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Abstract

Computer systems for medical diagnosis based on machine learning are not mere

science fiction. Despite undisputed potential benefits, such systems may also

raise problems. Two (interconnected) issues are particularly significant from an

ethical point of view: The first issue is that epistemic opacity is at odds with a

common desire for understanding and potentially undermines information rights.

The second (related) issue concerns the assignment of responsibility in cases of

failure. The core of the two issues seems to be that understanding and responsi-

bility are concepts that are intrinsically tied to the discursive practice of giving

and asking for reasons. The challenge is to find ways to make the outcomes of

machine learning algorithms compatible with our discursive practice. This comes

down to the claim that we should try to integrate discursive elements into

machine learning algorithms. Under the title of “explainable AI” initiatives heading

in this direction are already under way. Extensive research in this field is needed

for finding adequate solutions.
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1 | INTRODUCTION

There is a famous scene in the movie “Harry Potter and the Half-

Blood Prince”: A student has been cursed, investigations are under

way. Professor McGonagall and Professor Snape question Harry and

his friends Hermione and Ron about the incident. All at once, Harry

shouts “It was Malfoy.” McGonagall replies “This is a very serious

accusation, Potter.” “Indeed,” agrees Snape and continues “Your evi-

dence?” Harry immediately responds, “I just know.” Snape—superbly

played by the late Alan Rickman—retorts “You just… know.” As spec-

tators we are, of course, on Harry's side. However, we feel that his

answer is not quite convincing. He should provide something more

substantial to accuse his arch-rival Malfoy. Simply knowing is not

sufficient—even for Harry Potter.

The same holds, even more, for ordinary people in situations of

everyday life, in particular if stakes are high. An important case in

point is medical practice. If a physician makes a diagnosis or recom-

mends a treatment and her patient asks for evidence or an explana-

tion, the assurance “I simply know” is hardly appropriate to settle

the case. Very likely, the patient would leave the doctor's office

and look out for a more skilled or more communicative colleague.

However, what if the physician were to use an automated system

based on artificial intelligence, which analyses all the available data

of the patient and, based on a previously trained algorithm,
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suggests the diagnosis? Of course, in this case the physician could

declare, “I know because the computer told me so.” The patient

could continue to ask, “How does the computer know?” At this

point, the only answer available to a physician might be “It simply

knows.” At least, that would be the only available answer if the

physician had access to nothing more than the model's output.

In this article, we aim at addressing some critical issues raised by

the use of machine learning algorithms for medical diagnosis and pre-

diction. We start with examining the notion of interpretability and

how it is related to machine learning. Then, we give a brief overview

of the state of the art in medical AI. Against this background, we put

forward what we consider two crucial issues: The first issue is that

epistemic opacity is at odds with a common desire of understanding

and potentially undermines information rights. The second (related)

issue concerns the assignment of responsibility in cases of failure.

Subsequently, we elaborate these issues in detail. Thereafter, we sug-

gest that explainable AI might help to overcome some of the prob-

lems. Finally, we look at some of the implications for medical practice

in general and for neuroimaging in particular.

2 | THE ISSUE OF INTERPRETABILITY

The reason for this above mentioned predicament is that most current

machine learning algorithms give rise to what has been called “the

black-box problem” (Castelvecchi, 2016). More specifically, most

machine learning algorithms are characterized, albeit to a varying

degree, by “epistemic opacity.” That is to say, these algorithms include

epistemically relevant elements, which a cognitive agent cannot (eas-

ily) access (Humphreys, 2009). It is important to note, although, that

access may be pursued by two distinct yet interacting routes, namely

model and results interpretability.

Results interpretability will eventually be critical in a medical con-

text, as it resembles the information asked for in the described sce-

nario. It consists of information detailing what aspects of the data

have led to a certain decision in a particular case. In this it is akin to

what a physician traditionally tells a patient, for example, “Given your

age, your heart is slightly enlarged. Furthermore, you have a history of

moderate asthma. On the other hand, your overall constitution is

good. Experience shows that in female patients this combination is

rather common and is, in most cases, not alarming. Presently, there is

no need to take further action. You should check again in six months.”

A model detailing the reasons for a particular decision on an individual

case in plain language like this is presently unavailable and will proba-

bly remain an unmet challenge for quite some time.

Model interpretability refers to a human's ability to understand the

model itself or at least a summary thereof. That is, the distinction

between results versus model interpretability can be conceptualized

as understanding individual decisions versus understanding the model,

respectively. The latter than entails to know which input features are

actually used (selected) by the model, how these features are

weighted and combined, and how decisions are derived from this pro-

cess. There are also critical distinctions in the role results and model

interpretability will play in clinical application. Explainable results

(cf. above) can be directly used to integrate the recommendation by

an algorithm into clinical decisions and to communicate the reason for

a particular suggestion to the patient. In contrast, model interpretabil-

ity provides more generic, “background” knowledge for shared

decision-making. In particular, only an interpretable model, that is, one

that allows humans to gain knowledge about the features that are

considered, their integration and weighting puts the physician in a

position where she can process and interpret the results of the algo-

rithm relative to information from various other sources and her indi-

vidual evaluation of the case. That is, information on the way the

model works are relevant for connecting it to other information such

as clinical history or lab-results and forming a final (clinical) decision

that can be communicated and explained to the patient. At the same

time, model interpretability is crucial for estimating the plausibility of

a result generated by a machine learning algorithm. Importantly,

model interpretability depends strongly on the type of learning algo-

rithm employed, with a general trade-off between performance and

interpretability reflecting model complexity as detailed below. Critical

distinctions in this context may be made between sparse models that

are trained to perform as well as possible on a minimal number of

input features and those that do not have this constraint, as well as

between models based on a single training and those employing

ensemble methods, that is, those which are trained repeatedly on sub-

sets of the training sample. In general, sparse models are more inter-

pretable, and ensemble models are less so.

One of the key reasons that interpretability has become a more

prominent issue over the recent years, even though techniques such

as support vector machines or decision trees have been in use since

the 1990s, is the emergence of “deep learning” over the past decade.

Advances in both algorithms (Hinton, 2007) and hardware (GPUs

and subsequently TPUs) have resulted in much more efficient and

powerful estimation of deep architectures, and have subsequently

given rise to a distinction featuring prominently in current debates,

namely the one between “conventional machine learning” and “deep

learning.” According to LeCun, Bengio and Hinton conventional

machine-learning techniques are “limited in their ability to process

natural data in their raw form,” while deep learning methods “are

representation-learning methods with multiple levels of representa-

tion, obtained by composing simple but non-linear modules that each

transform the representation at one level (starting with the raw

input) into representation at a higher, slightly more abstract level.

[…] The key aspect of deep learning is that these layers of features

are not designed by human engineers: they are learned from data

using a general-purpose learning procedure.” (LeCun, Bengio, &

Hinton, 2015, p. 436) This means that while deep learning algorithms

are trained on big data collections they develop in a way that is nei-

ther foreseeable nor transparent to the programmer. In the present

context, two aspects deserve special attention. First, because deep

learning does not rely on feature engineering but rather on high-

dimensional representations in multi-layer networks, it has been

argued that network engineering, that is, the art of constructing

layers and functions performed by these, has effectively taken the
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same place that feature engineering previously occupied (Maier

et al., 2018). Second, by means of combination of complex ensem-

bles, in particular those containing nonlinearities, a similar situation

as just described for deep learning may arise for classical machine-

learning approaches. In short, different types of algorithms may

perform at a level that is comparable to the best clinical practice of

experienced physicians. Yet, it may be unclear why and how

they do so.

3 | STATE OF THE ART IN MEDICAL AI

Computer systems for medical diagnosis based on machine learning

are not mere science fiction (Kononenko, 2001). One illustrative

example is a recent study, which reported that deep convolutional

neural networks are able to classify skin lesions achieving a level of

performance on par with experts in view of the identification of the

most common cancers as well as regarding the identification of the

deadliest skin cancer (Esteva et al., 2017). The authors saw this as

“demonstrating an artificial intelligence capable of classifying skin can-

cer with a level of competence comparable to dermatologists.” (Esteva

et al., 2017, p. 115). In view of this (and similar) claims it needs to be

taken into account that almost all applications are related to super-

vised problems, that is, the algorithms are provided with labeled train-

ing data and have the task of extracting patterns from the data that

enables the prediction of the respective labels in new subjects. How-

ever, the training labels (diagnoses for the cases that were used to

learn the association between features and outcomes) and ground

truth for the evaluations (diagnoses for the cases that were used to

assess the performance of the algorithm by putting their features into

the trained model and comparing the prediction to the known diagno-

ses) are traditional clinical diagnoses which are noisy and in some

cases highly disputable. Talking about “close to perfect” or even

“super-human” performance is, therefore, somewhat misleading. In

any case, it leads to the interesting situation that the performance of

a theoretically perfect AI that recognizes a real structure may actually

be worse as compared to an algorithm that, like most current

approaches, attempts to re-create clinical diagnoses (Arbabshirani,

Plis, Sui, & Calhoun, 2017).

In other areas of medicine similar systems are the object of

research. Related methods have, for example, been applied to decipher

the data from stroke imaging and have demonstrated some promising

results (Eun-Jae, Yong-Hwan, Namkug, & Dong-Wha, 2017). Addition-

ally, machine-learning frameworks for early MRI-based Alzheimer's con-

version prediction in MCI subjects are being explored (Moradi et al.,

2015). Moreover, the possibility of making individual prognoses in psy-

chiatry using neuroimaging and machine learning is under investigation

(Arbabshirani et al., 2017; Bzdok & Meyer-Lindenberg, 2018; Janssen,

Mourao-Miranda, & Schnack, 2018).

We note that the challenges discussed in this paper should hold

rather generically for all current and most likely future approaches to

using machine learning for medical decision-making, as they point to

fundamental issues in clinical translation and acceptance. Yet, there is

evidently a broad spectrum of conceptually and in particular techni-

cally different methods that are currently being used in medical

applications including imaging neuroscience. For a more detailed

overview, we would like to point the reader to other, more specialized

publications (Bishop, 2006; Bzdok & Ioannidis, 2019; Choudhary &

Gianey, 2017; James, Witten, Hastie, & Tibshirani, 2013; Jordan &

Mitchell, 2015). What is critical to note in the current context, though,

is that there is generally an inverse relation between the potential accu-

racy or performance of machine-learning algorithms on one hand and

their interpretability on the other. That is, approaches that trend to be

very good in predicting new cases trend to be least transparent and

hence do allow little insight into the evidence for this decision. While

the exact order can be discussed (cf. references above), the major

classes of machine-learning algorithms can be roughly aligned on this

spectrum as follows.

Models based on linear regression, including regularized

approaches such as LASSO, Ridge Regression or linear Support Vector

Machines are most interpretable, since their decision value is a linear

combination of the features. Decision trees are often conceived to be

on a similar level along the accuracy/transparency trade-off. While

they allow for more complex, nonlinear interactions between features

through a sequence of splits, they are still rather well interpretable for

humans even though inspection can become challenging for deeper

trees. K-nearest neighbor algorithms provide an example for instance-

based or “lazy” learning in which the input is compared to the training

datasets and receives the label that was most frequent among those

training observations that were most similar to it. While these trend

to outperform the previously mentioned models, interpretation is

often complicated by the fact that “similarity” in high-dimensional

spaces is itself hard to describe from the human perspective. That is,

while interpretation could be possible by comparison to the selected

neighbors, why these instances turned out to be the closest neighbors

in high-dimensional space is often harder to appreciate. The same

holds true for kernel regression, which can be conceptualized as a

weighted form of the previous approach, that is, each training obser-

vation contributes to the prediction according to its similarity with the

test sample. As in this case many, potentially all, training observations

contribute, interpretability is usually lower than for nearest neighbor

approaches. Ensemble based approaches, which repeatedly fit simpler

models (such as decision trees or linear models) on parts of the data

and then combine their results into a final prediction have enjoyed

considerable popularity and success in recent years, as these trend to

show very good accuracies even in moderately sized training sets and

can be optimized to avoid unbiases through, for example, stratified

subsampling, their interpretability is severely limited. Finally, deep

neural networks have been shown to provide the best accuracy in

many fields, but also represent the class of tools, which has the lowest

transparency, as the decisions are made through nonlinear interac-

tions involving the optimization of often millions of parameters.

In general, classes of models that tend to yield good accuracies

and should hence be most interesting from the application perspec-

tive come with the challenge of being complex and hence not readily

interpreted by humans. We would like to note, though, that the
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postulated order only holds in the case of sufficiently large training

samples, that is, when performance is limited by the model, not the

data. This, however, is often not the case in medical

applications where the number of observations (patients) is often lim-

ited. This may explain the good performance and hence considerable

success “simple” models like SVM enjoy in the context of translational

machine learning, for example, in neuroimaging (He et al., 2018).

Despite undisputed potential benefits, systems for medical diag-

nosis and prediction based on machine-learning algorithm, in particu-

lar those involving ensembles, nonlinear mapping, and deep neural

networks, may also raise problems. Two (interconnected) issues are

particularly significant from a philosophical point of view: The first

issue is that epistemic opacity is at odds with a common desire of

understanding and potentially undermines information rights. The sec-

ond (related) issue concerns the assignment of responsibility in cases

of failure.

4 | ASKING FOR EVIDENCE

Just like in the case of Professor Snape and Harry Potter, we regu-

larly ask others for evidence when they make an assertion. One

apparent reason for doing this is that we try to estimate the degree

of certainty or confidence that we should assign to the assertion in

question. If Harry had answered “I saw Malfoy waving his wand

and casting a spell”, Snape would probably have counted this as

rather strong evidence. If, in contrast, he had replied “Gini told me

that Fred and George heard that a third-year student from

Hufflepuff suspected that it must have been Malfoy”, nobody else

would have been convinced. In other words, by asking for evidence

we try to find out whether an assertion is true. If there is strong

evidence in favor of it, we have good reasons to take it to be true;

if evidence is less convincing, we classify an assertion as a mere

conjecture.

However, investigating certainty or confidence is not all we do

when we ask for evidence. Even if we are convinced that another per-

son is highly reliable we will still ask for evidence. If so, we try to make

the assertion intelligible for us. The same holds for the results gener-

ated by a machine-learning algorithm where the reliability of a human

corresponds to good performance in a priori evaluations. In contrast

to quantified (numerical) confidence ratings which simply have to be

taken for granted, further evidence allows for a more comprehensive

decision-making process. In this process, human agents can bring in

their own experiences, which makes it possible to consider recom-

mendations against the background of individual attitudes. Of course,

this process caters to the psychological bias of self-centrism that

makes us trust our own judgments more than quantitative confidence

ratings, even if it leads to suboptimal results. Aside from the self-

serving psychological effects including a sense of agency and positive

reinforcement, a key contribution of this process is the inclusion of

previous knowledge of the “receiver” (i.e., the patient or, in the case

of AI based recommendations, the physician) into a coherent set of

beliefs.

In contrast, as long as supporting evidence of this sort is lacking,

an assertion will inevitably remain isolated and we will find it difficult

to integrate it into our broader “web of beliefs” (Quine & Ullian,

1978). This is not only relevant for the assessment of diagnoses, but

probably even more so for decisions about the consequences, for

example, about which treatment to choose. Even if we have the

strong feeling that an assertion might be true, lack of evidence makes

it suspicious. For we are often not, or at least not only, interested in

knowledge but in understanding. High confidence assessments from

reliable agents, which machine-learning will most likely provide in the

future, may be under-valued by human decision makers if they are

opaque and unmatched to personal experiences.

Traditionally, epistemology has focused on knowledge. Knowl-

edge is the central concept which epistemology tries to elucidate,

probably even more since Gettier showed that the well-known analy-

sis of knowledge as justified true belief is flawed or at least incom-

plete (Gettier, 1963). Until recently, epistemology paid less attention

to other epistemic states, in particular to understanding (Kvanvig,

2003). This is somewhat surprising since it seems initially plausible

that understanding is epistemically equally, if not more valuable than

knowledge or justified true belief. Now, there is an ongoing contro-

versy among epistemologists what exactly understanding is, what its

features are and why its value is particularly high (Bondy, 2015). For

the present purposes, a proposal by Christoph Kelp is particularly

helpful. Criticizing “explanationist views” on the one side and “man-

ipulationist views” on the other side, he has suggested an account of

understanding as “well-connected knowledge” (Kelp, 2015). According

to this view, understanding a phenomenon P does not only involve

knowing a set of true propositions pi about P, but also knowing how

these propositions are interrelated. Notably, on this account “under-

standing” is a concept that allows for degrees (Kelp, 2015,

pp. 3809–3813). For example, one understands P better if one knows,

in addition to p1 to p4 being true, that p1 and p2 entail p3 and that p4

gives a causal explanation of p1 in terms of p3 (Kelp's concrete exam-

ple being the reaction of litmus paper to the application of acidic

substances).

The important point with regard to most machine-learning algo-

rithms is that by design they render understanding in the sense of

well-connected knowledge impossible. Their internal development is

inevitably opaque, irrespective of recent attempts and advances such

as saliency maps of feature importance since the information on

which aspects of the data contributed to the decision usually does not

allow a description of how they contribute and how a decision was

reached through their interaction. If, for example, a machine-learning

algorithm indicates that a patient is at high risk for developing

Parkinson's (= p1), it remains unclear how this is exactly related to

other available medical data, for example, MRI scans (= p2), lab results

(= p3) and the clinical history (= p4). Simply knowing p1 to p4 does not

imply understanding the patient's condition. Even in the case that p2

to p4 support the prediction, the logical relation of p1 to p2, p3, and p4,

respectively remains unclear. In contrast, the relation between p2, p3,

and p4 is accessible. It might, for example, be that the clinical history

(p4) on the one side and the MRI scans and lab results (p2 and p3)
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stand in an implication relation (p4àp2 and p4àp3). Knowing this sub-

stantially contributes to the overall understanding of p2, p3, and p4.

The ability of machine-learning approaches to derive complex pat-

terns of high-dimensional interactions lies at the heart of their power

and renders the process opaque. The outcome they generate does

not allow for connecting them with previous knowledge. What we get

from them is, at best, knowledge or justified true beliefs but no under-

standing. However, as has been argued before, in many situations it is

exactly understanding that we are looking for. In particular, in the case

of medical diagnosis and prediction many people ask for evidence in

this later sense. Physicians will need it to take the responsibility for

the final diagnosis. Patients often wish for it to be able to accept it

and in some cases to make it psychologically bearable.

Of course, this does not hold for all patients and under all circum-

stances. Frequently, what patients are seeking is confidence in the

method employed. Let us assume, a physician suggests a blood test

for detecting a specific disease marker. Most patients are pleased with

grasping why the physician recommends it rather than understanding

how exactly the test works and how the particular marker is related to

the pathophysiology of his disorder. Moreover, some patients would

even be annoyed if the physician started to elaborate on scientific

details. However, even those patients would probably find it irritating

to learn that the physician has no clue about how the blood test

works and why the results are relevant to managing their particular

disease. For them, understanding is important, but not “first-person”

understanding. Rather, by being assured about the knowledge of the

physician and their confidence in the approach, the patients will

become content about being treated well. Furthermore, there

undoubtedly are patients for whom “first-person” understanding is

vital, in particular in view of machine-learning algorithms. This is, at

least, suggested by the new EU General Data Protection Regulation

(GDPR) as of 2016, which became effective in May 2018. Recital

71 of the GDPR reads as follows: “The data subject should have the

right not to be subject to a decision, which may include a measure,

evaluating personal aspects relating to him or her which is based

solely on automated processing and which produces legal effects con-

cerning him or her or similarly significantly affects him or her, such as

automatic refusal of an online credit application or e-recruiting prac-

tices without any human intervention. […] In any case, such processing

should be subject to suitable safeguards, which should include specific

information to the data subject and the right to obtain human interven-

tion, to express his or her point of view, to obtain an explanation of the

decision reached after such assessment and to challenge the decision.”

(Council Regulation, 2016 emphasis added) Even when considering

the inevitable need for further weighting the right for explanation

with other goods (like the need for rapid intervention in emergencies),

this provision can be taken as an indicator that explanation and under-

standing are important for many people—either first-person or by

proxy, for example, by a physician who is involved in the decision-

making. Some legal scholars (e.g., Selbst & Powles, 2017) even argue

that the GDPR includes a “right to an explanation” while others

(e.g., Wachter, Mittelstedt, & Floridi, 2017) reject such a reading as

too strong. At any rate, the fact that the EU has decided to set the

GDPR into force suggests that automated processing is a major con-

cern of many people.

5 | ASSIGNING RESPONSIBILITY

Imagine that the medical diagnosis of a system based on machine learn-

ing turned out to be mistaken. Although reliable in the past, and having

achieved excellent performance in independent validations, it presented

a wrong result this time. Notably, this scenario is not just possible, it will

happen inevitably, as no system can achieve 100% accuracy in the real

world. The drugs that were prescribed by the physician on the basis of

the diagnosis provided by the algorithm did not show the intended

effect and the situation of the patient declined rapidly. He comes to see

the doctor again and accuses her of mistreatment. To defend herself,

the doctor would normally recapitulate the evidence that initially justi-

fied her conclusion. Other medical experts could review this excuse,

compare it to their own experience and established guidelines, and see

whether she negligently missed or misjudged something. Eventually,

the degree of responsibility for the mistreatment that we attribute to

the doctor depends on the nature of the evidence that she overlooked

or misinterpreted. If she missed something obvious or drew conclusions

that are clearly at odds with established medical knowledge we would

classify her behavior as grossly negligent. If, however, literally no expert

would have noticed the crucial point or if the case represents one of

the inevitable outliers of the general rule, we would probably absolve

her from guilt (Figure 1).

The second issue of diagnosis based on machine learning is that it

may undermine exactly this process. On the one hand, quantification

of confidence as outlined above will provide numerical information on

how likely a certain diagnosis or outcome is to be expected relative to

a large training dataset. That is, experts' opinion on whether a failure

was foreseeable or not will need to be reconciled with this quantifica-

tion, allowing for conflicting interpretations. Would the AI-based diag-

nosis that the physician followed trump the consensus expert opinion

to the contrary and hence make her nonresponsible? If so, would not

that mean that the algorithm needs to take responsibility for the

(wrong) suggestion? This is undoubtedly a rather problematic implica-

tion. In any case, such a judgment would only be reasonable if inter-

pretability is ensured. In view of a “black box” we can, in principle, not

recapitulate evidence employed within “the box” and, as a conse-

quence, not evaluate the degree of responsibility. Importantly, this is

not necessarily the fault of the programmers of the system. While it is

true that they initially implemented certain success functions, during

the learning process the algorithm turned into something new, some-

thing epistemically opaque or “inscrutable” (for more details on the

latter notion see Selbst & Barocas, 2018, pp. 1094–1096). As a conse-

quence, the assignment of responsibility is no longer possible—at least

in the conventional way in which we assign responsibility to individ-

uals. There is an ongoing debate the notion of responsibility and its

applicability to autonomous systems. Notably, Matthias (Matthias,

2004) has identified a “responsibility gap” that, according to him, can-

not be bridged by the received concepts of responsibility. Recently,
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Nyholm (2018) has argued that the right way to understand the

agency of autonomous systems is in terms of human-machine collabo-

rations. As a consequence, he sees little room for a responsibility gap.

In our view, the problem of assigning responsibility provides strong

reasons for the view that “medical AI” will not replace physicians in

even the more distant figure. Rather, it seems most plausible that

machine learning and image analytics will take a similar role as labora-

tory examinations have today: Providing quantitative assessments

that are integrated with each other and impressions from personal

examination, weighted, and combined into a final assessment. How-

ever, as noted before, integration becomes possible only through

interpretability. Arguably, integration in a very weak sense is possible

without interpretability—exactly by referring to reliable outcomes of

an algorithm in the past. However, it is difficult to see how this alone

would allow for weighing and combining a result with other opposing

results (e.g., from traditional clinical diagnosis). This, in turn, refers

back to the problem of responsibility. Taking responsibility includes

balancing contradicting results against each other and inferentially

authorizing the final decision.

6 | DISCURSIVE PRACTICE AND
INFERENTIAL VAGRANTS

The core of the aforementioned issues seems to be the following:

Understanding and responsibility are concepts that are intrinsically

tied to the discursive practice of giving and asking for reasons. In fact,

by making an assertion we place it into the inferentially structured

space of reasons and at the same time take responsibility for its being

true. As Robert Brandom puts it: “Saying or thinking that things are

thus-and-so is undertaking a distinctive kind of inferentially articulated

commitment: putting it forward as a fit premise for further inferences,

that is, authorizing its use as such a premise, and undertaking responsi-

bility to entitle oneself to that commitment, to vindicate one's author-

ity, under suitable circumstance, paradigmatically by exhibiting it as

the conclusion of an inference from other such commitments to which

one is or can become entitled.” (Brandom, 2000, p. 11) This is exactly

what Professor Snape calls on Harry to do by asking what the evi-

dence of his accusation is. He calls on Harry to be (morally) account-

able for his claim. Without further evidence, the accusation is almost

meaningless just as a medical diagnosis or prediction would be almost

meaningless without a look at the evidence, that is, the way in which

the decision was reached based on the available features. Yet, even

state-of-the-art algorithms are not capable of taking responsibility and

due to their inherent opacity, neither is the physician who uses it, nor

is the programmer who developed it. After the initial training phase,

one may want to ascribe a certain form of “intelligent behavior” to

such an algorithm, since it produces expedient results to complex

problems, but its outcome does not qualify for a true commitment

and in fact is fundamentally different from human intelligence. More-

over, as a kind of pseudocommitment, the outcome undermines our

discursive practice by generating something that, at first sight, appears

as a premise for further inferences. However, since no one can take

responsibility for the claim, it is an inferential vagrant. To be sure, the

F IGURE 1 Illustration of our
(conceptual) argument
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reliability of an algorithm can be considered as a kind of connecting

factor, which allows for a responsible handling of its outcomes. How-

ever, in the case of contradicting results from other sources a lack of

interpretability renders it impossible to evaluate its “inferential

weight.” Take, again, the example from above: If an algorithm indi-

cates a high risk for developing Parkinson's, but MRI scans, lab tests

and the clinical history do not support this claim, a lack of interpret-

ability makes it impossible to fully evaluate its outcome. Such an eval-

uation includes answering questions like: Are the various results really

inconsistent or is there an integrative interpretation available? If not,

is there any alternative reading that brings about a consistent explana-

tion? Does the logical relation of the different results suggest dis-

missing one of them as most probably wrong?

Common intersubjective practice allows for various forms of gra-

dation, repetition, revision, and distribution. We regularly doubt the

validity of evidence provided to us by others and demand more or dif-

ferent substantiation. In such a case, our counterpart may simply

repeat his initial claim, mitigate it or add further aspects and, thereby,

densify the inferential web. While we acknowledge that the patient-

physician relationship is intrinsically asymmetric many people place a

high degree of trust in their physician, the critical aspect is that any

patient can in any (nonemergency) situation ask for explanation and

discourse. In fact, informed consent including the opportunity to ask

questions is an essential part of the ethical and legal requirements for

medical intervention. Nondiscursive elements are alien to this practice

and it is impossible to integrate them neatly. The outcome of most

state-of-the-art algorithms are monolithic in this sense. They do not

have any connecting points that allow for gradations and revisions.

They are “Take it or leave it”—things which are, ultimately, incompati-

ble with our discursive practice if they should move beyond the status

of current lab-tests, that is, information for the physicians that are

weighted against other information.

It would be disproportionate to conclude from all this that we

should not use machine-learning algorithms altogether and stop

developing the tools for “medical AI.” Presumably, such systems will

become highly reliable for various tasks in the foreseeable future. It

would be unreasonable not to use them, in particular, in the medical

context for diagnosis and prediction. The challenge is, rather, to real-

ize that they need to be connected to other information and find ways

to make their outcomes compatible with our discursive practice. Ulti-

mately, we need to find ways of integrating medical AI into our discur-

sive practice. This will only be successful if medical AI is designed in a

way that makes it integrable.

7 | EXPLAINABLE AI

Under the title of “explainable AI” initiatives heading in the direction

just mentioned are already under way. Interestingly, the US-American

Defense Advanced Research Projects Agency (DARPA) is among

those promoting this development. In a report published on the

DARPA website, David Gunning notices: “Dramatic success in

machine learning has led to an explosion of new AI capabilities.

Continued advances promise to produce autonomous systems that

perceive, learn, decide, and act on their own. These systems offer tre-

mendous benefits, but their effectiveness will be limited by the

machine’s inability to explain its decisions and actions to human users.

[...] DARPA is interested in creating technology to make this new gen-

eration of AI systems explainable. Because the most critical and most

opaque components are based on machine learning, XAI is focusing

on the development of explainable machine learning techniques. By

creating new machine learning methods to produce more explainable

models and combining them with explanation techniques, XAI aims to

help users understand, appropriately trust, and effectively manage the

emerging generation of AI systems.” (Gunning, 2016, p. 5–6) More-

over, big companies like Intel are paying attention to explainable

AI. Casimir Wierzynski (Senior Director, Office of the CTO, Artificial

Intelligence Products Group at Intel) observers: “Explainability is a sci-

entifically fascinating and societally important topic that sits at the

intersection of several areas of active research in machine learning

and AI” (Wierzynski, n.d.). Finally, a symposium at the 2017 Confer-

ence and Workshop on Neural Information Processing Systems (NIPS)

was dedicated to “Interpretable ML” (see http://interpretable.ml/; it is

only by coincidence that there is a picture of Harry Potter and his

friend Ron staring at a crystal ball on the front page of the symposium

website). Nevertheless, the issue is only slowly being recognized as

essential. In the AI Now 2017 Report it is hardly mentioned (Campolo,

Sanfilippo, Whittaker, & Crawford, 2017). However, recently the EU's

High-Level Expert Group on Artificial Intelligence has published a

report on “Trustworthy AI” which includes an assessment list for eval-

uating AI systems (High-Level Expert Group on Artificial Intelligence,

2019). Under the heading “Transparency” explainability is listed as a

key requirement (First et al., 2018, p. 29). In research on machine

learning for medical diagnosis and prediction explainable AI does not

currently play a significant role. As noted above, models detailing their

reasoning in plain language are still unattainable. Explainability, how-

ever, can be achieved on the model level (a human's ability to under-

stand the structure of the process, which provides a bridge to shared

decision-making) and on the level of the results (why was this particu-

lar decision made in this specific case). This gap needs to be addressed

before “medical AI” systems can be (or start to be) deployed in clinical

practice. Most critically, machine-learning algorithms for medical pur-

poses should be required to implement elements of explainable AI

before getting approval by regulatory authorities, even if it will be dif-

ficult to specify a necessary threshold for such elements. Inferential

vagrants are certainly not what we should like to see in medical prac-

tice. Physicians need to be able to inferentially authorize their diagno-

ses and predictions and take responsibility for them.

8 | IMPLICATIONS

For the moment, it is difficult to pin down what the requirements for

machine-learning algorithms exactly entails—in view of integrability

with other information, defensibility, and interpretability—and how it

can be implemented best. Extensive research is needed for finding
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adequate solutions. From an ethical perspective compatibility with

our discursive practice is the essential point. This is, at first, a concep-

tual claim. It demands that outcomes generated by an algorithm must

include discursive elements or points of contact for linking them to

other information and sources of knowledge und, by doing so, enable

a weighting of information based on the presented evidence.

However, it is also a claim that calls for empirical investigation:

What type of opacity in medical test results do people actually

accept and which do they consider to be suspicious? Does it depend

on the stakes, that is, the degree to which a diagnosis or treatment

will affect an individual life? We may be more happy to accept a

computer generated diagnosis that has only the consequence of

needing to take a pill each morning than one that would require

extensive surgery. This, too, is important in view of discursive prac-

tice. Therefore, studies including different target groups (patients,

physicians, other medical staff) are urgently needed that address this

question and the preferred scope of the explainability-requirement

relative to severity, available therapies and other real-life conse-

quences like becoming ineligible for insurance due to not yet present

disorders. Comparing the reactions toward machine learning algo-

rithms with those toward “expert intuitions”—which can, of course,

also be epistemically opaque—might also be instructive. At any rate,

profound knowledge of relevant factors will be essential for ethically

acceptable approval procedures. In a nutshell, machine-learning algo-

rithms call for deeper insights into the epistemology as well as the

psychology of understanding.

9 | SPECIFIC CONSIDERATIONS ON
NEUROIMAGING

Most of the difficulties and potential solutions for these discussed in

this work are rather generic to medical AI. In the following, however,

we will add a few thoughts that are directed more specifically to the

field of neuroimaging, where machine learning based on mainly MRI

but also EEG and PET data have received much attention over the

past years (for detailed reviews see Arbabshirani et al., 2017, First

et al., 2018, Wolfers, Buitelaar, Beckmann, Franke, & Marquand,

2015). Such approach has a particular appeal in the context of psychi-

atry where classical tests and objective biomarkers are largely lacking,

and indeed many of the papers discussed in the previously mentioned

reviews provide encouraging results. Compared to other application in

medicine and other fields, though, sample sizes trend to be rather

small in neuroimaging given the logistic expenses associated with

scanning large cohorts of patients and healthy subjects. Worst yet, it

has been noted, that prediction accuracy trends to decline with

increasing sample size, which counters the logical expectation and

could be an indication of overly optimistic procedures in earlier,

smaller studies. This highlights the need for more independent testing

of predictive algorithms, ideally using a new, unrelated dataset once

all optimization has finished and the final model has been trained. At

the moment, such approach is clearly limited by data availability, lead-

ing to a dominance of cross-validation over external evaluation

(Mendelson, Zuluaga, Lorenzi, Hutton, & Ourselin, 2016; Varoquaux,

2018; Whelan & Garavan, 2014). We envision, though, that independent

tests will become more of a norm in the future and that this development

will have a positive mutual influence with increased data sharing—either

fully open or through joint publications as is already the standard in

genetics. Likely, accuracies will turn out to be lower in this case, but more

reflective of the true level of generalization. That is, the true predictive

power and hence most likely the limitations of machine-learning

approaches for prediction in clinical neuroimaging will most likely only be

revealed once the field is moving toward a more rigorous, out-of-site test-

ing performed after completion of all model selection, hyper-parameter

optimization and model training has been completed.

When further considering the fact that accuracy for diagnostic deci-

sions (patient vs. control) are rarely exceeding 80–85%, apart from the

case of Alzheimer's disease, it feels as if fully automated decision-making

in brain medicine is unlikely to happen in the near future. This situation,

however, poses the question of how to develop brain measures into clini-

cally useful biomarkers for shared decision-making. That is, assuming that

an autonomous diagnostic or prognostic assessment is not currently fore-

seeable, the information that can undisputedly be gained from neuroim-

aging data through machine-learning approaches should find another

avenue into clinical practice. A conceivable role for predictive model-

ing would this to provide a score-sheet similar to a lab chart or the

report from a diagnostic procedure. Such sheet could provide classi-

fication labels and associated likelihoods as well as reference infor-

mation on the diagnostic accuracy of the algorithm in well-

conducted (see above) evaluation studies for multiple disorders. For

example, a patient with suspected Parkinson's disease could provide

the labels, scores or probabilities for Parkinson's, Depression,

Alzheimer's and other disorders as derived from the patient's MRI

scan. The consulting physician could then integrate and weight this

information relative to the clinical history, their own examination, lab

results, and other evidence. We would argue that this would just

shift the need for transparency and interpretability from the patient

to the physician, who will most likely put greater importance on the

algorithmic findings if they can be understood and hence put into

discourse with the surrounding information.

This also leads to a related yet rarely explored field, namely the

integration of machine learning with existing knowledge about

human brain organization and (nonimaging) pathophysiological

understanding. Such integration will most likely be bi-directional,

as on the one hand prior knowledge can be powerful for feature

definition and reduction of the search space whereas on the other

relevance of a given feature of predictive power of a certain set of

features can provide new insights into the organization of the brain

and its pathology (Chin, You, Meng, Zhou, & Sim, 2018; Nostro

et al., 2018; Weis et al., 2019). Similar considerations may hold for

the aforementioned juxtaposition of clinical examination, test

reports and machine-learning outputs, which should lead to novel

insight and hopefully a consequential refinement of machine-

learning algorithms based thereon. That is, predictive algorithms

can both benefit from prior information and feedback relevant

insight about diagnostic relevance of a given feature set. In this
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context, we would clearly position ourselves against the idea that

“the data will sort itself out” given that it seems unrealistic that any

learning approach will ever see enough data to adequately cover

the long and fat tails of clinical distributions.

A final question for machine learning on MR imaging data arises from

the broad range of different imaging sequences and hence features that

can be gained. Currently, most work on is geared toward the use of either

structural imaging data or resting-state fMRI for classification. Yet, even

within either of these, many different features can be extracted, for

example, local volume, shape and cortical thickness from structural MRI,

functional connectomes, ICA maps or local measures such as regional

homogeneity (ReHo) or the amplitude of low frequency fluctuations

(ALFF) from resting-state data. In addition, diffusion-weighted imaging,

task-based fMRI including naturalistic stimulation and arterial spin labeling

(ASL) all provide suitable features. Given that each of these reflect a dif-

ferent, distinct part of individual neurobiology and presumably pathophys-

iology, it seems reasonable to assume that the most relevant features

may not be likewise present in all modalities. From a theoretical perspec-

tive with unlimited training data, multimodal imaging features would thus

allow researchers to always find classifiers that are at least as good

as those from any individual modality. If relevant features would

only be present in one modality, it would pick them in the same

way as if only this modality was available and yield the same accu-

racy. If they were distributed across modalities, it could combine

them to beat any unimodal one. Several approaches for multimodal

classification have thus been employed on neuroimaging data,

including concatenation, multi-kernel learning or, as a more recent

development through the synergy rule, which is constructed based

on an integration of multiple related monotonic, for example, SVM,

classifiers (see for examples Liem et al., 2017; Schmaal et al., 2015;

Vapnik & Izmailov, 2016; Youssofzadeh, McGuinness, Maguire, &

Wong-Lin, 2017). It remains to be seen, though, whether machine

learning based on multimodal MR imaging data can outperform

unimodal ones in strictly independent evaluations, given the higher

number of features and (usually for logistic reasons) lower number

of observations for the former, which may lead to over-optimistic

assessments as discussed above.

In summary, potentially owing to the absence of objective tests

for many brain disorders, neuroimaging has been very keen to explore

the use of machine-learning tools with the aim of clinical applications.

While yet limited by low sample sizes and potentially over-optimistic

accuracies due to a lack of external validation sets, these approaches

may become valuable assets in a shared decision-making context that

may at the same time build upon and feed into knowledge on brain

organization and pathophysiology.

10 | ADDENDUM

In the scene from “Harry Potter and the HalfBlood Prince” mentioned

at the outset Harry shies away from disclosing the evidence he has

for his accusation of Malfoy because of his deep mistrust of Professor

Snape. Deliberately not providing evidence can occasionally be an act

of taking responsibility—but one that is open only to discursive beings

who can, in principle, give and ask for reasons.
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