

Effect of SGLT inhibitors on weight and lipid metabolism at 24 weeks of treatment in patients with diabetes mellitus

A systematic review and network meta-analysis

Mao-bing Chen, MD^a⁽¹⁾, Hua Wang, MD^b⁽¹⁾, Wei-yan Cui, MD^b⁽¹⁾, Hua-lan Xu, MD^b⁽¹⁾, Qi-han Zheng, MD^{a,*}

Abstract

Background: The goals of improving quality of life and increasing longevity are receiving growing amounts of attention. Body weight and lipid metabolism are closely related to various complications of diabetes. The aim of this study was to rank SGLT inhibitors according to their efficacy with regard to weight and evaluate the effect of SGLT inhibitors on lipid metabolism at 24 weeks of treatment.

Methods: The Web of Science, PubMed, Cochrane Library, Embase, and Clinical Trials databases were electronically searched to collect randomized controlled trials involving patients with type 2 diabetes mellitus through June 2020. Two researchers independently screened and evaluated the selected studies and extracted the outcome indexes. ADDIS 1.16.5 and STATA 16 software were used to perform the network meta-analysis and draw the plots.

Results: Ultimately, 36 studies were selected and included in this study. We found that all SGLT inhibitors were effective at reducing weight; canagliflozin was the most effective. SGLT inhibitors and placebo were not associated with significantly different serum cholesterol levels. SGLT inhibitors lowered serum triglyceride levels and increased serum high-density and low-density lipoprotein cholesterol levels. SGLT inhibitors also reduced the level of alanine aminotransferase.

Conclusions: SGLT inhibitors can bring about weight loss in patients with T2DM and can also improve lipid metabolism. Therefore, patients with hyperlipidemia who have been unsuccessful at losing weight should consider taking SGLT inhibitors. In addition, SGLT inhibitors are hepatoprotective and appear to be safe for patients with mild to moderate liver dysfunction.

Trial Registration: CRD42020198516.

Abbreviations: CANA = canagliflozin, CI = confidence interval, DAPA = dapagliflozin, DM = diabetes mellitus, EMPA = empagliflozin, ERTU = ertugliflozin, HDL/HDL-C = high-density lipoprotein/high-density lipoprotein cholesterol, HMG-CoA = hydroxy-methyl-glutaryl CoA, LDL/LDL-C = low-density lipoprotein/low-density lipoprotein cholesterol, MD = mean difference, PROSPERO = International Prospective Register of Systematic Reviews, RCTs = randomized controlled trials, SGLT = sodium-dependent glucose transporter, SOTA = sotagliflozin, T2DM = type 2 diabetes mellitus.

Keywords: lipid metabolism, network meta-analysis, sodium-glucose transporter 1, sodium-glucose transporter 2, type 2 diabetes mellitus

Editor: Yasser Albadrany.

The authors have no conflicts of interest to disclose.

Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.

http://dx.doi.org/10.1097/MD.00000000024593

Ethics approval and consent to participate: There is no need for ethical approval, and the review will be published in a peer-reviewed journal. All the authors listed have approved the enclosed manuscript.

Availability of data and materials: The datasets used and/or analyzed in the present study are available from the corresponding author on reasonable request.

This work was funded by the Changzhou Applied Basic Research Project (CJ20200005), Jiangsu Province, China. The funder had no role in the study design; the collection, analysis, and interpretation of data; the writing of the report; the decision to publish; or the preparation of the manuscript.

Data sharing not applicable to this article as no datasets were generated or analyzed during the present study.

^a Department of Emergency, ^b Department of ICU, Wujin People's Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P.R. China.

^{*} Correspondence: Qi-han Zheng, Department of Emergency, Wujin People's Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, P.R. China (e-mail: zqhone@163.com).

This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Chen Mb, Wang H, Cui Wy, Xu Hl, Zheng Qh. Effect of SGLT inhibitors on weight and lipid metabolism at 24 weeks of treatment in patients with diabetes mellitus: A systematic review and network meta-analysis. Medicine 2021;100:6(e24593).

Received: 16 November 2020 / Received in final form: 23 December 2020 / Accepted: 14 January 2021

1. Introduction

Diabetes mellitus (DM), commonly referred to as diabetes, is a group of metabolic disorders characterized by long-term high blood sugar levels.^[1] Most diabetes patients have type 2 diabetes mellitus (T2DM). As of 2019, an estimated 463 million people had diabetes worldwide.^[2] The incidence of diabetes grows annually.^[3,4] In 2019, diabetes caused approximately 4.2 million deaths, and it was the seventh leading cause of death.^[5,6] Therefore, drugs for treating diabetes have long been the focus of attention of various research teams.

Sodium-dependent glucose transporter (SGLT) inhibitors are a new class of drugs for the treatment of T2DM.^[7] There are five main SGLT inhibitors, namely, dapagliflozin (DAPA), canagliflozin (CANA), empagliflozin (EMPA), ertugliflozin (ERTU), and sotagliflozin (SOTA).^[8] Among them, only SOTA is a dual SGLT-1/2 inhibitor. These drugs reduce blood glucose levels by interfering with SGLT, reducing glucose absorption or increasing glucose excretion. In previous studies, we verified the efficacy of SGLT inhibitors for the treatment of T2DM.^[9] However, with regard to their effects on lipid metabolism in patients with T2DM, a reliable systematic review has not yet been performed.

Obesity, especially central obesity, affects blood lipid metabolism and exacerbates insulin resistance in diabetic patients,^[10] and abnormal lipid metabolism is an important risk factor for complications of diabetes.^[11] In central obesity, fat usually accumulates in the liver. Liver fat deposits and high blood sugar have toxic effects on liver cells, and the main site of lipid metabolism and drug metabolism is the liver; therefore, it is necessary to evaluate the hepatic function of patients taking oral SGLT inhibitors. Studying the effect of SGLT inhibitors on lipid metabolism could elucidate their relationship with diabetes complications. The focus of this study was to evaluate the effect of SGLT inhibitors on lipid metabolism in patients with T2DM.

2. Methods

The original plan of this study was to perform a network metaanalysis. After data extraction, it was found that the data for the secondary outcomes were insufficient. Therefore, a common meta-analysis was performed for the levels of triglycerides, cholesterol, HDL-C, LDL-C, and ALT.

2.1. Design and registration

A network meta-analysis was conducted to evaluate the efficacy and safety of SGLT inhibitors in patients with T2DM. This protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO), with registration number: CRD42020198516 (https://www.crd.york.ac.uk/PROS PERO). No ethics approval was required because this study used data that were already in the public domain.

2.2. Study selection

2.2.1. Study type. This network meta-analysis quantitatively analyzed data from randomized controlled trials (RCTs).

2.2.2. Study subjects. The subjects of this study were patients with T2DM. There were no restrictions on age, weight, HbA1c level, drug history, etc. However, patients with serious underlying acute or chronic diseases and heart or kidney failure were excluded.

2.2.3. Intervention measures. This network meta-analysis only included single-drug studies, and studies involving drug combinations were not included. Five drugs were included in this study, and each drug can be administered in two different doses; therefore, there were 10 interventions. In addition to the placebo group, a total of 11 interventions were included.

2.2.4. Outcome Indicators. The primary outcome indicator was weight. Other outcome indicators included changes in levels of ALT, cholesterol, triglycerides, high-density lipoprotein/high-density lipoprotein cholesterol (HDL/HDL-C) and low-density lipoprotein/low-density lipoprotein cholesterol (LDL/LDL-C).

In a preliminary analysis, it was found that weight was strongly affected by the duration of treatment. To reduce the heterogeneity among the studies, limitations were placed on the duration of treatment. Results after treatment for longer than 24 weeks were included because we found that after 24 weeks, weight remained relatively stable. Therefore, we chose 24 weeks (± 2 weeks) as the timepoint for data selection.

2.2.5. Exclusion criteria. Studies with data that could not be extracted or utilized, studies with animal experiments, and literature reviews were excluded.

2.3. Data sources and searches

We searched for publications through June 2020 in the following databases: Web of Science, PubMed, the Cochrane Library, EMBASE, and Clinical Trials. The search terms included "SGLT," "diabetes," and "mellitus." In Figure 1, we use the PubMed database as an example.

2.4. Study screening, data extraction, and assessment of the risk of bias

Data were collected independently by two researchers. The unqualified studies were eliminated, and the qualified studies were selected after reading the title, abstract and full text. Then, the research data were extracted and checked, disagreements were discussed, and a decision was made regarding study inclusion by the authors. The extracted data included the following:

- the basic information about the study, including title, author and year of publication;
- 2. the characteristics of the included study, consisting of the study duration, the sample sizes of the test group and the control group, and the intervention measures
- 3. the outcome indicators and data; and
- 4. the information needed to assess the risk of bias.

The risk of bias in the included studies was assessed using the RCT bias risk assessment tool recommended in the Cochrane Handbook for Systematic Reviews of Interventions (5.1.0).^[12]

2.5. Statistical analysis

This network meta-analysis was performed using the Bayesian method. STAT MP 16 and ADDIS 1.16.5 software were used to draw the plots and perform the network meta-analysis, and RevMan 5.4 software was used for the common meta-analysis. The continuous variables are expressed as the mean difference (MD) as an effect indicator. Effect estimates and 95% confidence

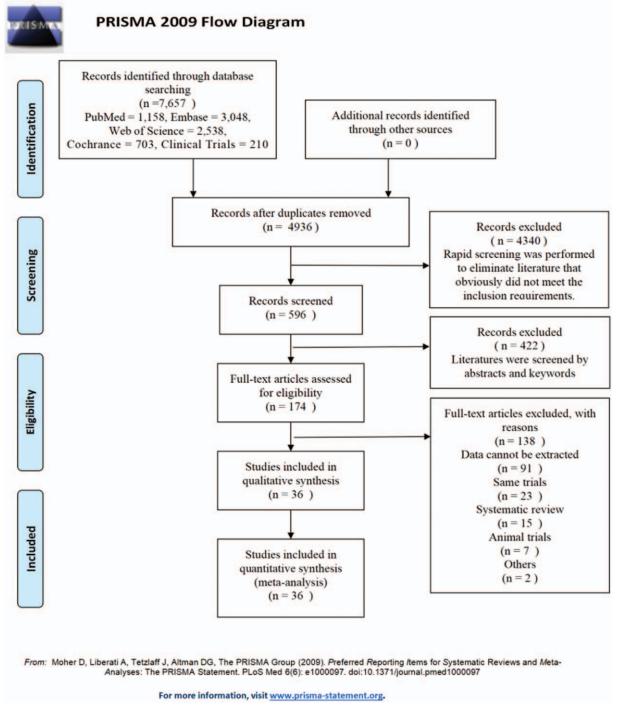


Figure 1. PubMed database retrieval strategy and PRISMA flow diagram.

intervals (CIs) were calculated. A network meta-analysis was performed for weight, and a common meta-analysis was performed for other outcome indexes due to the lack of data. A random effects model was used in the network meta-analysis, and a fixed model was used in the common meta-analysis. The core results of the network meta-analysis included a network evidence plot, network SUCRA plot, pairwise comparison plot and network node-splitting analysis of inconsistency. If an inconsistency was observed, the cause was identified, explained and analyzed, and the inconsistency model was used for analysis. Finally, a funnel plot was drawn if there were more than 15 studies. The significance level was set at $\alpha = 0.05$.

3. Results

3.1. Included studies and patients

From the databases, we retrieved a total of 7,657 studies. Ultimately, 36 studies^[13–48] were selected and included. No gray

literature was included in this study. The specific flow diagram is shown in Figure 1. When the data from the included studies were pooled, the total number of enrolled patients was 17,561. In each study, the characteristics of the patients in the groups were similar.

We originally planned to include five well-known SGLT inhibitors in this study. However, the data in the SOTA-related RCTs did not meet the inclusion criteria. Therefore, there are no SOTA data included in these results.

3.2. Characteristics of the included studies and quality assessment

All included studies were RCTs. The basic characteristics and quality assessment of the studies are presented in Table 1.

3.3. Network meta-analysis results

3.3.1. Weight. Thirty-six studies reported comparisons of weight. The core results of the network analysis are shown in Figure 2. According to the node-splitting analysis, the consistency model adopted in this study was reliable. The pairwise comparison plot shows the results of the comparisons between all the included interventions. Among the four SGLT-2 inhibitors, the SUCRA plot shows that 300 mg CANA (high dose) and 100 mg CANA (low dose) should be the most effective. Funnel plots were generated. The funnel plots were bilaterally symmetrical, and most studies fell within the 95% confidence interval. These results suggest that this study has no clear publication bias.

3.4. Common meta-analysis results

3.4.1. Cholesterol. Three studies reported differences in cholesterol between the SGLT inhibitor group and the placebo group. A fixed-effect model was adopted; as the dose of SGLT inhibitors increased, serum cholesterol also increased (low dose: $I^2 = 0\%$ [MD = 0.03, 95% CI (-3.18, 3.24), P = .99]; high dose: $I^2 = 46\%$ [MD = 2.52, 95% CI (-0.19, 5.23), P = .07]) (Fig. 3, upper left).

3.4.2. Triglyceride. Five studies reported differences in triglyceride levels between the SGLT inhibitor group and the placebo group. A random effect model was adopted; as the dose of SGLT inhibitors increased, the serum triglyceride level decreased (low dose: $I^2 = 0\%$ [MD=-9.65, 95% CI (-15.41, -3.88), P = 0.001]; high dose: $I^2 = 54\%$ [MD=-8.65, 95% CI (-16.65, -0.66), P = .03]) (Fig. 3, upper right).

3.4.3. *HDL/HDL-C.* Five studies reported differences in HDL/ HDL-C levels between the SGLT inhibitor group and the placebo group. A fixed effect model was adopted; compared with the placebo, oral SGLT inhibitors were associated with increased serum HDL/HDL-C levels (low dose: $I^2 = 0\%$ [MD=4.52, 95% CI (2.14,6.90), P = .0002]; high dose: $I^2 = 0\%$ [MD=4.57, 95% CI (2.51, 6.63), P < 0.0001]) (Fig. 3, lower left).

3.4.4. LDL/LDL-C. Five studies reported differences in LDL/ LDL-C levels between the SGLT inhibitor group and the placebo group. A fixed effect model was adopted; as the dose of SGLT inhibitors increased, the serum LDL/LDL-C level also increased (low dose: $I^2 = 0\%$ [MD=2.54, 95% CI (-1.23,6.31), P = 0.19]; high dose: $I^2 = 48\%$ [MD=6.54, 95% CI (3.15, 9.93), P = .0002]) (Fig. 3, lower right).

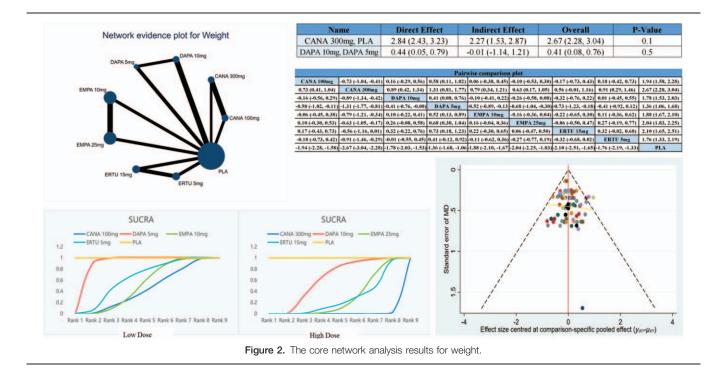
3.4.5. ALT. Three studies reported differences in ALT levels between the SGLT inhibitor group and the placebo group. A fixed

effect model was adopted; compared with the placebo, oral SGLT inhibitors were associated with decreased serum ALT levels (low dose: $I^2 = 0\%$ [MD=-3.08, 95% CI (-5.19, -0.97), *P*=.004]; high dose: $I^2 = 0\%$ [MD=-3.86, 95% CI (-5.93, -1.78), *P*=.0003]) (Fig. 4).

4. Discussion

Since no studies on dual SGLT-1/2 inhibitors were included in this study, these results only pertain to SGLT-2 inhibitors. RCTs on SOTA were excluded because the duration of the intervention did not meet the inclusion criteria.^[49]

Based on this network meta-analysis, we believe that SGLT-2 inhibitors effectively induce weight loss in patients with T2DM; CANA is the most effective, and DAPA is the least effective. Second, SGLT-2 inhibitors can reduce triglyceride levels and increase both HDL-C and LDL-C levels. Finally, SGLT2 inhibitors can decrease serum ALT levels and may have a protective effect on the liver.


The main function of SGLT is to reabsorb glucose. The sodium–potassium pump consumes ATP and transfers Na^+ to the outside of the cell, causing a decrease in the intracellular Na^+ concentration. The Na^+ in glomerular filtrate (or in intestinal juice) enters the cell along the concentration gradient, and glucose is brought into the cell concurrently by the action of sodium-dependent glucose transporters. This is the mechanism by which SGLT reabsorbs glucose^[50] (Fig. 5).

Once the mechanism of SGLT is understood, the mechanism by which SGLT inhibitors control blood sugar in patients with T2DM is clear. In the real world, many people with T2DM also have hyperlipidemia; accordingly, T2DM and hyperlipidemia are usually considered sister diseases, and hyperlipidemia is believed to be a secondary disease of T2DM.^[51] According to a cross-sectional study, approximately 60% of diabetic patients have hypertriglyceridemia.^[52] The state of hyperlipidemia substantially increases patients' cardiovascular risk.^[53,54] Compared with other hypoglycemic drugs, the advantage of SGLT-2 inhibitors is that they induce weight loss in patients with T2DM and simultaneously have a beneficial effect on lipid metabolism.^[55] The results of our study corroborate this conclusion.

SGLT-2 inhibitors probably induce weight loss by reducing the body's total energy intake and promoting osmotic diuresis. However, the effects of SGLT inhibitors on lipid metabolism might be carried out in the following ways. Diabetic dyslipidemia is characterized by elevated serum triglyceride levels, decreased serum high-density lipoprotein cholesterol (HDL-C) levels, and predominant atherosclerotic low-density lipoprotein (LDL) particles.^[56] There is a dual effect of SGLT-2 inhibitors on lipids: on the one hand, SGLT-2 inhibitors might increase the breakdown of fats, leading to increases in liver levels of cholesterol substrate and hepatic hydroxy-methyl-glutaryl CoA (HMG-CoA). This, in turn, would increase cholesterol synthesis, decrease the activity of LDL receptors and finally lead to an increase in serum LDL-C level. On the other hand, SGLT-2 inhibitors could reduce the systemic toxicity of glucose, thereby reducing triglyceride synthesis in the liver and increasing the breakdown of triglycerides. This, in turn, would reduce the serum triglyceride level and ultimately lead to an increased serum HDL-C level.^[57]

SGLT inhibitors increase the levels of glucagon-like peptide 1 (GLP-1), one of the brain-gut peptides. GLP-1 can promote the

					Interv	Intervening Measure		s	Sample size				Literature	Literature quality score			
Author	Vear No. of trial	The country or region of the trial first author	or Backerenind	Time point of data extraction	Groun-1	Groun-2	Groun-3	Groun-1	Groun-2	Groun-3	Random sequence neneration	Allocation	Blinding of participants and nersonnel	Blinding of outcome assessment	Incomplete outcome data	Selective	Other hias
~	2	2	Diet and	26 weeks	FRTIL 5mg	FRTI 15mg		156			ow risk	l ow risk	l ow risk	l niv risk	Inclear	low risk	nw risk
	2010 NCTON528870		MET	2.4 wooke			DI A	137	135	137	Low risk	Low risk	Low risk	Low risk	Low rick	Low risk	Low risk
			Milli Diat and Evercise	2.4 weeks			5	101	89		-uw riek	Low risk	LOW LISA	Low rish	Low risk	Low rish	Luw lish
	2012		Mo limit	26 woole		CANA 200mg		241	200	707	Low rish	Low rish	Low rish	Low rish	Low risk	Low tion	Undoar
			NO IITIIL	ZD WEEKS	CANA LUUTIG	CAINA SUUTIG	r LA	141	C30		LOW FISK	LOW FISK	LOW FISK	LOW FISK	LOW TISK	Low risk	Undear
0			MET and SITA	26 wooks	EDTH FUIL	EDTII 16ma		03 156	91 152		LOW IISK Low rick	Low risk	LOW IISK Low rick	LOW IISK	LOW IISK	LOW IISK	Unclear
			Diet and Evercise	24 weeks		DAPA 10mg	PIA	100	02		Low risk	Low risk	Low risk	Low risk	LUW IISN IInclear	Low risk	Undear
			MET and pionlitazone	26 weeks	CANA 100mg	CANA 300mg	PLA	113	114	115	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
(1)			No limit	24 weeks	EMPA 10mg	EMPA 25mg		169	164		Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
	2015 NCT01289990	9990 Germany	MET and SU	26 weeks	EMPA 10mg	EMPA 25mg	PLA	225	216		Low risk	Low risk	Low risk	Low risk	Unclear	Unclear	Unclear
	2014 NCT01159600	9600 Germany	Diet and Exercise	24 weeks	EMPA 10mg	EMPA 25mg	PLA	217	213	207 [Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
Hollander, P. 2		9218 US	MET	26 weeks	ERTU 5mg	ERTU 15mg		448	440	_	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear
Jabbour, Serge A. 2		4867 US	SITA and/or MET	24 weeks	DAPA 10mg	PLA		223	224	_	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear
	2019 NCT02630706	0706 China	MET	26 weeks	ERTU 5mg	ERTU 15mg	PLA	170	169	167 L	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
		3218 Japan	Diet and Exercise	26 weeks	EMPA 10mg	EMPA 25mg		267	265	_	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
		-	Teneligliptin	24 weeks	CANA 100mg	PLA		70	68		Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
			MET	24 weeks	EMPA 10mg	EMPA 25mg	PLA	165	168	165 L	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear
nzalez, F. J.		_	MET	26 weeks	CANA 100mg	CANA 300mg		368	367	_	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
	_		Diet and Exercise	26 weeks	EMPA 10mg	EMPA 25mg		132	133	_	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear
		_	MET and Saxagliptin	24 weeks	DAPA 10mg	PLA		160	160	_	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear
			MET and SUL	24 weeks	DAPA 10mg	PLA		108	108		Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear
			MET	26 weeks	EMPA 10mg	EMPA 25mg	PLA	217	213	207	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
			MET	26 weeks	ERTU 5mg	ERTU 15mg		250	248		Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear
	2013 NCT01177813		Diet and Exercise	24 weeks	EMPA 10mg	EMPA 25mg	PLA	224	224	228	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
			MEL OF SUL and so on.	24 weeks	EMPA TUMG	EMPA 25mg	PLA	/09	783		LOW TISK	Low risk	LOW TISK	LOW TISK	Unclear	LOW TISK	Unclear
	2016 NCIU1809327	932/ US	Ulet and Exercise	Z6 Weeks	CANA TUUMG	CANA 300mg	ž	23/	238		Low risk	Low risk	LOW FISK	Low risk	Low risk	Low risk	Unclear
Proselisioux, J. 2			l incollatio cool MCT	ZO WEEKS	CMPA 10m2			102	CU2	502	LOW IISK	LOW IISK	LOW LISK	LOW IISK	LOW IISK	Low IISK	Unclear
		47.00 Ivulway 0630 Ianan	Linguipur and mer insulto with or without one drug	26 waake	EMPA 10mg	EMPA 25mg		801 86			LOW IISN	Low risk	Low risk	Low rish	Ilinclear	LOW IISh	Undrag
		_	Diet and Exercise	26 weeks	CANA 100mg	CANA 300mg	AIA	195	197	192	low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
	_		Glimepiride	24 weeks	DAPA 5mg	DAPA 10mg	PLA	142	151		Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
Terra, S. G. 2	2017 NCT01958671	8671. US	Diet and Exercise	26 weeks	ERTU 5mg	ERTU 15mg	PLA	156	152		Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear
Wilding, J. P. 2	2013 NCT01106625	6625 UK	MET and SUL	26 weeks	CANA 100mg	CANA 300mg	PLA	157	156		Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
Wilding, J. P. 2	2012 NCT00673231	3231 US	High doses of insulin	24 weeks	DAPA 5mg	DAPA 10mg	PLA	211	194		Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
	2016 NCT01095666	5666 China	MET	24 weeks	DAPA 5mg	DAPA 10mg	PLA	147	152	145	low risk	low risk	low risk	low risk	low risk	unclear	unclear
Yang, W. 2	2018 NCT02096705	6705 China	Insulin with or without oral	24 weeks	DAPA 10mg	PLA		139	133	_	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear	Unclear
			antihyperglycemic drugs														

glucose-dependent production and release of insulin and inhibit glucagon secretion, gastric emptying, food intake, and nutrient absorption.^[58] Thus, GLP-1 can reduce blood sugar and control weight, similar to SGLT inhibitors. In a randomized clinical trial by Zambrowicz B, 300 mg of LX4211 (SOTA) was given to

T2DM patients, and the level of GLP-1 substantially increased. $^{\left[59\right] }$

This study verifies by serology that SGLT inhibitors can improve the lipid metabolism of patients with T2DM. In an epidemiological investigation, SGLT inhibitors improved ath-

	11	Total		PLA		and the second	BI Fired OFF CI		IV. Fixed.	OFF CI		and a second		4	PL			Mean Difference		Mean Diff	
idy or Subgroup	Mean SU	101al	Mean	SU I	otal	weight	IV, Hxed, 95% CI		IV, Hxed,	95% CI		Study or Subgroup 3.1.1 low dose	Mean S) Total	Mean S	D Total	Weight	IV, Random, 95% C		IV, Random	, 95% CI
1.1 low dose						-						Bailey, C. J.2010	-6.2 3	5 126	21 3	9 61	11.6%	-8.30 1-19.84. 3.24			-
iley, C. J.2010	2.2 14			14	66	24.7%	-0.50 [-4.67, 3.67]					Forst, T.2014	3.1 4		15.3 4			-12.20 -26.43, 2.03			
vacs, C. S.2015	0.4 19	165	-0.4	19	82	16.9%	0.80 [-4.23, 5.83]			•		Kovacs, C. S.2015	-8.6 3		-0.6			-8.00 [-17.10, 1.10			
btotal (95% CI)		291			148	41.6%	0.03 [-3.18, 3.24]					Stenlof, K 2013	2.5 4		15.3 4			-12.801-26.25.0.65			
terogeneity: Chi ² =	0.15 df=1	(P = 0.7)	n P=1	0%								Subtotal (95% CI)		591	10.0			-9.65 15.41, -3.88		-	
st for overall effect.												Heterogeneity, Tau ² =	0.00; Chi*	= 0.51, df	= 3 (P = 1						
Still Overdir ellect.	L = 0.02 (r	- 0.55)										Test for overall effect									
1.2 high dose																					
ailey, C. J.2010	4.2 14	121	27	14	67	24.5%	1.50 [-2.68, 5.68]			_		3.1.2 high dose									
												*Bailey, C. J.2010	-6.2 3		2.1		11.4%	-8.30 [-19.94, 3.34			-
ovacs, C. S.2015	-0.4 19			19			0.00 [-5.00, 5.00]				1.00	*Forst, T.2014	-1.7 4		15.3 4			-17.00 [-31.11, -2.89			
latthaei, S.2015	3.6 19		-3	19			6.60 [1.53, 11.67]			-		*Kovacs, C. S.2015	2.3 3		-0.6		17.1%	2 90 [-6.13, 11.93			
ibtotal (95% CI)		397			258	58.4%	2.52 [-0.19, 5.23]					*Matthaei, S.2015 *Steniof, K.2013	-6.8 4		2.5 4		9.4%	-9.30 -22.37, 3.77 -17.00 -31.11, -2.89			
eterogeneity: Chi ² =	3.70 df= 2	(P=0.16): F=	46%			and the second s					"Steniot, K.2013 Subtotal (95% CI)	-1.7 4	3 109 615	15.3 4			-17.00 [-31.11, -2.89 -8.65 [-16.65, -0.66		-	
est for overall effect.				10.00								Heterogeneity Tau ² =	44.07 Ch		H- A (D-			-0.03 (- 10.03, -0.00			
ration overall enect.	1.02 (r	- 0.011										Test for overall effect			n - 4 (r =	0.07), F=					
otal (95% CD		688			406	100.0%	1.48 [-0.59, 3.55]							100							
eterogeneity. Chi#=	5 10 df - 4		1.12-1			- Jone of	and Lanas anol	+		-	+	Total (95% CI)		1206				-8.58 [-12.90, -4.26	1	•	
est for overall effect.			N	1910				-10	-5 0	5	10	Heterogeneity: Tau ² =				(.30); P=	16%		-	-20 -10 0	10 20
				-	-				Favours SGLT-i	Favours PLA		Test for overall effect								Favours SGLT-I	
est for subaroup diffe	erences: Ch	W= 1.35	df=1	(P=0.)	(5). 1*	= 25.7%						Test for subaroup diff	ferences: C	$hi^2 = 0.04$	df=1 (P	= 0.84), P	= 0%				
						Chole	esterol											Triglycerides			
	SGL			PLA			Mean Difference			fference			SGL		PL			Mean Difference		Mean Diffe	
			Mea		Total		Mean Difference			fference 1, 95% Cl		Study or Subgroup			PL		Weight			Mean Diffe IV, Fixed, 9	
.1.1 low dose	Mean S	D Total		n SD		Weight	Mean Difference IV, Fixed, 95% C	1				5.1.1 low dose	Mean S	D Total	Mean	SD Total	Weight	Mean Difference IV, Fixed, 95% CI			
I.1.1 low dose Bailey, C. J.2010	Mean 5	D Total	0.	4 15	61	Weight 11.5%	Mean Difference IV, Fixed, 95% C 2.90 (-1.69, 7.49	1			-	5.1.1 low dose Bailey, C. J 2010	Mean S	D Total	Mean 3.5	<u>SD Total</u> 25 60		Mean Difference IV, Fixed, 95% CI -0.40 [-8.09, 7.29]			
4.1.1 low dose Bailey, C. J.2010 Forst, T.2014	Mean S	5 126 4 107	0.	4 15 4 14	61 52	Weight 11.5% 11.3%	Mean Difference IV, Fixed, 95% C 2.90 (-1.69, 7.49 4.80 (0.16, 9.44	11 11 11				5.1.1 low dose Bailey, C. J 2010 Forst, T 2014	Mean 5	D Total	Mean 3.5 -0.4	SD Total 25 60 27 52	8.1%	Mean Difference IV, Fixed, 95% CI -0.40 (-8.09, 7.29) 7.50 (-1.34, 16.34)			
I.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015	Mean S 3.3 1 7.2 1 2.3 1	5 126 4 107 9 165	0. 2. -1.	4 15 4 14 5 19	61 52 82	Weight 11.5% 11.3% 9.6%	Mean Difference IV, Fixed, 95% C 2.90 (-1.69, 7.49 4.80 (0.16, 9.44 3.80 (-1.23, 8.83	11 11 11				5.1.1 low dose Bailey, C. J. 2010 Forst, T. 2014 Kovacs, C. S. 2015	Mean 5	D Total 25 126 26 107 30 165	Mean 3.5 -0.4 0	25 60 27 52 28 82	8.1% 11.0%	Mean Difference <u>IV. Fixed, 95% CI</u> -0.40 [-8.09, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 10.19]			
Study or Subgroup 4.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Koyacs, C. S.2015 Steniof, K.2013 Subded (JOS) CD	Mean S	5 126 4 107 9 165 9 192	0. 2. -1.	4 15 4 14	61 52 82 85	Weight 11.5% 11.3% 9.6% 10.3%	Mean Difference N, Fixed, 95% C 2.90 [-1.69, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 8.83 6.70 [1.85, 11.55	H H] H] H] H]				5.1.1 low dose Bailey, C. J. 2010 Forst, T. 2014 Kovacs, C. S. 2015 Steniof, K. 2013	Mean 5	D Total 25 126 26 107 30 165 25 192	Mean 3.5 -0.4 0 1	25 60 27 52 28 82 26 85	8.1% 11.0% 14.8%	Mean Difference IV, Fixed, 95% CI -0.40 [-8.09, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 10.19] 1.90 [-4.66, 8.46]			
4.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Steniof, K.2013 Subtotal (95% CI)	Mean S	D Total 5 126 4 107 9 165 9 192 590	0. 2. -1. 4.	4 15 4 14 5 19 5 19	61 52 82	Weight 11.5% 11.3% 9.6% 10.3%	Mean Difference IV, Fixed, 95% C 2.90 (-1.69, 7.49 4.80 (0.16, 9.44 3.80 (-1.23, 8.83	H H] H] H] H]				5.1.1 low dose Bailey, C. J. 2010 Forst, T. 2014 Kovacs, C. S. 2015 Steniof, K. 2013 Subtotal (95% CI)	Mean 5	D Total 25 126 26 107 30 165 25 192 590	Mean 3.5 -0.4 0 1	SD Total 25 60 27 52 28 82 26 85 279 279	8.1% 11.0% 14.8%	Mean Difference N. Fixed, 95% CI -0.40 [-8.09, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 10.19]			
I.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Covacs, C. S.2015 Bablotal (95% CI) Heterogeneity, Chi [#]	Mean S 3.3 1 7.2 1 2.3 1 11.2 1 11.2 1	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1	0. 2. -1. 4. 2), (*=	4 15 4 14 5 19 5 19	61 52 82 85	Weight 11.5% 11.3% 9.6% 10.3%	Mean Difference N, Fixed, 95% C 2.90 [-1.69, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 8.83 6.70 [1.85, 11.55	H H] H] H] H]			-	5.1.1 low dose Bailey, C. J. 2010 Forst, T. 2014 Kovacs, C. S. 2015 Steniof, K. 2013	Mean 5 3.1 7.1 2.6 2.9 = 1.81, df =	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8	Mean 3.5 -0.4 0 1	SD Total 25 60 27 52 28 82 26 85 279 279	8.1% 11.0% 14.8%	Mean Difference IV, Fixed, 95% CI -0.40 [-8.09, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 10.19] 1.90 [-4.66, 8.46]			
I.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Covacs, C. S.2015 Benlof, K.2013 Subtotal (95% Cl) Heterogeneity. Chi ^a : Fest for overall effect	Mean S 3.3 1 7.2 1 2.3 1 11.2 1 11.2 1	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1	0. 2. -1. 4. 2), (*=	4 15 4 14 5 19 5 19	61 52 82 85	Weight 11.5% 11.3% 9.6% 10.3%	Mean Difference N, Fixed, 95% C 2.90 [-1.69, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 8.83 6.70 [1.85, 11.55	H H] H] H] H]				5.1.1 low dose Bailey, C. J. 2010 Forst, T. 2014 Kovacs, C. S. 2015 Stentof, K. 2013 Subtotal (95% Ct) Heterogeneity. Chi ^a , Test for overall effec	Mean 5 3.1 7.1 2.6 2.9 = 1.81, df =	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8	Mean 3.5 -0.4 0 1	SD Total 25 60 27 52 28 82 26 85 279 279	8.1% 11.0% 14.8%	Mean Difference IV, Fixed, 95% CI -0.40 [-8.09, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 10.19] 1.90 [-4.66, 8.46]			
1.1 low dose ailey, C. J.2010 orst, T.2014 lovacs, C. S.2015 teniot, K.2013 ubtotal (95% CI) leterogeneity. Chi# est for overall effect .1.2 high dose	Mean S 3.3 1 7.2 1 2.3 1 11.2 1 1.35, df = 1.2 3.72 (f	5 126 4 107 9 165 9 192 590 3 (P = 0.1 P = 0.000	0. 2. -1. 4. 2), (* = 2)	n SD 4 15 4 14 5 19 5 19 5 19	61 52 82 85 280	Weight 11.5% 11.3% 9.6% 10.3% 42.8%	Mean Difference <u>N. Fixed, 95%</u> C 2.90 [-1.69, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 8.83 6.70 [1.85, 11.55 4.52 [2.14, 6.90]	1 1 1 1 1 1 1 1				5.1.1 low dose Bailey, C. J. 2010 Forst, T. 2014 Kovacs, C. S. 2015 Stentot, K. 2013 Subtotal (95% CI) Heterogeneity: Chi ^a , Test for overall effec 5.1.2 high dose	Mean 5 31 7,1 2,6 2,9 = 1.81, df = t Z = 1.32 (D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8 P = 0.19)	Mean 3.5 -0.4 0 1 51); I*= 09	SD Total 25 60 27 52 28 82 26 85 279 6	8.1% 11.0% 14.8% 44.7%	Mean Difference N. Fixed, 95% CI -0.40 [-8.09, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 10.19] 1.90 [-4.66, 8.46] 2.54 [-1.23, 6.31]			
.1.1 low dose lailey, C. J. 2010 orst, T. 2014 lovars, C. S. 2015 teniof, K. 2013 aubtotal (95% CI) leterogeneity, Chi* est for overall effect .1.2 high dose Bailey, C. J. 2010	Mean S 3.3 1 7.2 1 2.3 1 11.2 1 1.35, df= 1.2 3.72 (F 4.4 1	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 > = 0.000 6 121	0. 2. -1. 4. (2), * = 2) 0.	n SD 4 15 4 14 5 19 5 19 5 19 6 0%	61 52 82 85 280	Weight 11.5% 11.3% 9.6% 10.3% 42.8%	Mean Difference N. Fixed, 95% C 2.90 [-1.69, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 8.33 4.52 [2.14, 6.90] 4.00 [-0.70, 8.70	1 19 19 19 19 10				5.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Steniof, K.2013 Subtotal (95% CI) Heterogeneity, Chi ⁹ Test for overall effec 5.1.2 high dose "Bailey, C. J.2010	Mean 5 3.1 7.1 2.6 2.9 = 1.81, df = t Z = 1.32 (9.5	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8 P = 0.19) 26	Mean 3.5 -0.4 0 1 51); I*= 09 3.5	SD Total 25 60 27 52 28 82 26 85 279 6 25 61	8.1% 11.0% 14.8% 44.7%	Mean Difference N. Fixed, 95% CI -0.40 [-8.09, 7.29] 750 [-1.34, 16.34] 2.60 [-4.99, 10.19] 1.90 [-6.6, 8.46] 2.54 [-1.23, 6.31] 6.00 [-1.81, 13.81]			
.1.1 low dose halley, C. J. 2010 orst, T. 2014 orvars, C. S. 2015 itentof, K. 2013 habtotal (95% Ct) feterogeneity. Chi*s est for overall effect .1.2 high dose Bailey, C. J. 2010 Forst, T. 2014	Mean S 3.3 1 7.2 1 2.3 1 11.2 1 1.35, df = 1.35, df = 1.2 3.72 (f 4.4 1 8.9 1	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 > = 0.000 6 121 5 109	0. 2. -1. 4. 2), P ^a = 2) 0. 2.	n SD 4 15 4 14 5 19 5 19 5 19 0% 4 15 4 15 4 14	61 52 85 280 62 53	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 11.0%	Mean Difference N, Fixed, 95% C 2.90 [-1.69, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 8.83 6.70 [1.85, 11.55 4.52 [2.14, 6.90 4.00 [-0.70, 8.70 6.50 [1.80, 11.20	1 6 6 6 7 7 7				5.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Stertof, K.2013 Subtotal (95% CI) Heterogeneity: ChP Test for overall effec 5.1.2 high dose "Bailey, C. J.2010 "Forst, T.2014	Mean 5 3.1 7.1 2.6 2.9 = 1.81, df= t Z = 1.32 () 9.5 11.3	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8 P = 0.19) 26 26 120 26 120 26 109	Mean 3.5 -0.4 0 1 51); I*= 09 3.5 -0.4	SD Total 25 60 27 52 28 82 26 85 279 6 25 61 27 53	8.1% 11.0% 14.8% 44.7%	Mean Difference N. Fixed, 95% CI -0.40 [-8.09, 7.29] 7.50 [-1.34, 16.34] 2.50 [-4.99, 16.34] 1.30 [-4.66, 8.46] 2.54 [-1.23, 6.31] 6.00 [-1.81, 13.81] 11.70 [2.94, 20.46]			
1.1.1 low dose Bailey, C. J.2010 Forst, T.2014 (ovacs, C. S.2015 Beniof, K.2013 Sublotal (95% Cf) Heterogeneity. Chi#= Fest for overall effect I.1.2 high dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S. 2015	Mean S 3.3 1 7.2 1 2.3 1 1.1.2 1 1.35, df = 1 Z = 3.72 (F 1 4.4 1 8.9 1 0 1	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 > = 0.000 6 121 5 109 9 168	0. 2. -1. 4 2), P= 2) 0. 2. -1.	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 15 4 14 5 19	61 52 82 85 280 62 53 83	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 11.0% 9.7%	Mean Difference M. Food, 95% C 2:00[+69,749 4:00[0.16,944 3:00[+1:23,8:83 6:70[1:85,11:55 4:52[2:14,6:90 4:00[+0:70,8:70 6:50[1:80,11:20] 1:50[-3:50,6:50	1 1 19 19 19 10 10 10 10 10				5.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Stentof, K.2013 Subtotal (95% CI) Heterogeneity: Chi ^a Test for overall effec 5.1.2 high dose *Bailey, C. J.2010 *Forst, T.2014 *Kovacs, C. S. 2015	Mean 5 31 7,1 2,6 2,9 = 1.81, df= t Z= 1.32 () 9,5 11.3 -1.5	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8 P = 0.19) 26 26 120 26 120 26 109 30 168	Mean 3.5 -0.4 0 1 51); I*= 09 3.5 -0.4 0	SD Total 25 60 27 52 28 82 26 85 279 6 25 61 27 53 28 83	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2%	Mean Difference M. Roed, 95% CI -0.40 [6:0.9, 7:29] 7:50 [-1:34, 16:34] 2:60 [-4:99, 10:19] 1:30 [-4:66, 8:46] 2:54 [-1:23, 6:31] 6:00 [-1:81, 13:81] 11.70 [2:94, 20:46] -1:50 [-50.46, 60]			
1.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Steniof, K.2013 Sublotal (95% Ch) Hoterogeneity, Ch ² Test for overall effect 1.1.2 high dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015	Mean S 3.3 1 7.2 1 2.3 1 1.1.2 1 1.1.5 df= t.Z=3.72 (f 4.4 1 8.9 1 0 1 4.5 1	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 2 = 0.000 6 121 5 109 9 168 5 108	0. 2. -1. 4. 2), P = 2) 0. 2. -1.	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 14 5 19 0 15	61 52 82 85 280 62 53 83 108	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 9.7% 15.2%	Mean Difference M. Fixed, 95% C 2.90 [-1.69, 7.49 4.80 [10.16, 9.44 3.80 [-1.23, 8.83 6.70 [1.85, 11.55 4.52 [2.14, 6.90] 4.00 [-0.70, 8.70 6.50 [1.80, 11.20 1.50 [-3.50, 6.50	1 1 10 10 10 10 10 10 10 10 10 10 10 10				5.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Steniof, K.2013 Subtotal (95% CI) Heterogeneity: Chi ^m Test for overall effec 5.1.2 high dose "Bailey, C. J.2010 "Forst, T.2014 "Kovacs, C. S.2015 "Matthaei, S.2015	Mean 5 3.1 : 7.1 : 2.6 : 2.9 : = 1.81, df = t Z = 1.32 () 9.5 : 11.3 : -1.5 : 5.8 :	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8 P = 0.19) 26 26 120 26 109 26 109 26 109 30 168 29 108	Mean 3.5 -0.4 0 1 51); I*= 09 3.5 -0.4 0 -6.3	SD Total 25 60 27 52 28 82 26 85 279 56 25 61 27 53 28 83 29 108	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2% 10.6%	Mean Difference M. Rovd, 95% Cf -0.40 [-8.09, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 101, 1361] 1.90 [-4.66, 846] 2.54 [-1.23, 6.31] 6.00 [-1.81, 13.81] 11.70 [2.94, 20.46] -1.50 [-6.04, 6.04] 2.10 [4.37, 18.83]			
4.1.1 low dose Bailey, C. J.2010 Forst, T.2017 Steniot, K. 2013 Subtotal (95% Cf) Heterogeneity. Chi*s Test for overail effect 4.1.2 high dose Bailey, C. J.2010 "Forst, T.2014 "Kovacs, C. S.2015 "Matthaei, S.2015 "Matthaei, S.2013	Mean S 3.3 1 7.2 1 2.3 1 1.1.2 1 1.1.5 df= t.Z=3.72 (f 4.4 1 8.9 1 0 1 4.5 1	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 2 = 0.000 6 121 5 109 9 168 5 108 9 195	0. 2. -1. 4. 2), P = 2) 0. 2. -1.	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 15 4 14 5 19	61 52 85 280 62 53 83 108 85	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 11.0% 9.7% 15.2% 10.4%	Mean Difference M. Food, 95% C 2:00[+69,749 4:00[n16,944 3:00[+1:23,8:83 6:70[1:85,11:55 4:52[2:14,6:90 4:00[+0:70,8:70 6:50[180,11:20 1:50[+3:50,6:50 4:50]50,8:50 6:10[1:2,10,4]					5.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Stentof, K.2013 Subtotal (95% CII Heterogeneity, Chi ^a Test for overail effec 5.1.2 high dose "Bailey, C. J.2010 "Forst, T.2014 "Kovacs, C. S.2015 "Matthael, S.2015	Mean 5 3.1 : 7.1 : 2.6 : 2.9 : = 1.81, df = t Z = 1.32 () 9.5 : 11.3 : -1.5 : 5.8 :	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8 P = 0.19) 26 26 120 26 109 30 168 29 108 25 195	Mean 3.5 -0.4 0 1 51); I*= 0 3.5 -0.4 0 -6.3 1	SD Total 25 60 27 52 28 82 26 85 279 53 28 93 29 108 26 85	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2% 10.6% 14.8%	Mean Difference M. Fixed, 95% CI -0.40 (+0.09, 7.29) 7.50 (+1.34, 16.34) 2.60 (+4.99, 10.19) 1.90 (+4.66, 8.46) 2.54 (-1.23, 6.31) 6.00 (+1.81, 13.811) 1.170 (2.94, 20.46) 1.50 (+0.04, 5.12.65) 6.10 (-0.45, 12.65)			
L.1.10w dose Bailey, C. J.2010 orst, T.2014 covacs, C. S.2015 Stubtotal (95% CD) Heterogeneity, Chi ^a s Fest for overall effect L.1.2 high dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Steniof, K.2013 Statotal (95% CD)	Mean S 3.3 1 7.2 1 2.3 1 1.1.2 1 *1.35, df= 2 2.3 1 *1.35, df= 2 4.4 1 8.9 1 0 1 4.5 1 10.6 1	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.000 6 121 5 109 9 168 5 108 9 168 5 701	0. 2 -1. 4 2), P = 2) 0. 2 -1. 4	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 14 6 19 0 15 5 19	61 52 85 280 62 53 83 108 85	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 11.0% 9.7% 15.2% 10.4%	Mean Difference M. Fixed, 95% C 2.90 [-1.69, 7.49 4.80 [10.16, 9.44 3.80 [-1.23, 8.83 6.70 [1.85, 11.55 4.52 [2.14, 6.90] 4.00 [-0.70, 8.70 6.50 [1.80, 11.20 1.50 [-3.50, 6.50					5.1.1 low dose Bailey, C. J. 2010 Forst, T.2014 Kovacs, C. S.2015 Shentof, K.2013 Subtotal (95% CI) Heterogeneily: Ch ⁹ Test for overall effec 5.1.2 high dose "Bailey, C. J.2010 "Forst, T.2014 "Kovacs, C. S.2015 "Stentof, K.2013 "Subtotal (95% CI)	Mean 5 31 : 71 26 29 =1.81, df = t Z = 1.32 0 95 11.3 : -1.5 5.8 7.1	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.19) 26 120 26 120 26 120 26 120 26 120 26 120 26 120 26 120 26 120 26 120 27 195 700 700	Mean 3.5 -0.4 0 1 51); I*= 0 -0.4 0 -6.3 1	SD Total 25 60 27 52 28 82 26 85 279 6 25 61 27 53 28 83 29 108 26 85 390 390	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2% 10.6% 14.8%	Mean Difference M. Fixed, 95% CI -0.40 (+0.09, 7.29) 7.50 (+1.34, 16.34) 2.60 (+4.99, 10.19) 1.90 (+4.66, 8.46) 2.54 (-1.23, 6.31) 6.00 (+1.81, 13.811) 1.170 (2.94, 20.46) 1.50 (+0.04, 5.12.65) 6.10 (-0.45, 12.65)			
1.1 flow dose laaley, C. J.2010 orst, T.2014 lovacs, C. S.2015 tentof, K.2013 ubtotal (95% CD letrogeneity, Ch ² est for overall effect .1.2 high dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Matthaei, S.2015 Matthaei, S.2015 Matthaei, K.2013 ubtotal (95% CD	Mean S 3.3 1 7.2 1 2.3 1 1.2.3 1 1.1.2 1 1.1.35, df = 2 2.4.4 1 8.9 1 0 1 4.4 1 0.1 1 4.5 1 10.6 1 -2.54, df = -2.54, df =	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.12) 5 109 6 121 5 109 9 168 5 108 9 195 7011 4 (P = 0.6	0. 2. -1. 4 (2), ⁴ = 2) 0. 2. -1. 4. (4), ⁴ =	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 14 6 19 0 15 5 19	61 52 85 280 62 53 83 108 85	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 11.0% 9.7% 15.2% 10.4%	Mean Difference M. Food, 95% C 2:00[+69,749 4:00[n16,944 3:00[+1:23,8:83 6:70[1:85,11:55 4:52[2:14,6:90 4:00[+0:70,8:70 6:50[180,11:20 1:50[+3:50,6:50 4:50]50,8:50 6:10[1:2,10,4]					5.1.1 low dose Bailey, C. J.2010 Forst, T.2014 Kovacs, C. S.2015 Stentof, K.2013 Subtotal (95% CII Heterogeneity, Chi ^a Test for overail effec 5.1.2 high dose "Bailey, C. J.2010 "Forst, T.2014 "Kovacs, C. S.2015 "Matthael, S.2015	Mean 5 3.1 : 7.1 : 2.6 : 2.9 : = 1.81, df = t Z = 1.32 () 9.5 : 11.3 : -1.5 : 5.8 : 7.1 : = 7.72, df =	D Total 25 126 26 126 26 107 30 165 25 192 590 3 (P = 0.8 P = 0.19) 108 26 109 30 168 29 108 25 195 7000 4 (P = 0.1	Mean 3.5 -0.4 0 1 51); I ^p = 0° 3.5 -0.4 0, -6.3 1 10); I ^p = 48	SD Total 25 60 27 52 28 82 26 85 279 6 25 61 27 53 28 83 29 108 26 85 390 390	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2% 10.6% 14.8%	Mean Difference M. Fixed, 95% CI -0.40 (+0.09, 7.29) 7.50 (+1.34, 16.34) 2.60 (+4.99, 10.19) 1.90 (+4.66, 8.46) 2.54 (-1.23, 6.31) 6.00 (+1.81, 13.811) 1.170 (2.94, 20.46) 1.50 (+0.04, 5.12.65) 6.10 (-0.45, 12.65)			
4.1.1 low dose Bailey, C. J2010 Forst, T. 2014 Koxosc, C. S. 2015 Sibilotal (95% C) Heterogenetik, Chr ⁴ - Test for overall effect 4.1.2 high dose Bailey, C. J2010 Forst, T. 2014 "Koxosc, C. S. 2015 Matthael, S. 2015 Matthael, S. 2015 Matthael, S. 2015 Matthael, S. 2015 Matthael, S. 2015 Test for overall effect	Mean S 3.3 1 7.2 1 2.3 1 1.2.3 1 1.1.2 1 1.1.35, df = 2 2.4.4 1 8.9 1 0 1 4.4 1 0.1 1 4.5 1 10.6 1 -2.54, df = -2.54, df =	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 P = 0.000 6 121 5 109 9 168 5 108 9 195 701 4 (P = 0.6	0. 2. -1. 4 (2), ⁴ = 2) 0. 2. -1. 4. (4), ⁴ =	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 14 6 19 0 15 5 19	61 52 85 280 62 53 83 108 85 391	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 9.7% 11.0% 9.7% 15.2% 10.4% 57.2%	Mean Difference N, Fixed, 95% C 2.30 [-1.60, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 833 4.70 [1.80, 11.55 4.52 [2.14, 6.90 4.00 [-0.70, 8.70 6.50 [1.80, 11.20 1.50 [-3.50, 6.50 4.50 [1.50, 1.50, 6.50 4.57 [2.51, 6.63]	11 19 19 19 19 19 19 19 19 19 19 19 19				5.1.1 how does Bailey, C. J.2010 Forst, T.2014 Kovars, C. S.2015 Bienlof, K.2013 Subtoal, (295, CI) Heterograndi, Chi ^m Test for overall affec 5.1.2 high dose "Bailey, C. J.2010 "Forst, T.2014 "Kovars, C. S.2015 "Matthesi, S.2015 "Matthesi, S.2013 Subtoal, (295). CI Heterograndi, Chi ^m Test for overall effec	Mean 5 3.1 : 7.1 : 2.6 : 2.9 : = 1.81, df = t Z = 1.32 () 9.5 : 11.3 : -1.5 : 5.8 : 7.1 : = 7.72, df =	D Total 25 126 26 107 30 165 25 192 590 3 (P = 0.8 26 120 26 120 26 120 26 120 26 129 26 129 27 108 29 108 29 108 29 108 25 195 700 4 (P = 0.1 P = 0.000 100	Mean 3.5 -0.4 0 1 51); I*= 09 -0.4 0 -6.3 1 10); I*= 48 (2)	SD Total 25 60 27 52 28 82 26 85 279 6 25 61 27 53 28 93 28 93 29 108 26 85 390 %	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2% 10.6% 14.8% 55.3%	Mean Difference M. Fixed, 95% CI -0.40 [-809, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 10.19] 1.30 [-4.60, 8.46] 2.54 [-1.23, 6.31] 11.70 [2.94, 20.46] 1.50 [-0.4, 6.34] 1.210 [4.37, 19.83] 6.10 [-0.45, 19.83] 6.54 [3.15, 9.93]			
1.110w dose Bailey, C. J2010 Forst, T.2014 Koraca, C. S.2015 Steniot, K.2013 Subtotal (95% CI) Bailey, C. J2010 Forst, T.2014 Kooxec, C. S.2015 Matthael, S.2015 Steniot, K.2013 Subtotal (95% CI)	Mean S 3.3 1 7.2 1 2.3 1 1.2 1 1.1.2 1 1.1.2 1 1.1.2 1 1.1.2 1 2.3 7.2 4.4 1 8.9 1 0 1 4.5 1 1.0.6 1 2.54.df= 2 2.4.35 (f) 2	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 2 = 0.000 6 121 5 109 9 168 5 108 9 195 701 4 (P = 0.6 2 < 0.000 1291	0. 2. -1. 4. (2), *= 2) 0. 2. -1. 4. (4), *=	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 15 4 14 5 19 6 0% 6 19 0 15 5 19 6 0%	61 52 85 280 62 53 83 108 85 391	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 9.7% 11.0% 9.7% 15.2% 10.4% 57.2%	Mean Difference M. Food, 95% C 2:00[+69,749 4:00[n16,944 3:00[+1:23,8:83 6:70[1:85,11:55 4:52[2:14,6:90 4:00[+0:70,8:70 6:50[180,11:20 1:50[+3:50,6:50 4:50]50,8:50 6:10[1:2,10,4]					5.11 how does Bailey, C. 32010 Forst, 7.2014 (worars, C. S.2015 Blenich (X.2013 Subtotal (95% CI) Heiterogeneity, C.In Fast for overail effec 5.12 high dose "Bailey, C. J.2010 Heiterogeneity, C.II Subtotal (95% CI) Heiterogeneity, C.II Teat for overail effec Total (95% CI)	Mean 5 31 .7 7.1 .2.6 2.9 =1.81, df= t Z=1.32 () 9.5 11.3 -1.5 5.8 .7 7.1 = 7.72, df= t Z= 3.76 ()	D Total 25 126 26 107 30 165 25 192 55 192 30 167 26 120 26 120 26 120 26 109 30 168 29 108 25 195 700 4 (P = 0.1 P = 0.000 1290	Mean 3.5 -0.4 0 1 51); I*= 0* -0.4 0, -6.3 1 0); I*= 48 (2)	SD Total 25 60 27 52 28 82 26 85 279 6 25 61 27 53 28 83 29 108 26 85 390 % 669 669	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2% 10.6% 14.8%	Mean Difference M. Fixed, 95% CI -0.40 (+0.09, 7.29) 7.50 (+1.34, 16.34) 2.60 (+4.99, 10.19) 1.90 (+4.66, 8.46) 2.54 (-1.23, 6.31) 6.00 (+1.81, 13.811) 1.170 (2.94, 20.46) 1.50 (+0.04, 5.12.65) 6.10 (-0.45, 12.65)	+	M. Fixed. 3	ss a
1.1 I low dose anley, C. J 2010 ords, T. 2014 (owars, C. S. 2015 beniof, K. 2013 untotati (95% CD telerogeneity, Chr ^a - est for overall effect 1.1.2 high dose Bailey, C. J 2010 Forst, T. 2014 Kovars, C. S. 2015 Matthael, S. 2015 Steniof, K. 2013 subtotati (95% CD deterogeneity, Chr ^a - fest for overall effect otal (95% CD)	Mean S 3.3 1 7.2 1 2.3 1 1.1.2 1 \$\$1.35, df= 2 \$\$2.372 (f) 44 \$\$4.9 1 \$\$0.1 4.5 \$\$1.06 1 \$\$2.54, df= 2 \$\$2.54, df= 2 \$\$2.54, df= 3.89, df=	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 2 = 0.000 6 121 5 108 9 195 701 4 (P = 0.6 2 < 0.000 1291 8 (P = 0.3 2 < 0.000 1291 8 (P = 0.3 2 < 0.000 1291 14 (P = 0.6 2 < 0.000 19 10 19 10 10	0. 2. -1. 4. (2), *= 2) 0. 2. -1. 4. (4), *= (1) (7), *=	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 15 4 14 5 19 6 0% 6 19 0 15 5 19 6 0%	61 52 85 280 62 53 83 108 85 391	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 9.7% 11.0% 9.7% 15.2% 10.4% 57.2%	Mean Difference N, Fixed, 95% C 2.30 [-1.60, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 833 4.70 [1.80, 11.55 4.52 [2.14, 6.90 4.00 [-0.70, 8.70 6.50 [1.80, 11.20 1.50 [-3.50, 6.50 4.50 [1.50, 1.50, 6.50 4.57 [2.51, 6.63]	11 19 19 19 19 19 19 19 19 19 19 19 19			10	5.1.1 how does Bailey, C. J.2010 Ford, T.2014 Kovars, C. S.2015 Subtoda, (K.2013 Subtoda, (K.2013 Helerogeneit), Chi ^m Test for overall effec 5.1.2 high dose 5.1.2 high dose Tabley, C. J.2010 Ford, T.2014 Wowas, C. S.2015 Matthesi, S.2015 Matt	Mean 5 31 7,1 2,6 2,9 = 1,81, df = t Z = 1,32 () 95 11,3 -1,5 5,8 7,1 = 7,72, df = t Z = 3,78 () = 1,92, df =	D Total 25 126 26 107 28 107 20 167 25 192 50 3 (P = 0.8 P = 0.19) 26 26 120 26 120 26 109 20 168 25 195 7000 4 (P = 0.1 P = 0.000 1290 2 8 (P = 0 29	Mean 3.5 -0.4 0 1 3.5 -0.4 51); I*= 0 3.5 -0.4 0 -6.3 1 10); I*= 48 (2) 15); I*= 3 10 -6.3 -7.5 -6.3 -7.5	SD Total 25 60 27 52 28 82 26 85 279 6 25 61 27 53 28 83 29 108 26 85 390 % 669 669	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2% 10.6% 14.8% 55.3%	Mean Difference M. Fixed, 95% CI -0.40 [-809, 7.29] 7.50 [-1.34, 16.34] 2.60 [-4.99, 10.19] 1.30 [-4.60, 8.46] 2.54 [-1.23, 6.31] 11.70 [2.94, 20.46] 1.50 [-0.4, 6.34] 1.210 [4.37, 19.83] 6.10 [-0.45, 19.83] 6.54 [3.15, 9.93]	-20	M. Fixed. 3	Sh G
1.1 low dose auley, C. J2010 orst, T.2014 (ovacs, C. S.2015 stentof, K.2013 subtotal (95% CI) deterogeneity, Ch ² Fest for overall effect fest for overall effect Bailey, C. J2010 Forst, T.2014 Kovacs, C. S.2015 Steniof, K.2013 Subtotal (95% CI)	Mean S 3.3 1 7.2 1 2.3 1 2.3 1 1.35, df = 2.3 2.4 1 1.35, df = 3.72 (f 4.4 1 8.9 1 4.5 1 1.0.6 1 2.2.4.4 (f = 2.2.4.5 (f 2.2.4.3.5 (f 2.2.4.5 (f 2.2.4.3.6 (f = 2.2.4.5 (f	D Total 5 126 4 107 9 165 9 192 590 3 (P = 0.1 5 109 9 168 5 108 9 195 701 4 (P = 0.6 5 208 9 195 701 4 (P = 0.8 9 208 8 208 9 208 7 208	0. 2. -1. 4. (2), ^p = (2) (2) (-1) (4), ^p = (1) (7), ^p = (0) (2) (-1) (7), ^p = (7) (7) (7) (7) (7) (7) (7) (7)	n SD 4 15 4 14 5 19 5 19 6 0% 4 15 4 14 6 19 0 15 5 19 0 15 5 19 0 15 5 19	61 52 85 280 62 53 83 108 85 391 671	Weight 11.5% 11.3% 9.6% 10.3% 42.8% 11.0% 9.7% 15.2% 10.0% 57.2%	Mean Difference N, Fixed, 95% C 2.30 [-1.60, 7.49 4.80 [0.16, 9.44 3.80 [-1.23, 833 4.70 [1.80, 11.55 4.52 [2.14, 6.90 4.00 [-0.70, 8.70 6.50 [1.80, 11.20 1.50 [-3.50, 6.50 4.50 [1.50, 1.50, 6.50 4.57 [2.51, 6.63]					5.11 how does Bailey, C. 32010 Forst, 7.2014 (worars, C. S. 2015 Blenich (X. 2013 Subtotal (95% CI) Helerogeneity, C.In Fast for overall effec 5.12 high dose "Bailey, C. J. 2010 Helerogeneity, C.II Subtotal (95% CI) Helerogeneity, C.II Teat for overall effec Todat (95% CI)	Mean 5 31 71 26 29 = 1.81, df = t Z = 1.32 0 95 11.3 -1.5 5.8 71 = 7.72, df = t Z = 3.78 0 = 11.92, df = t Z = 3.89 0	D Total 25 126 26 107 30 165 590 3 (P = 0.8 3 (P = 0.19) 26 26 109 26 109 30 168 29 108 25 195 700 4 (P = 0.1 P = 0.000 1290 1280 P = 0.000	Mean 3.5 -0.4 0 1 51); I*= 09 -0.4 0 -6.3 1 10); I*= 48 (2) 15); I*= 3 (2)	SD Total 25 60 27 52 28 82 26 85 279 6 25 61 27 53 28 83 29 108 29 390 % 669 3% 669	8.1% 11.0% 14.8% 44.7% 10.4% 8.3% 11.2% 10.6% 14.8% 55.3%	Mean Difference M. Fixed, 95% CI -0.40 [-808, 7.29] 7.50 [-1.34, 163.41 2.54 [-1.23, 65.41] 1.30 [-4.66, 8.40] 2.54 [-1.23, 6.31] 6.00 [-1.81, 1.381] 11.70 [2.34, 20.46] -1.50 [-0.40, 6.14 2.10 [4.37, 19.83] 6.10 [-0.45, 12.65] 6.54 [1.15, 9.93] 4.75 [2.23, 7.27]	-20	M. Fixed. 3	Sh G

Figure 3. Forest plot comparing lipid metabolism between the SGLT inhibitor and placebo groups.

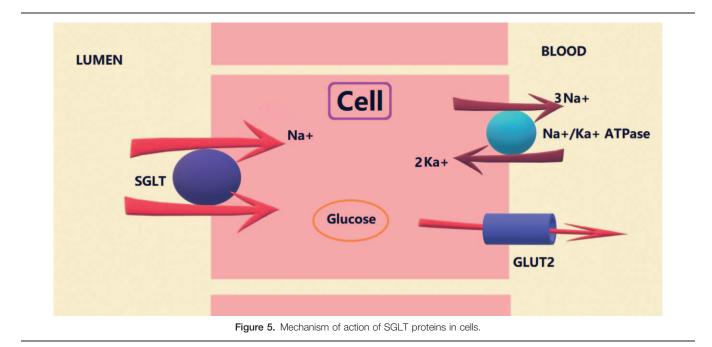

	5	SGLT			PLA			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI
1.1.1 low dose									
Bailey, C. J.2010	-5.1	16	122	-3.1	13	60	23.6%	-2.00 [-6.35, 2.35]	
Forst, T.2014	-3.1	26.6	95	1.9	32.4	39	3.4%	-5.00 [-16.49, 6.49]	• • • • • • • • • • • • • • • • • • • •
Stenlof, K.2013	-3.3	8	195	0.04	11	96	73.0%	-3.34 [-5.81, -0.87]	
Subtotal (95% CI)			412			195	100.0%	-3.08 [-5.19, -0.97]	•
Heterogeneity: Chi ² =	0.39, df	= 2 (P	= 0.82); I ² = 09	6				
Test for overall effect:	Z = 2.88	6 (P = 0	0.004)						
1.1.2 high dose									
*Bailey, C. J.2010	-6	11	122	-3.1	13	60	29.5%	-2.90 [-6.72, 0.92]	
*Forst, T.2014	-7	27.9	87	1.9	32.4	39	3.1%	-8.90 [-20.64, 2.84]	+
*Stenlof, K.2013	-4	9	197	0.04	11	96	67.3%	-4.04 [-6.57, -1.51]	
Subtotal (95% CI)			406			195	100.0%	-3.86 [-5.93, -1.78]	•
Heterogeneity: Chi ² =	0.97, df	= 2 (P	= 0.62); 2 = 09	6				
Test for overall effect:	Z= 3.63	B (P = 0	0.0003))					
									St. 10 10 10 10 10 10 10 10 10 10 10 10 10
									-10 -5 0 5 10
									Favours SGLT Favours PLA
									Favours SOLT Favours FLA

Figure 4. Forest plot comparing the ALT levels between the SGLT inhibitor and placebo groups.

erosclerosis and reduce the risk of cardiovascular and cerebrovascular events.^[60] The Comparative Effectiveness of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors (CVD-REAL) study results were presented at the 66th Annual Meeting of the American College of Cardiology. The study included 300,000 patients with T2DM. Compared with other hypoglycemia drugs, SGLT-2 inhibitors reduced all-cause mortality by 51% and heart failure in-hospital mortality by 39%. The mechanism underlying the protective effect of SGLT inhibitors is currently unclear. In addition to improving lipid metabolism, they may also have beneficial effects on myocardial fibers by activating the Stat3 signaling pathway^[61] or by inhibiting the exchange of Na+/H+ in cardiomyocytes, reducing the concentration of cytoplasmic Na+ and Ca2+, and increasing the concentration of mitochondrial Ca2+, thereby exerting a protective effect on the myocardium.^[62] It is not clear whether the SGLT-2 protein is expressed in the heart.

The limitations of this network meta-analysis are as follows:

- 1. The laboratory examination data related to lipid metabolism were limited, making it impossible to conduct a network metaanalysis for all the outcome. A common meta-analysis was performed instead.
- 2. The results of laboratory tests for triglycerides and cholesterol are highly dynamic, which could have interfered with the results.
- 3. Different types of SGLT inhibitors might have different effects on the levels of triglyceride, cholesterol and ALT.

5. Conclusions

SGLT inhibitors can induce weight loss in patients with T2DM and improve lipid metabolism. Therefore, diabetic patients with uncontrolled weight should consider taking SGLT inhibitors. In addition, they are safe in patients with mild to moderate liver dysfunction.

Author contributions

Conceptualization: Mao-bing Chen, Wei-yan Cui, Qi-han Zheng.

Data curation: Mao-bing Chen, Qi-han Zheng.

Methodology: Wei-yan Cui, Qi-han Zheng.

Software: Mao-bing Chen, Hua Wang, Hua-lan Xu.

Supervision: Mao-bing Chen, Hua-lan Xu.

Writing – original draft: Mao-bing Chen, Hua Wang, Wei-yan Cui, Hua-lan Xu, Qi-han Zheng.

Writing – review & editing: Mao-bing Chen, Hua Wang.

References

- [1] Bailey CJ. Potential new treatments for type 2 diabetes. Trends Pharmacol Sci 2000;21:259–65.
- [2] Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 2020;16:506–18.
- [3] Latest figures show 463 million people now living with diabetes worldwide as numbers continue to rise. Diabetes Res Clin Pract 2019;157:107932.
- [4] Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 2019;157:107843.
- [5] Sheleme T, Mamo G, Melaku T, et al. Glycemic control and its predictors among adult diabetic patients attending mettu karl referral hospital, southwest ethiopia: a prospective observational study. Diabetes Ther 2020;11:1775–94.
- [6] Giovannini P, Howes MJ, Edwards SE. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: a review. J Ethnopharmacol 2016;184:58–71.
- [7] Scheen AJ, Paquot N. Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: a review of the clinical evidence. Diabetes Metab 2014;40:S4–11.
- [8] Usman MS, Siddiqi TJ, Memon MM, et al. Sodium-glucose cotransporter 2 inhibitors and cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol 2018;25:495–502.
- [9] Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose cotransporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017;24:73–9.
- [10] Lima-Martínez MM, Blandenier C, Iacobellis G. Epicardial adipose tissue: more than a simple fat deposit? Endocrinol Nutr 2013;60:320–8.
- [11] Bonora BM, Avogaro A, Fadini GP. Extraglycemic effects of SGLT2 inhibitors: a review of the evidence. Diabetes Metab Syndr Obes 2020;13:161–74.
- [12] Augusteijn H, Aert R, Assen M. The effect of publication bias on the q test and assessment of heterogeneity. Psychol Methods 2019;24:116–34.
- [13] Aronson R, Frias J, Goldman A, et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab 2018;20:1453–60.
- [14] Bailey CJ, Gross JL, Pieters A, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 2010;375:2223–33.
- [15] Bailey CJ, Iqbal N, T'Joen C, et al. Dapagliflozin monotherapy in drugnaïve patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 2012;14:951–9.
- [16] Bode B, Stenlöf K, Sullivan D, et al. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract (1995) 2013;41:72–84.

- [17] Bolinder J, Ljunggren Ö, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab 2014;16:159–69.
- [18] Dagogo-Jack S, Liu J, Eldor R, et al. Efficacy and safety of the addition of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: the VERTIS SITA2 placebocontrolled randomized study. Diabetes Obes Metab 2018;20:530–40.
- [19] Ferrannini E, Ramos SJ, Salsali A, et al. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2010;33:2217–24.
- [20] Forst T, Guthrie R, Goldenberg R, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab 2014;16:467–77.
- [21] Hadjadj S, Rosenstock J, Meinicke T, et al. Initial combination of empagliflozin and metformin in patients with type 2 diabetes. Diabetes Care 2016;39:1718–28.
- [22] Haering H-U, Merker L, Christiansen AV, et al. Empagliflozin as add-on to metformin plus sulphonylurea in patients with type 2 diabetes. Diabetes Res Clin Pract 2015;110:82–90.
- [23] Häring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 2014;37:1650–9.
- [24] Hollander P, Liu J, Hill J, et al. Ertugliflozin compared with glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin: the VERTIS SU randomized study. Diabetes Ther 2018;9:193–207.
- [25] Jabbour SA, Hardy E, Sugg J, et al. Dapagliflozin is effective as add-on therapy to sitagliptin with or without metformin: a 24-week, multicenter, randomized, double-blind, placebo-controlled study. Diabetes Care 2014;37:740–50.
- [26] Ji L, Liu Y, Miao H, et al. Safety and efficacy of ertugliflozin in Asian patients with type 2 diabetes mellitus inadequately controlled with metformin monotherapy: VERTIS Asia. Diabetes Obes Metab 2019;21:1474–82.
- [27] Kadowaki T, Haneda M, Inagaki N, et al. Efficacy and safety of empagliflozin monotherapy for 52 weeks in Japanese patients with type 2 diabetes: a randomized, double-blind, parallel-group study. Adv Ther 2015;32:306–18.
- [28] Kadowaki T, Inagaki N, Kondo K, et al. Efficacy and safety of canagliflozin as add-on therapy to teneligliptin in Japanese patients with type 2 diabetes mellitus: results of a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2017;19:874–82.
- [29] Kovacs CS, Seshiah V, Merker L, et al. Empagliflozin as add-on therapy to pioglitazone with or without metformin in patients with type 2 diabetes mellitus. Clin Ther 2015;37: 1773–88e1.
- [30] Lavalle-González FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia 2013;56:2582–92.
- [31] Lewin A, DeFronzo RA, Patel S, et al. Initial combination of empagliflozin and linagliptin in subjects with type 2 diabetes. Diabetes Care 2015;38:394–402.
- [32] Mathieu C, Ranetti AE, Li D, et al. Randomized, double-blind, phase 3 trial of triple therapy with dapagliflozin add-on to saxagliptin plus metformin in type 2 diabetes. Diabetes Care 2015;38:2009–17.
- [33] Matthaei S, Bowering K, Rohwedder K, et al. Dapagliflozin improves glycemic control and reduces body weight as add-on therapy to metformin plus sulfonylurea: a 24-week randomized, double-blind clinical trial. Diabetes Care 2015;38:365–72.
- [34] Merker L, Häring HU, Christiansen AV, et al. Empagliflozin as add-on to metformin in people with type 2 diabetes. Diabet Med 2015;32:1555–67.
- [35] Pratley RE, Eldor R, Raji A, et al. Ertugliflozin plus sitagliptin versus either individual agent over 52 weeks in patients with type 2 diabetes mellitus inadequately controlled with metformin: the VERTIS FACTO-RIAL randomized trial. Diabetes Obes Metab 2018;20:1111–20.
- [36] Roden M, Weng J, Eilbracht J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2013;1:208–19.
- [37] Romera I, Ampudia-Blasco FJ, Pérez A, et al. Efficacy and safety of empagliflozin in combination with other oral hypoglycemic agents in patients with type 2 diabetes mellitus. Endocrinol Nutr 2016;63:519–26.

- [38] Rosenstock J, Chuck L, González-Ortiz M, et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naïve type 2 diabetes. Diabetes Care 2016;39:353–62.
- [39] Rosenstock J, Frias J, Páll D, et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab 2018;20:520–9.
- [40] Søfteland E, Meier JJ, Vangen B, et al. Empagliflozin as add-on therapy in patients with type 2 diabetes inadequately controlled with linagliptin and metformin: a 24-week randomized, double-blind, parallel-group trial. Diabetes Care 2017;40:201–9.
- [41] Sone H, Kaneko T, Shiki K, et al. Efficacy and safety of empagliflozin as add-on to insulin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2020;22:417–26.
- [42] Stenlöf K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 2013;15:372– 82.
- [43] Strojek K, Yoon KH, Hruba V, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 2011;13:928–38.
- [44] Terra SG, Focht K, Davies M, et al. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes Obes Metab 2017;19:721–8.
- [45] Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract 2013;67:1267–82.
- [46] Wilding JP, Woo V, Soler NG, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 2012;156:405–15.
- [47] Yang W, Han P, Min KW, et al. Efficacy and safety of dapagliflozin in Asian patients with type 2 diabetes after metformin failure: a randomized controlled trial. J Diabetes 2016;8:796–808.
- [48] Yang W, Ma J, Li Y, et al. Dapagliflozin as add-on therapy in Asian patients with type 2 diabetes inadequately controlled on insulin with or without oral antihyperglycemic drugs: a randomized controlled trial. J Diabetes 2018;10:589–99.

- [49] Rosenstock J, Cefalu WT, Lapuerta P, et al. Greater dose-ranging effects on A1C levels than on glucosuria with LX4211, a dual inhibitor of SGLT1 and SGLT2, in patients with type 2 diabetes on metformin monotherapy. Diabetes Care 2015;38:431–8.
- [50] Nomura S. Renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for new anti-diabetic agent. Curr Top Med Chem 2010;10:411–8.
- [51] Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? Or is it the opposite? Pediatr Diabetes 2019;20:5–9.
- [52] Shahwan MJ, Jairoun AA, Farajallah A, et al. Prevalence of dyslipidemia and factors affecting lipid profile in patients with type 2 diabetes. Diabetes Metab Syndr 2019;13:2387–92.
- [53] Tsimihodimos V, Gonzalez-Villalpando C, Meigs JB, et al. Hypertension and diabetes mellitus: coprediction and time trajectories. Hypertension 2018;71:422–8.
- [54] Khavandi M, Duarte F, Ginsberg HN, et al. Treatment of dyslipidemias to prevent cardiovascular disease in patients with type 2 diabetes. Curr Cardiol Rep 2017;19:7.
- [55] Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 2014;124:499–508.
- [56] Filippatos T, Tsimihodimos V, Pappa E, et al. Pathophysiology of diabetic dyslipidaemia. Curr Vasc Pharmacol 2017;15:566–75.
- [57] Filippas-Ntekouan S, Tsimihodimos V, Filippatos T, et al. SGLT-2 inhibitors: pharmacokinetics characteristics and effects on lipids. Expert Opin Drug Metab Toxicol 2018;14:1113–21.
- [58] Meier JJ, Nauck MA. Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev 2005;21:91–117.
- [59] Zambrowicz B, Freiman J, Brown PM, et al. LX4211, a dual SGLT1/ SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther 2012;92:158–69.
- [60] Qaseem A, Barry MJ, Humphrey LL, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline update from the American college of physicians. Ann Intern Med 2017;166:279–90.
- [61] Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 2017;104:298–310.
- [62] Baartscheer A, Schumacher CA, Wüst RC, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H (+) exchanger in rats and rabbits. Diabetologia 2017;60:568–73.