human footprint index), and showed that FPIRs

were very flexible and fit various nonlinear patterns of the X-Y relationship well ( Fig. 5 ). 
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Fig. 2. The actual human footprint index (HFI) (represented by the sizes of the circle), the predicted HFI (represented by the 

colors) by regular regression (HFI ~ E + P + E × P + ɛ ), FPIR (HFI ~ β0 + β1E + β2P + β3E M × P N + ɛ ), generalized additive model, 

and random forest. The standardized values of elevation ( E ) of the 15677 evenly distributed sites at the terrestrial areas on the 

earth is the x axis, and annual total precipitation ( P ) is the y axis. The panel at the bottom shows the locations of the 15677 

sites. 
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For the nest site selection of the crested ibis, we found the birds selected the watersheds with

igher areas of both rice paddies and waterbodies. The product of the areas of two wetland types

i.e. the interaction term) was the most important term in the species distribution model, and other

ariables such as elevation, precipitation, temperature, human impact, vegetation types all had trivial
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Fig. 3. The values of parameters M and N in FPIR (HFI ~ E + P + E M × P N + ɛ ) for the 4692 species within the range (-56 to 

56, left panel) and the range (-5 to 5, right panel). The sizes of circles indicate the proportion of variance explained by the 

interaction term. At the right panel, the red circle shows the value zero for M and N (no interaction effect), and blue circle 

shows value one for M and N (traditional interaction effect) in regular regressions. 

Fig. 4. Distributions of R 2 values for regular regression (Regular), fourth order polynomial regression (Polynomial), generalized 

additive model (GAM), random forest (RF), and FPIRP (FPIR plus with quadratic terms), compared with FPIR. 
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Fig. 5. The observed human footprint index (represented by the sizes of the circle), the predicted human footprint index 

(represented by the colors) by FPIR, the values of elevation (x axis) and annual total precipitation (y axis) of the occurrences of 

nine Galliformes species with high interaction effects. 
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ffect. We further developed FPIR and fit the model using the term X 1 
4.9 X 2 

2.6 , and reached better

erformance than the regular regression. 

Multiple linear regressions have been widely used for nearly a century [see 1 , 21] , and they

re primary methods for quantifying the relationship between a continuous dependent variable

nd several continuous explanatory variables [3] . The presence of interaction effects is common in

egressions [4 , 22 , 23] . Back to 1923, Fisher and Mackenzie indicated potato yields were better fitted by

 product formula than by a sum formula [8] . In 1936, Johnson & Neyman began to use the idea of

region of significance" to treat interaction [24] . Currently, the interaction effect, if it exists, is usually

ssumed to be of the form βX 1 X 2 , as defined in most text books [e.g. 2,3]. The potential difference of

ontribution to interaction effect between X 1 and X 2 has been ignored. 

MFPI (multivariable fractional polynomials interaction) was introduced to quantify interactions

sing fractional polynomials, yet it focuses on multivariate analysis and only uses eight values to fit

he exponents of the explanatory variables. In order to fit interaction in multiple regressions in a more

owerful and parsimonious way, we developed the FPIR method to estimate exponent values (i.e. M

nd N ) in the interaction term βX 1 
M X 2 

N . Our results indicated that FPIRs always performed better

han regular multiple regressions. In fact, a regular multiple regression is one scenario of a FPIR when

 = N = 1. 
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What are the new results from FPIR? 

FPIRs had lower AIC values than regular regression, and provide a more powerful way to quantify

the interaction effect, using a series of exponential curves rather than straight lines for the X-Y

relationship in the context of interaction (see Graphical abstract). Consequently, FPIRs helped identify 

hidden interaction effects that regular regression failed to detect. 

FPIRs can provide more insights into real-world ecological questions. For the nest site selection of

the crested ibis, the significant interaction effect identified that the bird relied on both rice paddies

and waterbodies: if either rice paddies or waterbodies are not large enough in a watershed, the

watershed typically remains unused for nesting. FPIRs further detected the unequal contribution of 

the two wetland types to the interaction and found that the rice paddies were more important

than waterbodies in the nest site selection. Rice paddies had an optimal exponent of 4.9, about

twice of that of waterbodies (2.6). The real situation was that the areas of rice paddies were about

10 times higher than that of waterbodies in 95 watersheds. Such results highlight the importance

of rice paddies, which are the major foraging habitat during the breeding season, the most crucial

stage in its life cycle. After the nestlings fledged, the birds moved to lower areas and foraged along

waterbodies (i.e. rivers and ponds) [25] . From 1981 to 2013, the crested ibis population expanded from

two breeding pairs [10] in two watersheds to 236 breeding pairs in 23 watersheds (Supplementary

Fig. 1). During the early period of the recovery, the birds were found to have only stayed in the

watersheds with high proportions of rice paddies [15] , again supporting the key role of rice paddies

in their population recovery. 

Advantages and weaknesses of FPIR 

FPIRs produced lower R 2 values than complex models such as polynomial regressions, generalized 

additive models (GAMs), and random forest. For a regression with two explanatory variables, a fourth

order polynomial regression has 15 terms, whereas a FPIR only has four terms. Polynomial regressions

can quantify high order relationships between dependent and explanatory variables, whereas FPIRs 

behave like a local optimization (focusing on the interaction term rather than high-order terms) by

ignoring the whole picture but fitting the interaction with higher accuracy. GAMs are more complex

than polynomial regressions by using non-linear smooth functions to fit data [26] , and they have

numerous parameters and are hard understand . Random forest is even worse than GAMs in the

aspect of transparency, as it uses many tree brunches to fit data and provides fragmented prediction

surface ( Fig. 2 ). Nevertheless, a FPIR is a linear model with a complex interaction term. It substantially

improves the model fit over the regular multiple regression when the interaction term was significant.

It is a parsimonious way to handle interacting continuous variables in regressions. 

We used ranges of exponents M and N in FPIR Y ~ β0 + β1X1 + β2X2 + β3 X 1 
M X 

2 N 
+ ɛ from -56

to 56. The selection of those ranges was arbitrary. Compared with the default value of one generally

assumed in regular multiple regressions, such ranges are much larger. We speculated such ranges

would fit most situations. Nevertheless, the ranges of M and N can be easily expanded at the cost of

more computation time. 

The current version of FPIR can only quantify the interaction effect of continuous variables. It can

not deal with the interaction involving categorical variables such as treatments, sites, groups, and

so on. The package we provided for FPIR can process one two-way interaction, and one three-way

interaction. Users would need to modify the code for other situations when more interaction terms

exist. 

Our new method enhances flexibility, interpretability and parsimony, while using a minimum 

number of degrees of freedom to maximize variances that are explained in the model. It has three

advantages over the regular multiple linear regression: (1) it fits the model better with lower residuals

than a regular regression; (2) it can evaluate the importance of two explanatory variables based

on the values of their exponents in the interaction term; and (3) it can detect hidden interaction

effects. While com plex regression methods may explain more variations, they sacrifice the simplicity 

and readability, and tend to overfit the data [27] . Recognizing the potential for different explanatory

variables to interact in nonlinear ways will help investigators to improve the identification of the
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