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Abstract: Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent histone deacetylases
that incorporate complex functions in the mechanisms of cell physiology. Mammals have seven
distinct members of the SIRT family (SIRT1-7), which play an important role in a well-maintained
network of metabolic pathways that control and adapt the cell to the environment, energy availability
and cellular stress. Until recently, very few studies investigated the role of SIRTs in modulating
viral infection and progeny. Recent studies have demonstrated that SIRT1 and SIRT2 are promising
antiviral targets because of their specific connection to numerous metabolic and regulatory processes
affected during infection. In the present review, we summarize some of the recent progress in SIRTs
biochemistry and their emerging function as antiviral targets. We also discuss the potential of natural
polyphenol-based SIRT modulators to control their functional roles in several diseases including
viral infections.
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1. Introduction

Human SIRTs form an evolutionarily conserved family of proteins that are ubiqui-
tously expressed in all taxa. SIRTs are classified as NAD+ dependent deacylases/mono-
ADP ribosyltransferases that regulate numerous cellular functions, including metabolism,
cell cycle, stress and longevity [1–4]. Their name comes from the first member of the
family that was studied in Saccharomyces cerevisiae, which was characterized as “silent
information regulator 2” (Sir2), because it appeared to be involved in gene transcription
silencing [5]. Subsequent studies have confirmed that the enzymatic activity of SIRTs af-
fects the expression of various genes through the deacetylation of the ε-terminus of the
amino acid Lys residues of histones. The discovery of SIRT isoforms in yeast and later in
bacteria, plants and mammals suggests that Sir2 belongs to a very large and ancient family
of genes [6,7].

Early studies have established that SIRTs affect the lifespan of organisms. Indeed, not
only in yeast but also in other organisms, such as Drosophila melanogaster and Caenorhabditis
elegans, expression of SIRTs leads to a longer shelf life, following a mechanism similar
to that of calorie restriction [8–10]. Under calorie restriction conditions, SIRTs are able
to increase mitochondrial biogenesis, enhance metabolism [11] and reduce the levels of
reactive oxygen species (ROS), thus alleviating the progression of inflammation [12–16].
These observations opened new avenues in understanding the mechanisms that are affected
by the action of SIRTs.
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Mammals have seven distinct members of the SIRT family, SIRT1-7, which play an
important role in the regulation of gene expression, mainly by controlling the posttransla-
tional modification status of histones and transcription factors [7,17,18]. Another role that
has been assigned to SIRTs is the regulation of a well-maintained network of metabolic
pathways [15,17–19]. SIRTs were originally classified as NAD+-dependent histone deacety-
lases, indicating that these enzymes are involved in different metabolic pathways as part
of the transcriptional adaptation mechanisms, acting as metabolic sensors. For example,
the three mitochondrial SIRTs (SIRT3, SIRT4 and SIRT5) can control essential metabolic
pathways. SIRT3 affects a range of key metabolic processes, such as fatty acid oxidation and
the tricarboxylic acid (TCA) cycle [13]. SIRT4 inhibits the pyruvate dehydrogenase com-
plex [20]. Furthermore, SIRT5 with its desuccinylase and demalonylase activity controls
several metabolic pathways, including the urea cycle [21–23]. Considering their role in the
regulation of metabolism, SIRTs were studied in the context of metabolic diseases [24–28].
Therefore, SIRTs regulate a large number of pathways, such as glucose and fatty acid
metabolism, apoptosis, DNA repair, neuronal generation, inflammatory response and even
the regulation of the circadian clock of organisms [1,2,4].

2. Methods
2.1. Data Sources

The following bibliographic databases were used:

Medline/PubMed: http://www.ncbi.nlm.nih.gov/pubmed;
Web of Science: http://www.webofknowledge.com;
SCOPUS: http://www.scopus.com; Google Scholar: https://scholar.google.com; Protein
data bank: https://www.rcsb.org/.

2.2. Search Terms and Search Strategies

The authors searched databases until 31st January 2021. The bibliographic databases
were searched using combinations of the following keywords: activator, ageing, antiviral
compounds, calorie restriction, coronavirus infections, Covid-19, energy metabolism, in-
flammation, inhibitors, lysine acylation, metabolism, mitochondria, modulators, NAD+,
natural products; SARS-CoV-2, Sirtuins, virus.

2.3. Type of Investigations

The authors searched all relevant studies including human and animal models and
cell lines.

3. Acetylation and Deacetylation of Proteins

The conjugation of acetyl groups to proteins is a posttranslational modification mecha-
nism that is widely used by eukaryotic cells to regulate various functions [29]. It is estimated
that more than 6800 known acetylation sites exist in mammalian proteins [30]. A common
and possibly more important form of acetylation is carried out post-translationally, at
the ε-terminus amino group of Lys residues where an acetyl group is transferred from
acetyl-CoA [31].

Lysine is a positively charged amino acid; therefore, its acetylation neutralize its posi-
tive charge and as a consequence alters the electrostatic properties of the protein [32,33].
This modification is a reversible process and takes place largely in histones, which are
proteins that bind to DNA and form the basic structure of chromatin, the nucleosome.
The group of enzymes that are responsible for the acetylation of histones are the histone
acetyltransferase (HATs) [34]. The DNA has a negative charge while histones are rich
in positively charged amino acid residues (lysine, arginine and histidine). The replica-
tion and transcription processes of DNA require the loss of interaction between DNA
and histones, which is achieved by reducing the positive charge of histones. This is a
reversible process, and therefore the degree of histone acetylation determines their access
to DNA [32,33]. Conversely, histone deacetylation leads to transcriptional silencing of

http://www.ncbi.nlm.nih.gov/pubmed
http://www.webofknowledge.com
http://www.scopus.com
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genes, as a heterochromatin environment is created around the gene, making it inaccessible
to transcriptional mechanisms [35,36].

4. The Function, Structure and Regulation of SIRTs
4.1. The Human SIRT Family and Their Subcellular Status

SIRT genes are found in virtually all organisms, both prokaryotic (mycobacteria,
eubacteria and archaea) and eukaryotic (yeasts and protozoa). In prokaryotes, SIRTs are
encoded primarily by a single gene, while in eukaryotes by multiple genes. The variety
of genes encoding these enzymes leads to the formation of isoforms, which have distinct
catalytic functions and are localized in different subcellular compartments [2,18,37–40]. In
mammals, the SIRT family consists of seven isoenzymes, SIRT1-7 (Table 1). Phylogenetic
analysis of different SIRT genes (eukaryotic and prokaryotic) indicated that the seven
mammalian SIRTs can be grouped into four different classes (I—IV) [2,6,18,38,39] (Table 1).
In Class I belongs the SIRT1, SIRT2 and SIRT3 and is divided in three sub-classes: a, b and
c. Class II includes SIRT4, which also includes SIRTs from bacteria, insects, nematodes,
fungus and protozoans. SIRT5 is part of the Class III SIRTs, whereas Class IV includes
SIRT6 and SIRT7, divided in two sub-classes IVa and IVb.

Table 1. The class, functional activity, molecular mass and chromosomal location of seven human SIRTs (SIRT1–7).

Sirtuins Class Functional Activity Molecular Mass
(kDa)

Chromosomal
Location References

SIRT1 I Deacetylase, Deacylase 81.7 10q21.3 [17,18,41,42]
SIRT2 I Deacetylase, Deacylase 41.5 19q13.3 [8,43–46]
SIRT3 I Deacetylase, Decrotonylase 43.6 11p15.5 [13,17,18,41,47,48]

SIRT4 II
Deacetylase,

ADP-ribosyltransferase,
Lipoamidase, Deacylase

35.2 12q [17,18,49]

SIRT5 III Deacetylase, Desuccinylase,
Demalonylase, Deglutarylase 33.9 6p23 [21–23,50–52]

SIRT6 IV
Deacetylase, Demyristoylase,

ADP-ribosyltransferase,
Deacylase

39.1 19p13.1 [18,20,47,53–55]

SIRT7 IV Deacetylase, Desuccinylase, 44.9 17q25 [18,56]

Each of SIRT isoenzymes is located in different subcellular compartments, depending
on the function it performs, as shown in Figure 1. Some SIRTs can delocalize depending
on the cell or tissue type, the developmental stage, metabolic status, and certain stress
conditions [1,3,7,41]. The distribution of SIRTs in different subcellular compartments
allows them to interact with a wide variety of transcription factors and to participate in
the regulation of different metabolic processes, such as apoptosis, glucose homeostasis,
insulin resistance, stress resistance, circadian rhythm, mitochondrial biogenesis, and DNA
repair [1–4,43]. In addition, they play a key role in the development of inflammation and
autophagy [56].

The isoenzymes SIRT1, SIRT6 and SIRT7 are found in the nucleus of the cell and
epigenetically affect gene regulation, exerting their enzymatic activity as histone deacety-
lases [7,41]. SIRT1 contains the nuclear localization signal peptide sequence (KRKKRK) in
41–46 residues; however, under certain conditions, it can also be transported from the nu-
cleus to the cytoplasm where it is involved in the regulation of insulin metabolism [41,42].
SIRT6 is found in heterochromatin and is involved in DNA repair mechanisms and also
occurs in nucleoli during the G1 cell cycle. Overexpression of SIRT6 leads to slower mitotic
process [50]. SIRT6 is also localized in the endoplasmic reticulum, where it deacetylates
tumor necrosis factor-α (TNF-α) [53]. SIRT7 is located at the nucleolus and is involved
in rRNA transcription mechanism [56]. The main site of SIRT2 is the cytoplasm, but in
some phases of the cell cycle it is also found in the nucleus. SIRT2 is responsible for the
deacetylation of tubulin microtubules [43,44] and appears to play a key role in adipocyte
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differentiation [45]. In addition, its action is necessary for the proper separation of chromo-
somes during mitosis [46] as well as for the exit of cells from this phase [55–57].
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The isoenzymes SIRT3, SIRT4 and SIRT5 are found in the mitochondria and contribute
to oxidative stress alleviation by regulating the activity of specific metabolic enzymes [41]
and ATP synthesis, metabolism and intracellular signaling. SIRT3 can be moved between
the nucleus and mitochondria under cellular stress [13,41].

4.2. Structure and Substrates of SIRTs

Numerous studies have examined the structural features of SIRTs (Figure 2) [18,57,58].
SIRTs composed by approximately 275 amino acids that are organized into two structurally
distinct domains: the conserved large domain that has the characteristic structure of the
Rossmann fold and the small domain that is less conserved among the members of the SIRT
family and contains a zinc ion binding site with the consensus sequence Cys-X2–4-Cys-
X15–40-Cys-X2–4-Cys [54,59–62] and a helical module [59,62] (Figure 3). The Rossmann
fold is composed of six parallel β-strands that are grouped in a central β-sheet surrounded
by α-helices. The smaller domain consists of three opposite parallel β-sheets where the
tetrahedral zinc ion is bound (Figure 3).

The deacetylation reaction catalyzed by SIRTs is shown in Figure 4A. The reac-
tion includes three substrates: NAD+, water and the acetylated protein. The catalytic
cycle involves the formation of the enzyme/NAD+/acetylated substrate ternary com-
plex [59,63–65]. In the deacetylation process, the glycosidic bond between the nicotinamide
and ADP-ribose is cleaved and the free nicotinamide (NAM) is released. Then, the acetyl
moiety from the substrate is transferred to ADP-ribose to form acetyl-ADP-ribose (2′-
O-acetyl-ADP-ribose, AADPR) and the deacetylated protein [55,63]. The biological role
AADPR has not been established so far; however, reasonable experimental results suggest
that it acts as a signal transducer [65]. Under normal conditions, AADPR is spontaneously
isomerized to 3’-O-acetyl-ADPR.
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The active site of SIRTs is formed by an extended “clef” that is responsible for the
recognition and binding of the NAD+ cofactor, and is located at the Rossmann fold [63].
The NAD+ binding site can be divided into three sub-regions: (a) the adenine and sugar
ribose binding site, (b) the nicotinamide ribose binding site, and (c) the nicotinamide moiety
binding site. When the acetylated lysine substrate binds to the enzyme, NAD+ can undergo
a conformational change, bringing the nicotinamide group deeper to the c site where it can
be cleaved [59,60,62]. The active site allows the carbonyl oxygen group of acetylated lysine
substrate to come into contact with the anomeric carbon of the nicotinamide riboside of the
NAD+. This effective binding accelerates the reaction of acetyl-oxygen with the anomeric
carbon, leading to the cleavage of the nicotinamide moiety of NAD+, and the transfer of
ADP-ribose to acyl-oxygen, leading to deacetylation.

The deacetylation of lysine residues using as cofactor NAD+ remains the most common
reaction that describes the catalytic function of SIRTs more accurately, although there
are several examples (Table 1) where they can act on non-acetylated substrates [66–68]
(Figure 4B). For example, it has been reported that succinylated lysine residues in hepatic
mitochondria is a target of SIRT5 [50,51]. Another example includes SIRT6, which exhibits
demyristoylation activity and has the ability to deacylate long fatty acid aliphatic chains
in nuclear factor-κB (NF-κB) factor [55]. SIRT4 acts as an ADP-ribosyltransferase [49]
(Figure 4C), whereas SIRT6 exhibits both of these enzymatic activities [60,69]. SIRT4 also
shows lipoamidase activity [49] and SIRT5 displays high desuccinylation activity [50–52].

SIRTs are able to recognize many different protein substrates, although they were
originally classified exclusively as histone deacetylases [48,67,68]. For example, SIRT1 has
been shown to deacetylate histone H1 on lysine Lys26, H3 on Lys9, Lys14 and Lys56, and
H4 on Lys8, Lys12 and Lys16 [67]. The presence of SIRTs in subcellular compartments that
do not contain histones prompted the researchers to redefine the range of their protein
substrates. Subsequent studies have shown that several other protein substrates are not
histones but transcription factors or enzymes that are responsible for cell regulation and
adaptation [31,64,68].

The enzymatic activity of SIRTs can also be affected by post-translational modifica-
tions. Phosphorylation is one of the most well-known mechanisms of post-translational
regulation of SIRTs [69]. For example, SIRT1 has fifteen phosphorylation sites and several
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protein kinases, e.g., c-Jun N-terminal kinases (JNKs), casein kinase 2 (CK2), cyclin depen-
dent kinase 1 (CyclinB/Cdk1), dual-specificity tyrosine-phosphorylation-regulated kinases
(DYRKs), have been identified with the ability to phosphorylate these sites and thus affect
its activity. The phosphorylation and dephosphorylation status of SIRT1 not only influence
the catalytic function of the enzyme itself, but also regulate its expression levels through a
protease-dependent or independent degradation mechanism [69]. The catalytic function of
SIRT2 is also regulated through phosphorylation/dephosphorylation processes. Phospho-
rylation leads to enzyme activation, whereas dephosphorylation inhibits its activity.
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be deacylated by SIRT3,5,7. (C) The ADP-rebosyltransferase activity catalyzed by SIRT4 and SIRT6. (D) NAM can be
used as precursor for the biosynthesis of NAD+ by the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and
nicotinamide mononucleotide adenylyltransferase (NMNAT).



Cells 2021, 10, 460 8 of 20

5. The Regulation of SIRTs by NAD+ and Natural Products
5.1. The Mechanism of SIRT1 Regulation by NAD+

The biochemical role of SIRTs and their activity is affected by the availability of
NAD+ and its intermediates (NADH, NAM) [9,10]. Several studies performed using yeast
and human cells indicated that nicotinamide (NAM) and NAD+ levels are important
regulators of SIRT activity, which in turn are affected by individual cell conditions [70–72].
For example, under conditions of caloric restriction or physical exercise, it is known
that the action of SIRTs is enhanced [11,15,16]. In these cases, it has been observed that
increasing the intracellular level of Ca2+, positively affects the metabolic enzyme adenosine
monophosphate-activated protein kinase (AMPK) [15,16]. AMPK, in turn, increases NAD+

levels through the up-regulation mechanism of nicotinamide phosphoribosyltransferase
(NAMPT), which, together with nicotinamide mononucleotide adenyltransferase (NMNAT)
are key enzymes for the biosynthesis of NAD+ [71,72] (Figure 4D).

The metabolism and behavior of mammals, including humans, have been found to be
regulated by the circadian rhythm [69,73–75]. The center for controlling and regulating the
circadian rhythm of mammals is located in the neurons of the supraspinatus nucleus of
the brain and in cells of the peripheral tissues, where the expression of genes takes place
at a periodicity of twenty-four hours. The “molecular oscillator” is regulated by positive
and negative transduction signals, which create regression cycles, so that periodic changes
(oscillations) are achieved. SIRT1 has been found to function as a key regulator of molecular
mechanisms that control circadian rhythm [4,73–76]. Subsequent studies have shown that
intracellular levels of NAD+ show periodic daily fluctuations that are fully in line with
circadian rhythms. The enzyme NAMPT, which catalyzes the first step in the biosynthesis
of NAD+ from NAM, requires the presence of SIRT1, which binds to the NAMPT promoter.
Subsequent studies provided evidences that the expression levels of NAMPT in mammals
show periodic fluctuations [75]. The heterodimeric transcriptional activator of the circa-
dian rhythm, CLOCK (basic helix-loop-helix-PAS transcription factor):BMAL-1 (brain and
muscle ARNT-like 1 protein), induces the expression of NAMPT, whose action is inhibited
by SIRT1 (see Figure 5) [75,77,78]. In short, expression of SIRT1 silences the expression
of NAMPT, which leads to a decrease in the concentration of NAD+, diminishing the
activity of SIRT1. When the activity of SIRT1 decreases significantly, then the activity of
CLOCK:BMAL-1 begins to increase, which restores the expression levels of NAMPT and
thus completes the cycle [75,76].

5.2. Natural Products as SIRT1 Modulators

Natural products chemistry continues to be an excited area for discovering new
drugs or lead compounds [26,28]. The diversity and complexity of natural products can
provide excellent source for bioactive molecules with remarkable efficacy and specificity.
Therefore, they hold a great potential for new scaffolds discovery with the ability to
modulate therapeutic protein targets [41,78,79]. SIRT modulators are compounds that are
able to inhibit or activate SIRTs’ activity (Figure 6). They gained a particular interest as
they can regulate (activate or inhibit) their function [60–62,78–81]. For example, SIRT1
activators have been proposed for treating a range of diseases and disorders such as aging,
oxidative stress, diabetes, obesity, neurodegenerative diseases, cardiovascular disease and
inflammation [78–82].
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Figure 5. The circadian clock machinery regulates the biosynthesis of NAD+ through control of the
NAD+ salvage pathway. BMAL-1:CLOCK heterodimer binds to the promoter region of NAMPT
to regulate the rhythmic transcription of this gene and thus the levels of NAD+. Expression of
SIRT1 silences the expression of NAMPT (the rate-limiting enzyme in NAD+ biosynthesis), which
leads to a decrease in the concentration of NAD+, diminishing the activity of SIRT1. When the
activity of SIRT1 decreases significantly, then the activity of CLOCK:BMAL-1 begins to increase,
which restores the expression levels of NAMPT and thus completes the cycle. NAMPT: nicotinamide
phosphoribosyltransferase; CLOCK: basic helix-loop-helix-PAS transcription factor; BMAL1: Brain
and muscle ARNT-like 1 protein; NMN: nicotinamide mononucleotide; NAM: nicotinamide.

Studies related to metabolic disorders and cancer suggest that in addition to activa-
tors, finding inhibitors of SIRT1 could be equally useful. Both antagonistic mechanisms,
i.e., SIRT1 activation and inhibition, have been proposed in cancer therapy [12,82–84].
SIRT1 inhibition has also been proposed in the treatment of virus infections [71], whereas
SIRT2 inhibitors might be useful for the treatment of cancer and neurodegenerative dis-
eases [80,81,83]. Therefore, the discovery of small molecules that display a combination of
activating and inhibitory activity across the seven different SIRTs, with the mode of action
of each compound tailored to treat different diseases, is highly relevant.

To date, several modulators with a wide range of core structures have been identified
and characterized [41,79]. Some well-known modulators of SIRTs are shown in Figure 6
and briefly discussed. Splitomicin inhibits SIRT2 deacetylase activity with an IC50 of 60
µM by altering or blocking the access to the acetylated histone binding pocket [83]. Sirtinol
is a specific SIRT1 and SIRT2 inhibitor with IC50 131 µM and 38 µM, respectively [84,85].
Cambinol is an inhibitor for both SIRT1 and SIRT2 with IC50 values 56 and 59 µM, re-
spectively [86]. Cambinol has the same β-naphthol moiety with sirtinol and splitomicin.
Suramin is a polyanionic naphthylurea and strong inhibitor of SIRT1 and SIRT2 with
IC50 values 0.297 µM and 1.15 µM, respectively. Suramin is also a weaker inhibitor for
SIRT5 (IC50 22 µM) [87]. Several viruses have been described to be inhibited by suramin
including HIV, HSV-1, HBV, HCV. Tenovin-6 inhibits the protein deacetylase activities of
purified human SIRT1, SIRT2 and SIRT3 in vitro with IC50 of 21 µM, 10 µM and 67 µM,
respectively [88].
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The most well-known modulator of SIRTs is resveratrol (3,5,4-trihydroxy-stilbene),
which is the first SIRT1 activator that was identified [89] (Figure 6). It belongs to the
phytoalexins and is present at high concentrations in grapes, eucalyptus and fir leaves, nuts
and berries, while in lower concentrations it is found in many other plants [95]. It displays
remarkable antioxidant activity and several studies have proven its anti-cancer [96], anti-
inflammatory and anti-aging activities [97,98].

Resveratrol was first described as a SIRT1 activator. Howitz et al., 2003, demonstrated
that resveratrol was capable of reducing the Km of both the acetylated substrate and NAD+

(35- and 5-fold, respectively) [8]. Hubbard et al., showed that resveratrol is an allosteric
activator of SIRT1 [99]. X-ray crystallography was used to determine the structural basis
of substrate-dependent activation of SIRT1 by resveratrol [100,101] (Figure 7). Analysis of
the crystal structure of SIRT1 in complex with resveratrol and 7-amino-4-methylcoumarin
(AMC)-containing peptide substrate showed that two resveratrol molecules were bound at
the Rossmann fold domain of SIRT1, interacting with the peptide substrate. This interaction
promotes a tighter binding between SIRT1 and AMC peptide, and thus stimulates SIRT1
activity. Resveratrol also promotes the activation of SIRT5 and the weak inhibition of SIRT2
and SIRT3 [102]. Intense research effort focuses on the design and synthesis of more potent
and efficient resveratrol-like analogues with increased bioavailability [103,104]. Some of
them appeared to have a stronger effect, compared to resveratrol, as for example, the
tri-acetyl-stilbene that was found to be more effective in prolonging life.
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Although initially the role of resveratrol as a direct activator of SIRT1 was criticized,
recent mechanistic data demonstrates that, at least indirectly, resveratrol activates SIRT1
activity in vivo by increasing NAD+ available concentration [105]. Another mechanism
that can shine light on the protective effect of resveratrol connects the increase in SIRT1
activity, which enhances the deacetylation of forkhead box protein O1 (FOXO1) and the
activation of manganese superoxide dismutase (MnSOD) downstream. The induction of
MnSOD alleviates oxidative stress [106,107]. Han et al., in 2020 showed that resveratrol
reduces hypoxia-induced apoptosis in H9C2 cells through the activation of SIRT1/miR-
30d-5p/NF-kB axis [108].

Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] (Figure 6),
a polyphenol derived from the turmeric plant, is another well-studied natural product that
activates SIRT1 [90]. The flavonoid polyphenol quercetin, 3,3,4,5,7-pentahydroxyflavone,
is a natural glycoside that has antioxidant and anti-inflammatory properties [91,92,109].
Quercetin is believed to act via the AMPK/SIRT1 signaling pathway [110].

www.pymol.org
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Berberine (Figure 6) is an isoquinoline alkaloid reported to have analgesic, anticancer,
anti-inflammatory and myocardial protective properties [111]. Berberine is an activator of
SIRT1 and through this mechanism, is able to decrease FOXO1 acetylation, triggering anti-
apoptotic signaling pathways via Bcl-2 expression, Bax and caspase-3 downregulation [93].
The dietary flavonoid fisetin (3,3,4,7-tetra-hydroxyflavone) (Figure 6) can counteract ox-
idative stress and mediate immune response via AMPK/SIRT1 and Nfr2 pathways [92].
Fisetin was shown to increase SIRT1 expression and enhance SIRT1-mediated peroxisome
proliferator-activated receptor (PPAR) and FOXO1 deacetylation in 3T3L1 cells [94].

Chalcones have shown inhibitory properties against SIRT1. Kahyo et al., 2008 showed
that the chalcone derivative 3,20,30,40-tetrahydroxychalcone displayed inhibitory potency
against the SIRT1-mediated deacetylation of a p53 acetylated peptide [112]. Bichalcones
have also been shown to be potential SIRT inhibitors. For example, the bichalcone rhuschal-
cone I isolated from the medicinal plant Rhus pyroides Burch showed inhibitory activity
against SIRT1 with an IC50 value of 40.8 µM [113].

6. SIRTs as Emerging Antiviral Targets
6.1. The Role of SIRTs in Viral Infections

The unexpectedly rapid emergence of SARS-CoV-2 has raised a great concern that a
pandemic could spread rapidly without time to prepare a public health response to stop
the illness spread [114]. As we are still unable to predict with confidence the progress of
COVID-19 pandemic and considering that the next pandemic is most likely to be caused by
influenza, the discovery of antiviral compounds has to be the priority public health threat
in the world [115,116]. Most importantly, we need to have a range of available antiviral
tools that can respond rapidly and effectively to emergencies.

Viruses depend on host-cell metabolism for energy, for production of viral compo-
nents and genomes, as well as for organization of cellular compartments of replication,
maturation and dissemination. As such, the control of the host cell’s metabolism by SIRTs
appears to be an essential component that regulates the viral-host interaction [117–121].
Taking into account that SIRTs are molecular targets on human cells rather than on viruses,
the development of resistance is less likely to occur. Several members of SIRTs have been
previously shown to affect a broad range of viral pathogens [122–125]. It has been re-
ported that, in some cases, SIRTs promote infection, while in other cases, SIRTs restrict
infection [117,122,123,126–131]. Given the diverse activities of SIRTs as key regulators of
transcription and metabolism, they can be considered as effective antiviral targets for the de-
velopment of broad-spectrum antivirals, similar to the broad-spectrum antibiotics [119–121].
In addition, SIRTs can affect the replication of DNA and RNA viruses; hence, targeting
through inhibition or activation can provide an effective antiviral therapeutic strategy.

The regulation of NAD+ intercellular level through the inhibition/activation of SIRTs
is presumably one approach [118,132]. This is supported by the observation that certain
viruses have already developed this capability. For example, it has been reported that HSV-
1 infection leads to reduced NAD+ levels [133]. The balance between oxidized and reduced
forms of NAD+ is an important component of the redox state of a cell, a balance reflecting
both the metabolic activities and the status of the cell. In addition, the stress caused
by viral replication often establishes a high NAD+-state that activates SIRTs [128,132].
Another approach can be based on the transcriptional functions of certain SIRTs that appear
necessary for the regulation of viral gene expression [120,121,134,135]. Therefore, fine-
tuning of SIRT regulation at the level of one enzyme or one function may be a valuable
way forward to take advantage of SIRT defense properties [120,135,136].

6.2. SIRT1 and SIRT2 Inhibitors Can Be an Option to Treat Viral Infections, Including COVID-19

SIRT1 inhibitors affect the replication and growth of many viruses including Mers-CoV,
HIV, Epathitis B, Vesicular Stomatitis Virus, flu strains, adenovirus and others [126,135–139].
Notably, SIRT1 affects angiotensin-converting enzyme 2 receptor (ACE2R) expression [140–142].
The ACE2R plays the role of the host cell receptor for the virus and binds through the
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spike protein on the viral capsid [143]. This is a key event for infectivity, activating the
clathrin-dependent endocytosis of both the ACE2R and virus. Inhibition of SIRT1 activity
can affect and reduce the expression of ACE2, as the expression of the ACE2 transcript is
controlled by the activity of SIRT1 under conditions of energy stress [141].

Energy stress lowers the available level of NAD+. NAD+ level declines with age and
is also reduced in conditions associated with oxidative stress. Koyuncu et al., (2014) have
reported that small interfering RNA (siRNA) knockdown for each of the seven SIRT genes
enhances the growth of several viruses, similar to that observed after treatment with a
SIRT1 inhibitor [123]. On the other hand, compounds that activate SIRT1, prevent the
production of viral progeny. Interestingly, similar response was observed after knockout
or overexpression of the Escherichia coli SIRT, CobB, which regulates the growth of bac-
teriophages, suggesting that SIRTs can be considered as broad-spectrum, evolutionarily
conserved viral restriction factors [123].

The life-cycle of a virus involves the biosynthesis of viral components that depend on
host-cell metabolic conditions. Therefore, the regulation of the host cell’s metabolism is
a key function of the viral-host interaction [117–121]. One of the core roles of SIRT1 and
SIRT2 is to control metabolism and gene expression through post-translational modification
of several regulatory proteins in the host cell as well as in virus [19,41]. Through these
mechanisms, SIRTs may be able to control the outcome of viral infection by regulating
both host and viral gene expression. Two examples include the interaction of SIRT1 and
SIRT2 with the protein p53 (cellular tumor antigen p53) and the transcription factor c-
MYC, respectively. It is well established that p53 is a protein substrate for SIRT1 and is
deacetylated in a NAD+-dependent manner, leading to the inhibition of its transcription
activity and the modulation of pathways that are implicated in regulation of tissue ho-
moeostasis [144–147]. When a cell is subjected to stress, such as during viral infection,
p300 acetylates and activates p53, triggering a host process that inhibits viral replication,
leading to infected cell apoptosis. However, some viruses have evolved mechanisms for
deacetylation of p53—such as up-regulation of SIRT1 and SIRT2—that render p53 inactive,
allowing the cell to survive and the virus to propagate [148]. Inhibition of SIRT1 can block
viral-induced deacetylation of p53, causing hyperacetylated p53 (accumulation of active
p53), leading to cell death and virus elimination. SIRT2 inhibition leads to the degradation
of the transcription factor c-MYC via induction of the ubiquitin ligase NEDD4 [149]. Many
viruses such as adenovirus, herpes simplex virus 1 and influenza A upregulate c-MYC to
activate the genes that are required for glutamine utilization, which is consumed for viral
nucleic acid biosynthesis [150,151].

Another example is the interaction of SIRTs with key transcription factors, such as NF-
κB and FOXO1 [152–155]. The connection and crosstalk between NF-κB and SIRT1 in the
regulation of inflammation (see Figure 8) and metabolic disorders have been investigated
thoroughly by Kauppinen et al. [152]. Various subunits of the NF-κB family of transcrip-
tion factors are acetylated/deacetylated at multiple sites, affecting the DNA-binding and
transcriptional activity of these proteins. For example, the p65(RelA) subunit is deacety-
lated at Lys310 by SIRT1, causing the inhibition of the NF-κB-mediated signaling [156,157].
Kauppinen et al., suggested that NF-κB signaling plays a key function in innate immunity
defense, while SIRT1 controls the oxidative respiration and cellular survival [152]. On
the other hand, NF-κB signaling down-regulates SIRT1 activity through the expression of
miR-34a, IFNγ and reactive oxygen species. The inhibition of SIRT1 disrupts oxidative
energy metabolism and stimulates the NF-κB-induced inflammatory responses. Hariharan
et al., have reported that the SARS-CoV-2 components induce the activation of NF-κB in
different cells, leading to the production of various chemokines (chemokines ‘storm’) [153]
(see Figure 8).
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p65 (RelA) and p50 proteins, is located in the cytosol complexed with the inhibitory protein IκBα. A variety of extracellular
signals can activate the enzyme IκB kinase (IKK), which phosphorylates the IκBα protein, leading to dissociation of the
inhibitory protein IκBα from NF-κB. The phosphorylated IκBα is subjected to ubiquitination, leading to its degradation by
the proteasome. The activated NF-κB is then translocated into the nucleus and interacts with specific sequences of DNA.
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DNA into mRNA. SIRT1 suppresses NF-κB transcription factor by deacetylation of the p65 (RelA) subunit. Acetylation of
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Another mechanism that can be taken into account involves the activation of Nod-like
receptor family pyrin domain containing-3 inflammasome (NLRP3) caused by the upregu-
lation of SIRT2 [158,159]. In older individuals, NLRP3 may be poised for hyperactivation by
SARS-CoV-2 components. The modulation of NLRP3 activity is under the direct control of
SIRT2 [160]. Old mice, especially those deficient in SIRT2, have accelerated inflammaging,
along with decreased glucose tolerance and increased insulin resistance. During aging,
NAD+ levels decline, reducing the activity of SIRTs [161–164]. This decrease might give
rise to hyperactivation of NLRP3 and the trigger cytokine storms [165]. Maintaining NAD+

levels through the SIRTs system may therefore alleviate COVID-19 symptoms, a possibility
supported by recent data showing that SARS-CoV-2 proteins hyperactivate poly-ADP-
ribose polymerases (e.g., PARP9, -10, -12, and -14) and deplete cellular NAD+ [162–167].
The ability of NAD+ precursors to lower inflammation in human subjects provides further
support to this mechanism [163,164]. These mechanisms probable interpret the observation
that elderly patients with sensitized NF-κB and metabolic syndrome are very susceptible
to COVID-19 with worse complications and high mortality. Presumably, the inhibition of
SIRT1/NF-κB pathway has a therapeutic role in alleviating the severe form of COVID-19.

7. Conclusions

SIRTs offer a remarkably rich diversity of regulatory points. Their NAD+-dependent
activities allow them to transmit information about changes in the environment to major
cellular pathways for rapid and effective responses. A growing body of evidences suggest
that SIRTs have key roles in the field of virology. The diversity and abundance of SIRT
substrates complicate the interpretation of their roles during infection. This illustrates the
need for further research for gaining deeper insight into the SIRT-mediated events during
viral infections.
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