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Abstract

The identification of the genes responsible for complex traits is highly promising to acceler-

ate crop breeding, but such information is still limited for popcorn. Thus, in the present

study, a mixed linear model-based association analysis (MLMA) was applied for six impor-

tant popcorn traits: plant and ear height, 100-grain weight, popping expansion, grain yield

and expanded popcorn volume per hectare. To this end, 196 plants of the open-pollinated

popcorn population UENF-14 were sampled, selfed (S1), and then genotyped with a panel

of 10,507 single nucleotide polymorphisms (SNPs) markers distributed throughout the

genome. The six traits were studied under two environments [Campos dos Goytacazes-RJ

(ENV1) and Itaocara-RJ (ENV2)] in an incomplete block design. Based on the phenotypic

data of the S1 progenies and on the genetic characteristics of the parents, the MLMA was

performed. Thereafter, genes annotated in the MaizeGDB platform were screened for

potential linkage disequilibrium with the SNPs associated to the six evaluated traits. Overall,

seven and eight genes were identified as associated with the traits in ENV1 and ENV2,

respectively, and proteins encoded by these genes were evaluated for their function. The

results obtained here contribute to increase knowledge on the genetic architecture of the six

evaluated traits and might be used for marker-assisted selection in breeding programs.

Introduction

In maize (Zea mays L.), the economically most important traits are usually quantitatively

inherited, and their genetic basis is attributed to polygenes, as well as to the interaction effects

between genes and/or between genes and environment [1]. Because Z. mays has been used as a

model in classical genetics and cytogenetics, it has significantly contributed to the understand-

ing of fundamental processes such as reproduction and photosynthesis, among others [2].
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Association studies have been successfully used to identify the genetic basis of quantitative

traits, allowing not only the identification of quantitative trait loci (QTLs), but also the identifi-

cation of candidate genes based on statistical significant differences between markers and phe-

notypes [3]. Single nucleotide polymorphism (SNP) markers contributed to expand the

knowledge of the genetic structure and diversity of maize populations. The use of these molec-

ular markers has become fundamental in SNP-based association studies [4–6]. In maize, asso-

ciation studies have allowed the identification of several important traits for agriculture since

the release of the B73 maize reference genome [1,7]. In fact, due to cross-fertilization, the

genetic diversity of maize is abundant and the linkage disequilibrium (LD) decay is rapid;

therefore, this species is a good model for association mapping [8,9].

Association mapping was successfully applied in maize to identify genomic regions related

to plant height [4], root development [10], resistance to Fusarium graminearum Schwabe [11],

and oil biosynthesis in maize kernels [9]. Mapping the associations of chromosomal regions of

popcorn kernels revealed the candidate genes for starch, storage protein, pericarp polysaccha-

ride, and oil grain contents in this maize variety [3]. However, little is known about the genes

involved in the control of the main popcorn agronomic traits such as grain yield and popping

expansion.

Since its inclusion in the germplasm bank of the State University of Northern Rio de Janeiro

(UENF), the UENF-14 popcorn population has been subject to a series of recurrent intrapopu-

lational selection cycles targeting the improvement of economically important traits and the

maintenance of the population variability. Until the eighth cycle, only phenotypic evaluations

were performed [12–20]. The population is currently in the ninth selection cycle (C-9), and

the introduction of genotyping proved important for predicting gains for the main traits of

interest as well as for allowing a more detailed study of the genomic regions responsible for

such traits.

Thus, in the present study, a mixed linear model-based association analysis (MLMA)

approach was applied to six agronomic traits of popcorn under different environments to

identify potential genes in LD with associated SNPs that might be responsible for these agro-

nomic traits.

Materials and methods

Study population

The selected study population belongs to the open-pollinated UENF-14 variety [21]. The origi-

nal UNB-1 population originated the UNB-2 base population [21], from which the UNB-2U

population derived after two mass selection cycles [21]. After five cycles of intrapopulational

recurrent selection, the open-pollinated cultivar UENF-14 [21] was released. Currently in its

ninth selection cycle, UENF-14 is ideal for association analysis as it is an unstructured popula-

tion due to the recombinations performed in each recurrent selection cycle [22].

Phenotypic evaluation of the S1 progenies of UENF-14

The S1 progenies derived from the UENF-14 population (see below) were subject to two exper-

iments in August 2016: one in Campos dos Goytacazes (ENV1) (northern region of the State

of Rio de Janeiro—21˚43’15.5"S 41˚20’38.3"W), and the other in Itaocara (ENV2) (northwest-

ern region of the State of Rio de Janeiro—21˚38’45.2"S 42˚03’16.0"W). Each experiment com-

prised 98 S1 progenies, whose parents produced enough seeds to establish these experiments.

Both experiments were arranged in incomplete blocks with three orthogonal replications, in

which the progenies and eight controls were set. At both environments, the main traits of agro-

nomic interest for this crop were measured: plant height (PH, cm), ear height (EH, cm),
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100-grain weight (100GW, g), grain yield (GY, kg/ha), popping expansion of the grain (PE,

mL/g), and expanded popcorn volume per hectare (PV, m3/ha).

Genotyping and quality control

Genetic polymorphisms were characterized throughout the genome of 200 plants the open-

pollinated UENF-14 in the C-9 cycle. Genomic DNA was extracted from the young leaves of

these plants, using the standard CTAB method with modifications (Doyle & Doyle, 1990) and

the Capture Seq method [23] was applied with 5000 probes distributed throughout the genome

to detect SNP markers. The genotyping procedure generated 21,442 SNPs, to which filters

were applied in the following order: a) removal of plants with>10% data loss; b) removal of

SNPs with> 5% data loss; and c) removal of SNPs with<0.05 minor allele frequency (MAF).

In the study population, 196 plants genotyped with 10,507 SNPs were maintained. The S1

progenies referred in the previous sub-section were derived from 98 of these plants.

Genetic analysis of the population

Based on the 10,507 SNPs and 196 plants, a Genetic Relationship Matrix (GRM) was calculated

using the rrBLUP package [24] and the VanRaden algorithm [25]. The same genotypic data set

was used to estimate LD, which was measured by the r2 statistic calculated for all marker pairs

of the same chromosome using PLINK [26]. The LD decay across the genome was analyzed by

the nonlinear model proposed by Hill and Weir [27], adjusted with the nlm function of R 3.2.3

[28].

Based on the SNP data for the 196 plants, the absence of population structure was con-

firmed in STRUCTURE [29]. The algorithm used in this software assumes that the polymor-

phic locations are in Hardy-Weinberg and linkage equilibriums [29]. Therefore, two extra

filters were applied. First, the exact test of Hardy-Weinberg equilibrium removed SNPs with p

<0.05. Thereafter, LD pruning was performed for all marker pairs of the same chromosome

with r2 >0.1, removing one marker and maintaining the other. Both filters were applied using

PLINK, resulting in 739 SNPs. The application of the Bayesian model of Pritchard et al. [29]

was evaluated according to the criterion of Evanno et al. [30] using the online platform

STRUCTURE HARVESTER [31].

Mixed model-based association analysis

The MLMA [32] was performed for all traits measured at both environments as follows:

y ¼ Xb1 þ SNPibi þ Z1bþ Z2uþ ε; ð1Þ

where y is the vector of the phenotypes of a given trait; β1 the vector of fixed effects including

intercept, replication, and co-variables such as the number of plants per plot, counted immedi-

ately after thinning, and grain moisture for the traits 100GW, GY, PE, and PV; βii is the effect

of the ith SNP candidate (regression coefficient); b is the vector of block effects within replica-

tions; u is the vector of polygenic effects; e is the vector of residual effects of the model; X is the

incidence matrix of systematic fixed effects; SNPi is the vector of the number of copies of a

given allele of the i-th SNP candidate randomly taken as a reference, SNPi = {0, 1 or 2}; and Z1-

2 are incidence matrices of random effects.

It was also assumed that:

b � Nð0; Ibs
2

bÞ; u � Nð0;Gs2

uÞ; e � Nð0; Ins
2

eÞ ð2Þ
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and

covðu; b0Þ ¼ covðu; e0Þ ¼ covðb; e0Þ ¼ 0; ð3Þ

where G is GRM calculated using package rrBLUP [24], based on the algorithm of VanRaden

[25]; Ib and In are the identity matrices in the order equal to the number of incomplete blocks

and the number of observations, respectively; σ2
b;σ

2
u; and σ

2
e are the components of variance

associated with b, u, and e, respectively. These components were estimated by the Restricted

Maximum Likelihood (REML) method, using the Average Information (AI) algorithm. The

MLMA was adjusted using the ASReml-R package [33] as available in R 3.2.3 [28].

To compute the corrected means for the systematic effects, the following model was used:

y ¼ Xb1 þ Z1bþ Z2pþ ε; ð4Þ

where p is the progeny effect, taken as fixed for the estimation of the adjusted means

(LSMeans); the other terms were as in the previous model. This model was adjusted with pack-

age lme4 [34] and the adjusted means were obtained with package lsmeans [35], both as avail-

able in R 3.2.3 [28].

The adjusted means were used to estimate the phenotypic correlations between the traits

within each environment separately, and for each trait with itself between the two environ-

ments. Based on these corrected means, the proportion of the phenotypic variance explained

by the markers was estimated using the following model:

yadj ¼ mþ g þ e; ð5Þ

where yadj corresponds to the adjusted means for a given trait; μ is the intercept of the model;

g is the genetic component explained by the SNPs; and e is the random error. This model

assumed: g � Nð0;Gs2
gÞ, e � Nð0; Is2

eÞ, cov(g,e0) = 0, where the ratio of the variance explained

by the markers (h2
m) was calculated as h2

m ¼ s
2
g=ðs

2
g þ s

2
eÞ. The model fit for h2

m estimation was

obtained in REPORT GCTA [36], using the REML method with algorithm AI to estimate the

variance components.

Gene annotation

Genes located in or adjacent to the SNPs within a 100 Kb sliding window (50 Kb to the right

and left of the SNP position) were defined as candidate genes for the agronomic traits evalu-

ated. The public dataset of the maize genome and the B73 version 3 reference genome [7] were

used. The MaizeGDB genome browser was used for the functional annotations of the candi-

date genes [37].

Results

Characterization of the study population

The frequency distribution of the SNPs throughout the genome was calculated to quantify

marker coverage (Fig 1). This evidenced that the polymorphisms across the genome were thor-

oughly sampled and that the polymorphic markers were well distributed throughout the

chromosomes.

To measure the magnitude of the LD and define the windows at which polymorphic loca-

tions are expected to be in high LD, the r2 among all SNPs belonging to the same chromosome

was estimated. The highest LD was observed on chromosome 8, and half of the decay occurred

at ~ 151 Kb, while the lowest LD was observed on chromosome 4, where half of the decay was
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observed at ~ 76 Kb. For all chromosomes, half of the LD was observed at ~ 110 ± 6.82 Kb, on

average.

As expected, the absence of population structure was confirmed by the criterion of Evanno

et al. [30] (i.e., K = 1 or absence of population stratification) and, when comparing the likeli-

hood function values with the models assuming the different K values on the logarithmic scale

(log (L)), the model with K = 1 was deemed the most reasonable.

Heritability and phenotypic means

The adjusted phenotypic means, as well as the heritability estimates for the SNPs of the six

traits evaluated in ENV1 and ENV2, are listed in Table 1. The means of the most important

agronomic traits of popcorn were higher in ENV1 (GY = 2,520.42 kg/ha and PE = 28.67 mL/g)

than in ENV2 (GY = 2099.94 kg/ha and PE = 27.75 mL/g). In ENV1, the mean values of EH

(84.15 cm) and PH (166.97 cm) were lower than in ENV2 (EH = 113.80 cm and PH = 204.13

cm). The values of 100GW were similar at both environments (13.11 g and 13.41 g, respec-

tively), whereas PV was higher in ENV1 (72.55 m3/ha) than in ENV2.

The proportion of markers explaining phenotypic traits (heritability) was not identical

between environments. In ENV1, PH was the trait with the highest value (ffi 53%), while in

Fig 1. Frequency distribution of monomorphic and polymorphic markers with MAF�0.05 and MAF>0.05

throughout the genome. Results correspond to 5-Mb windows.

https://doi.org/10.1371/journal.pone.0218552.g001

Table 1. Adjusted phenotypic means and proportions of the mean phenotypic variance explained by the SNP

markers (h2
m), for the six popcorn traits evaluated in ENV1 and ENV2.

Traits ENV1 ENV2

Means h2
m Means h2

m

100GW (g) 13.11(0.06) 0.29(0.30) 13.41(0.05) 0.36(0.33)

EH (cm) 84.15 (0.58) 0.45(0.32) 113.80(0.95) 0.11(0.28)

GY (Kg/ha) 2520.42 (42.60) <0.01(0.25) 2099.94(49.12) 0.37(0.34)

PE (ml/g) 28.67 (0.22) 0.43(0.31) 27.75(0.20) 0.74(0.34)

PH (cm) 166.97 (0.89) 0.53(0.34) 204.13(1.24) 0.37(0.31)

PV (m3/ha) 72.55(1.41) 0.24(0.31) 58.65(1.39) 0.35(0.32)

Values in parentheses indicate the standard error of the estimates. 100GW = 100-grain weight; EH = ear height;

GY = grain yield; PE = grain popping expansion; PH = plant height; PV = expanded popcorn volume per hectare.

https://doi.org/10.1371/journal.pone.0218552.t001
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ENV2, the proportion was highest for PE, with approximately 74% of the SNPs explaining the

trait, suggesting that both traits would respond well to SNP marker-assisted selection.

The correlations between the traits in ENV1 were generally very low, ranging from -0.08

(PH vs. PE) to 0.9 (PV vs. GY). In this environment, PV and GY presented the highest correla-

tion (0.9), but a high value was also found for the correlation between PH and EH (- 0.82;

Table 2). Both of these correlations were significant (p<0.01).

In ENV2, trait correlations ranged from -0.08 (PE vs. 100GW) to 0.93 (GY vs. PV).

Although the highest values were observed GY and PV, the correlation between EH and PH

was also high and significant (- 0.83, p<0.01; Table 2). In both environments, the correlation

between GY and PE was 0.12.

The correlations between the traits in the two environments ranged from 0.31 (PV) to 0.83

(EH), and all associations were significant (P<0.01).

Mixed model-based association analysis

To find the genomic regions associated with traits of interest in popcorn, MLMA was per-

formed. The Manhattan plot obtained (Fig 2) revealed the significance of association for all

SNPs (n = 10,507; p�0.0001, or -log10 (p)�4). Based on the LD results, a search window was

established for the annotated genes, possibly in high LD, and their associated SNPs. Thus, a

100 Kb window was standardized, corresponding to 50 Kb to the right and left of each SNP.

The candidate genes flanking the genetic associations that were determined by MLMA in

ENV1 and ENV2 are shown in S1 Table and S2 Table, respectively.

By comparing the physical locations of significant SNPs in the B73 reference genome, the

candidate genes were identified. In ENV1, the genes were distributed on chromosomes 1, 2, 4,

5, and 10. For EH, the gene GRMZM2G002959 (S1 Table) coding for glutaryl-CoA dehydroge-

nase was identified, although its function in plant species could not be identified. The gene

GRMZM2G089995 (S1 Table) was identified for 100GW, and it encoded the APETALA2/

ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEINS (AP2/EREBP) transcription

factor 209, related to plant responses to abiotic stresses [38]. The gene GRMZM2G034152,

encoding the protein polyamine oxidase (PAO1), was also identified for 100GW, and it was

related to biotic or abiotic stress response [39]. Gene GRMZM2G069618), encoding a tetra-

peptide-containing protein (TRP), was identified for GY (S1 Table), and it is involved in plant

stress, hormone signaling [40], and root development [41]. Gene GRMZM2G461936, encod-

ing ARGONAUTE108 (AGO108), was identified for PE. Argonaute proteins (AGO) function

in cooperation with micro RNAs (miRNAs) or small interfering RNAs (siRNAs) and regulate

gene silencing at the post-transcriptional level [42]. Gene GRMZM2G118950, which encodes

Table 2. Phenotypic correlations between the traits evaluated within and between environments (ENV1 and ENV2).

ENV1

ENV2 100GW EH GY PE PH PV

100GW 0.71(<0.01) 0.21(0.04) 0.18(0.08) -0.07(0.47) 0.29(<0.01) 0.13(0.21)

EH 0.19(0.06) 0.83(<0.01) 0.20(0.05) -0.08(0.41) 0.82(<0.01) 0.13(0.2)

GY 0.24(0.02) 0.23(0.02) 0.34(<0.01) 0.12(0.25) 0.18(0.08) 0.9(<0.01)

PE -0.08(0.43) 0(0.98) 0.12(0.24) 0.48(<0.01) -0.08(0.45) 0.52(<0.01)

PH 0.23(0.02) 0.83(<0.01) 0.22(0.03) 0(0.97) 0.8(<0.01) 0.12(0.25)

PV 0.19(0.06) 0.23(0.03) 0.93(<0.01) 0.45(<0.01) 0.22(0.03) 0.31(<0.01)

Upper diagonal: trait correlations in ENV1; lower diagonal: trait correlations in ENV2. Central diagonal: trait correlations at both environments. 100GW = 100-grain

weight; EH = ear height; GY = grain yield; PE = popping expansion; PH = plant height; PV = expanded popcorn volume per hectare.

https://doi.org/10.1371/journal.pone.0218552.t002
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AMMONIUM TRANSPORTER3 (AMT3) related to ammonium uptake from the soil solution

[43], was identified for PH. Gene GRMZM2G086573 (S1 Table), encoding the AP2/EREBP

transcription factor 24 was identified for PV. The AP2/EREBP transcription factors are found

extensively in plants and are involved in their growth, development, and signal transduction of

numerous physiological and biochemical responses, including floral organogenesis, seed

development, carbon metabolism, and pathogen resistance, among others [44].

In ENV2, the genes were distributed on chromosomes 3, 5, 6, 7, 9, and 10 (S2 Table). Gene

GRMZM2G002959 (S2 Table), encoding glutaryl-CoA dehydrogenase with an unknown func-

tion in plants, was identified for EH. Gene GRMZM2G087032 (S2 Table), encoding the puta-

tive bifunctional protein C3H transcription factor 313, which may be important during the

initial stage of maize seed filling [45], was identified for 100GW. Gene GRMZM2G098793

(S2 Table), encoding the superfamily of glycosyltransferase enzymes that are responsible

for glycosylation, a fundamental mechanism for determining the chemical complexity and

diversity of natural plant products [46], was identified for PE. Genes GRMZM2G081048 and

GRMZM2G048672 (S2 Table), the first encoding an oxidoreductase and the second a macro-

phage migration inhibitory factor, were also associated with PE. Oxidoreductases catalyze

the electron transfer from one (reducing) molecule to another (oxidant) and play important

roles, not only in electron transfer, but also in several biosynthetic processes and biodegrada-

tion pathways [47]. The macrophage migration inhibitory factor is a cytokine found in

humans [48], whose function in plants is not yet identified. Genes GRMZM2G110726 and

GRMZM2G020150 (S2 Table) were associated with PV. The first is related to protein

Fig 2. Manhattan plot resulting from the mixed linear model-based association analysis of SNP markers

(n = 10,507) in the environments of Campos dos Goytacazes (ENV1) and Itaocara (ENV2). Significant SNP

markers are shown above the dotted lines (p�0.0001). Arrows indicate the candidate genes according to the

MaizeGDB genome.

https://doi.org/10.1371/journal.pone.0218552.g002

SNP-based mixed model association in popcorn

PLOS ONE | https://doi.org/10.1371/journal.pone.0218552 June 25, 2019 7 / 14

https://doi.org/10.1371/journal.pone.0218552.g002
https://doi.org/10.1371/journal.pone.0218552


BOBBER1, also found in Arabidopsis thaliana L., and responsible for limiting the extension of

the meristem and/or the development of the cotyledon domains [49], as well as for develop-

mental and thermo-tolerance functions [50]. The second, encodes the AP2/EREBP transcrip-

tion factor 196, which is involved in growth and development, as well as in other important

functions in plant organisms [44]. No gene was identified as related to GY.

Discussion

Population structure

The LD decay varied between the chromosomes (76–151 Kb), which is in agreement with the

mean LD decay range observed for 64 maize lines (80–100 kb) [51]. As expected, the criterion

of Evanno et al.[30] was sensitive enough to test K = 1 (absence of subpopulations). These

results indicate that the studied population is not highly stratified and its possible light struc-

ture may be explained by the random common alleles received during the several recombina-

tion cycles.

Association analysis

Several genes might be present in the range of an associated region (i.e., near SNPs), and these

can be identified by MLMA. This analysis identified seven and eight genes related to the stud-

ied traits in ENV1 and ENV2, respectively. Gene GRMZM2G002959, identified for EH in

both environments encodes glutaryl-CoA dehydrogenase but its function in plant species has

not been identified.

Gene GRMZM2G089995, identified for the 100GW in ENV1, encodes the transcription

factor 209, a member of the AP2/EREBP protein family, which is directly involved in the

response to biotic and abiotic stresses [52–54]. For the same trait, gene GRMZM2G034152

encoding PAO1, whose function is also related to responses to abiotic stresses in rice [39] and

citrus [55], and to biotic stresses in cotton [56], was identified. This indicated that 100GW is

related to stress responses (biotic and abiotic). This agrees with previous results obtained for

drought-stressed rice, in which a reduction in 1000-grain weight [57] was observed, and to the

premise that drought stress contributed to a yield reduction in rice lines [58]. In soybean,

seeds grown under adverse climatic conditions also had a lower 100-grain weight [59].

In ENV2, the candidate gene GRMZM2G087032, identified for 100GW, corresponds to the

putative bifunctional protein C3H transcription factor 313, which may be important during

the initial stage of maize grain filling [45]. However, the study of this protein is still at an early

stage, as the research on this topic is very limited.

In ENV1, the candidate gene GRMZM2G069618, related to GY, was found on chromo-

some 1. It encodes a protein containing tetratricopeptide repeats (TPR) that is involved in

plant stress and hormone signaling [40], and that is responsible for root development, as defi-

ciency of the SSR1 gene (encoding TRP) negatively affects the transport of auxin [41], an

essential plant hormone regulating root growth [60]. Poor root formation can damage the

developing grain, by preventing the uptake of nutrients for grain formation.

In ENV1, the candidate gene GRMZM2G461936, which encodes AGO108, was identified

as being related to PE. Argonaute proteins are fundamental in the regulation of gene expres-

sion and are essential for several developmental processes [61]. These authors identified the

protein ZmAGO18b in maize genotypes and observed a high expression of this protein in

reproductive tissues. Although no studies have specifically identified AGO108 in plants, defi-

ciency in AGO10 induced an abnormal development of the apical meristem of buds in A.

thaliana plants [62]. Gene GRMZM2G098793, encoding a member of the glycosyltransferase

enzyme superfamily, was also identified as related to PE in ENV2. In wheat endosperm starch,
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the amount of arabinoxylan, which is one of the most abundant polysaccharides, was reduced

after the suppression of two glycosyltransferase homologous genes [63]. This suggested that

the gene identified in the present study is also involved in starch synthesis in popcorn kernels,

and that its suppression can modify the endosperm, whose function is directly related to the

grain expansion capacity under high temperatures. Gene GRMZM2G081048, also associated

with PE, encodes the enzyme oxidoreductase. In the present study, it was not possible to iden-

tify which type of oxidoreductase is associated with the trait, impairing a more in-depth analy-

sis of its functions. Gene GRMZM2G048672, also identified as related to PE, was shown to

encode the immunoregulatory cytokine macrophage migration inhibitory factor. However, no

reports of its function in plants were found in the literature.

In ENV1, the gene GRMZM2G118950 identified for PH encodes AMT3. Ammonium

transporters are responsible for ammonium uptake from the soil solution [43,64]. Two AMTs

located in the rhizodermis (ZmAMT1;1a and ZmAMT1;3) identified in a previous study are

probably the principal components of the high affinity ammonium transport system in maize

roots [65]. In maize, ammonium has several beneficial effects, such as the increase of root den-

sity and extension [66]. Therefore, ammonium uptake may directly influence PH.

In ENV2, gene GRMZM2G043435, encoding the respiratory burst oxidase-like protein C

(RbohC), was associated with PH. In A. thaliana, RbohC-deficient mutants had short root hair

on stunted roots, suggesting that RbohC regulates plant cell expansion [67] and might be

involved in height development of popcorn plants.

One gene (GRMZM2G086573) was identified as related to PV in ENV1. This gene encodes

the AP2/EREBP transcription factor 24. The distinctive feature of AP2/EREBP proteins is that

they contains one or two AP2 domains, which are binding elements to the response element

ethylene. The rice starch regulator gene (RSR1), a transcription factor of the APT2 family, neg-

atively regulates the expression of type I starch synthesis genes as RSR1 deficiency resulted in

the increased expression of starch synthesis genes in rice seeds [68]. Overall, PV depends on

the grain moisture and starch content, which is converted into steam and exerts pressure on

the endosperm [69].

In ENV2, two genes were identified as associated with PV: GRMZM2G110726, which

encodes the protein BOBBER 1, also found in A. thaliana, and responsible for limiting the

extension of the meristematic domain and/or promoting the development of the cotyledon

domains [49], as well as participating in developmental and thermo-tolerance functions [50];

and GRMZM2G020150, encoding the protein AP2/EREBP transcription factor 196. Similar to

the other transcription factor of the APT2 family found in rice, this might be responsible for

negatively regulating the expression of genes of type I starch synthesis [68], which are corre-

lated with the capacity of the grain to expand, as this depends directly on the starch content of

the grain [69].

Genomic relationships between candidate genes

There were no significant common markers between the analyzed agronomic traits. Despite

the high correlation between GY and PV (0.93, p<0.01), no SNP was common to both traits.

However, these traits are directly related because PV is calculated based on GY and PE. Thus,

PV should be used as a "super trait" in recurrent popcorn selection programs, as its inclusion

results in optimized simultaneous gains for GY and PE [19,70]. Although PH and EH were

slightly correlated in both environments (0.82 and 0.83; Table 2), the significant genomic

regions for the two traits did not overlap. The QTLs controlling the two traits were identified

and there was no QTL controlling any single trait independently [71].
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The increased number of functional assays and the higher number of evaluated traits will

produce more available data for the different populations, which will be extremely useful to

address important biological issues. The MLMA strategy used in the present study proved use-

ful and robust, complementary to biparental cross-mapping, and can map multiple genetic

traits simultaneously [72]. The main objective of association analyses is to identify genes

related to traits of interest. Thus, the genomic regions and the traits of interest must be strongly

associated to allow the identification of trait-related SNPs. The SNPs identified here are

extremely important for accelerating the breeding process using marker-assisted selection, and

can be incorporated in genomic selection strategies.

Conclusion

The initial stimulus for this study was the fact that, to date, few studies have addressed the

genetic architecture and mechanisms that control the natural variation in the development

and productivity of popcorn genotypes. The results obtained here showed that some morpho-

logical traits are moderately inheritable, such as PH and EH, with wide variation in a popula-

tion containing different lines genotyped with 10,507 SNPs. The candidate genes associated to

these loci are an inestimable resource for gene function analyses and for dissecting the molecu-

lar network regulating the development of popcorn traits, apart from identifying genome poly-

morphisms, which are essential in marker-assisted selection of agronomic traits in breeding

programs. Twelve proteins were identified as being SNP-associated, providing new informa-

tion useful for accelerating popcorn breeding programs, as this crop accounts for an annual

turnover of about one billion dollars in the United States.
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21. Amaral Júnior AT, Gonçalves LSA, Freitas Júnior SP, Candido LS, Vittorazzi C, Pena GF, et al. UENF

14: a new popcorn cultivar. Crop Breed Appl Biotechnol. 2013; 13: 218–220. https://doi.org/10.1590/

S1984-70332013000300013

22. Liao CY, Wu P, Hu B, Yi KK. Effects of genetic background and environment on QTLs and epistasis for

rice (Oryza sativa L.) panicle number. Theor Appl Genet. 2001; 103: 104–111. https://doi.org/10.1007/

s001220000528

23. Neves LG, Davis JM, Barbazuk WB, Kirst M. A high-density gene map of Loblolly Pine (Pinus taeda L.)

based on exome sequence capture genotyping. G3 Genes|Genomes|Genetics. 2014; 4: 29–37. https://

doi.org/10.1534/g3.113.008714 PMID: 24192835

24. Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant

Genome J. 2011; 4: 250. https://doi.org/10.3835/plantgenome2011.08.0024

25. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008; 91: 4414–4423.

https://doi.org/10.3168/jds.2007-0980 PMID: 18946147

26. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81: 559–

575. https://doi.org/10.1086/519795 PMID: 17701901

27. Hill WG, Weir BS. Variances and covariances of squared linkage disequilibria in finite populations.

Theor Popul Biol. 1988; 33: 54–78. https://doi.org/10.1016/0040-5809(88)90004-4 PMID: 3376052

28. R Core Team. R: A Language and environment for statistical computing [Internet]. Vienna, Austria;

2016. Available: http://www.r-project.org/

29. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype

data. Genetics. 2000; 155: 945–959. PMID: 10835412

30. Evano G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software

STRUCTURE: a simulation study. Mol Ecol. 2005; 14: 2611–2620. https://doi.org/10.1111/j.1365-

294X.2005.02553.x PMID: 15969739

31. Earl DA, Bridgett M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE

output and implementing the Evanno method. Conserv Genet Res. 2012; 4: 359–361. https://doi.org/

10.1007/s12686-011-9548-7

32. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of

mixed-model association methods. Nat Genet. 2014; 46: 100–106. https://doi.org/10.1038/ng.2876

PMID: 24473328

SNP-based mixed model association in popcorn

PLOS ONE | https://doi.org/10.1371/journal.pone.0218552 June 25, 2019 12 / 14

https://doi.org/10.1007/s10681-017-2090-2
https://doi.org/10.13082/1984-7033.v01n01a01
https://doi.org/10.1590/S0103-90162004000600008
https://doi.org/10.1590/S0103-90162004000600008
https://doi.org/10.1590/S0006-87052007000300004
https://doi.org/10.12702/1984-7033.v09n01a01
https://doi.org/10.12702/1984-7033.v09n01a01
https://doi.org/10.4238/2014.January.21.21
http://www.ncbi.nlm.nih.gov/pubmed/24535880
https://doi.org/10.4238/gmr15049309
http://www.ncbi.nlm.nih.gov/pubmed/28002606
https://doi.org/10.4025/actasciagron.v40i1.35218
https://doi.org/10.1590/S1984-70332013000300013
https://doi.org/10.1590/S1984-70332013000300013
https://doi.org/10.1007/s001220000528
https://doi.org/10.1007/s001220000528
https://doi.org/10.1534/g3.113.008714
https://doi.org/10.1534/g3.113.008714
http://www.ncbi.nlm.nih.gov/pubmed/24192835
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.3168/jds.2007-0980
http://www.ncbi.nlm.nih.gov/pubmed/18946147
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1016/0040-5809(88)90004-4
http://www.ncbi.nlm.nih.gov/pubmed/3376052
http://www.r-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/10835412
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
http://www.ncbi.nlm.nih.gov/pubmed/15969739
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.1038/ng.2876
http://www.ncbi.nlm.nih.gov/pubmed/24473328
https://doi.org/10.1371/journal.pone.0218552


33. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008; 91: 4414–4423.

https://doi.org/10.3168/jds.2007-0980 PMID: 18946147
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