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Despite many recent advances in the field of computer
vision, there remains a disconnect between how
computers process images and how humans understand
them. To begin to bridge this gap, we propose a
framework that integrates human-elicited gaze and
spoken language to label perceptually important regions
in an image. Our work relies on the notion that gaze and
spoken narratives can jointly model how humans inspect
and analyze images. Using an unsupervised bitext
alignment algorithm originally developed for machine
translation, we create meaningful mappings between
participants’ eye movements over an image and their
spoken descriptions of that image. The resulting
multimodal alignments are then used to annotate image
regions with linguistic labels. The accuracy of these
labels exceeds that of baseline alignments obtained
using purely temporal correspondence between
fixations and words. We also find differences in system
performances when identifying image regions using
clustering methods that rely on gaze information rather
than image features. The alignments produced by our
framework can be used to create a database of low-level
image features and high-level semantic annotations
corresponding to perceptually important image regions.
The framework can potentially be applied to any
multimodal data stream and to any visual domain. To
this end, we provide the research community with
access to the computational framework.

Introduction

The use of digital images range from personal photos
and social media to more complex applications in

education and medicine. In addition to serving as a
means for documenting events and capturing memories,
digital images can help facilitate decision making.
Doctors use medical images to help diagnose and
determine the treatment of diseases, and emergency
response is often guided by imagery available from
the scene. Intelligent computers should be capable
of making inferences about where people look and
what they say about the things they see. We believe
computers would benefit by acquiring and using
learned associations. This is known as semantic image
annotation. When applied to identify regions in images,
it is called semantic image region annotation. A system
capable of accurate semantic image region annotation
would be able to provide a user useful and detailed
information about an image. This work integrates gaze
and linguistic information indicating ‘what people look
at’ and ‘what people say,’ to identify the objects and
their corresponding names or labels in images. The
data we collected (Vaidyanathan et al., 2018) which has
been released for research purposes and the code we
developed for the framework (released in this work),
allowed us to explore the following research questions:

RQ1: When a person views and describes an image, what
relationship, if any, exists between the moment of
fixation on an object and the moment the person
utters the word or phrase to name that object?

RQ2: Can co-captured gaze and speech data be integrated
automatically in order to identify and quantify this
relationship?

RQ3: Can the discovered relationship or relationships be
used to extract meaningful, accurate information
about the objects in an image?
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Figure 1. Example illustrating the concept of semantic image
region annotation. The process involves identifying and
segmenting perceptually meaningful regions in an image and
labeling them appropriately. Image credit:
“Creative Commons Asian black bear” by Taro Sako, used under
CC BY-NC 2.0. Text overlaid on original.

The dataset can also be useful for scholars who wish
to study language production during scene-viewing
tasks, including the interaction between word
complexity and frequency and gaze behavior. Further,
this multimodal dataset can be used in studies of
affective visual or linguistic computing tasks. The
multimodal framework we propose establishes the
utility of combining gaze and spoken descriptions and
highlights the potential of additionally considering
multiple modalities in studies of human perception (e.g.,
facial expression, pulse rate, galvanic skin response).
The framework we have developed for the purpose of
semantic image region annotation could also be used
for real-world computer vision applications, such as
interactively annotating regions of interest in works of
art on display in a museum.

Automatic semantic image region annotation plays
a key role in developing sophisticated image-based
information systems but is a difficult and long-standing
problem (Smeulders et al., 2000; Zhang et al., 2012;
Karpathy & Fei-Fei, 2015). An illustration of semantic
image region annotation where regions in an image are
descriptively labeled with appropriate words is shown in
Figure 1. Although the entire image in Figure 1 could
be annotated as, for example, bear playing with a log, it
is intuitive to annotate objects or subregions with labels
such as bear and log. These detailed annotations for
image regions can assist in important applications such
as image retrieval where the user could be searching for
images of bears or visual question-answering where
the user could be asking what the bear is playing with.
Further, relationships between annotated regions could
also be inferred, for example, the bear is sniffing the
log. High-level cognitive processing and experience
enable humans to process images at a semantic level

that remains difficult for a computer (Shanteau, 1992;
Goldstone, 1998; Zhu et al., 2016; Zitnick et al., 2016;
Tavakoli et al., 2017).

Gaze locations distributed across an image can
act as pointers and reveal perceptually important
regions and their relation to one another from the
perspective of an observer. Spoken language is the most
natural and convenient instrument of expression for
humans to communicate their understanding of and
reasoning about images. In this case co-captured image
descriptions convey relevant meaning, particularly
special knowledge and experience that the human
observers possess. An important aspect of this work
lies in the integration of human observers’ perceptual
and conceptual knowledge using natural language
processing (NLP) methods to annotate images.

People often have the intuition that when they
look at an object and mention its name, they do
so simultaneously. However, research in sentence
production has shown that there is a variable amount
of time between when a person looks at an object
and when they name it aloud (Meyer et al., 1998;
van der Meulen, 2003; Griffin, 2004; Vaidyanathan
et al., 2012). Therefore, even when visual and linguistic
information is co-captured we cannot assume that a
fixation on a region will occur simultaneously with
the verbal naming of the region. This lag, which
can vary in length, demands more sophisticated
methods.

The bitext word alignment method (Brown et al.,
1993; Liang et al., 2006), widely used in statistical
machine translation, aligns each word in a sentence
in one language with the word or words in a parallel
sentence in a second language that are most likely to
have the same meaning. In this work, the unimodal
parallel sentences are replaced by fixations and spoken
descriptions; the fixation locations on images are
analyzed as visual units that encode visual regions
while the spoken descriptions about the images contain
the parallel linguistic units. Prior work confirms
the usefulness of associating words and sentences
with images, objects and image regions, and videos
particularly in interpreting images, generating image
captions, coreference resolution in text, and natural
language descriptions for videos (Forsyth et al., 2009;
Kuznetsova et al., 2013; Kong et al., 2014; Thomason
et al., 2014). Many of these works rely on written
descriptions of general-domain images, making the
framework difficult to translate to domain-specific
images. Since these works need written descriptions, it
is difficult and laborious to translate them to domains
like dermatology where experts are required. However,
our framework can be applied to any image domain
(Vaidyanathan et al., 2016). Perceptual and conceptual
information is combined via the integration of gaze
and narratives to advance annotation of image regions
(Vaidyanathan, 2017).

https://www.flickr.com/photos/faultier1985/8434624463/ 
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Figure 2. Panels A and C show the gaze fixation locations
extracted from eye movements and lexical concepts (labels)
obtained from spoken narratives, respectively, over a common
time scale. This hypothetical example shows that the data
collection session for this image took T seconds. Panel B shows
the seven image regions that were looked at by the observer in
the original image. The proposed algorithm will align words
such as bear and log with corresponding regions, using the
bitext alignment technique within the discussed multimodal
framework. Image credit: “Creative Commons Asian black bear”
by Taro Sako, used under CC BY-NC 2.0. Scanpath overlaid on
original.

The aim of this study is to understand and
encode important image information by semantically
annotating important regions of an image with natural
language descriptors as shown Figure 1. The framework
uses gaze locations on images together with words
uttered by observers to learn perceptually important
image regions and the corresponding linguistic
descriptors, as shown in Figure 2. The study also asserts
that the combination of perceptual information (via eye
movements) and more naturally obtained conceptual
information (via spoken narratives) contributes to the
understanding of an image.

The four main contributions of this work are as
follows:

(1) Demonstrate that human-elicited gaze and
narratives jointly provide information that if
considered separately would be insufficient to
understand how humans perform image inspection
and description tasks.

(2) Exemplify the applicability of the visual-linguistic
alignment framework by comprehensively using and
evaluating it with a general-domain image dataset.

(3) Compare the performance of different image region
segmentation techniques used to identify the visual
units in order to determine their strengths and
weaknesses.

(4) Provide the research community with access to the
framework,1 which can be extended to integrate
modalities other than those discussed in this work.

Related work

Challenges in image annotation

The goal of this work is to automatically annotate
images through the integration of users’ cognitive
perceptual (gaze) and conceptual (spoken language)
information with information contained in the images.
Treisman and Gelade (1980) proposed that processing
of image information is a dynamic interaction between
bottom-up low-level image information pieces and
top-down user-driven directed processes. In spite
of the proposed integration theory, for a long time
image annotation algorithms were built solely on
low-level features such as color and texture to perform
segmentation and retrieval (Saber et al., 1996; Shi &
Malik, 2000). Algorithms employing these low-level
features succeeded in capturing basic statistics of
natural scenes (Fei-Fei & Perona, 2005), identifying
faces (Viola & Jones, 2004), or segmenting single objects
in a scene (Kumar et al., 2010; Jaber & Saber, 2010),
but they were unable to deal with multiple objects
in the scene, complexity of domain-related images,
and other high-level processing tasks. For example,
while the bottom-up methods helped in automatic
detection and segmentation of objects in a scene, they
did not provide the relationship between these objects
or the contextual meaning of the scene (Li et al.,
2009). Recently researchers have had some success with
generating image descriptions and semantic labeling of
general-domain images (Kong et al., 2014; Karpathy
& Fei-Fei, 2015; Yatskar et al., 2016; Vasudevan et al.,
2018b, 2018a; Anderson et al., 2018; Gygli & Ferrari,
2018). However, it is not clear if their techniques would
easily translate to complex domains involving experts.

To bridge the semantic gap, Duygulu et al. (2002)
proposed the use of machine translation to combine
image content with the accompanying text for
object recognition. Following this, other researchers
proposed several integrating techniques using different
mathematical approaches such as Bayesian methods,
latent Dirichlet allocation and latent semantic analysis
methods (Barnard et al., 2003; Li & Wang, 2003; Berg
et al., 2004b, 2004a). Similarly, researchers proposed
the use of deep learning to combine text and images
for image annotation (Karpathy & Fei-Fei, 2015;
Vinyals et al., 2014), as well as unsupervised alignment

https://www.flickr.com/photos/faultier1985/8434624463/ 
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to align text instructions with video segments (Naim
et al., 2014). Johnson et al. (2015) suggested the use
of neighboring test images and their annotations to
disambiguate and annotate otherwise ambiguous
images. These approaches bridge the semantic gap to a
certain extent by bringing in multimodal information
through images and text. However they do not involve
human expertise or cognitive knowledge encoded via
speech or gaze data that is important to capture the
semantics of images in complex domains (Tourassi
et al., 2013; Kumar et al., 2016; Qu & Chai, 2008)
extended the idea of using multimodal data by using
more natural speech and eye gaze than previous work,
but their application scenario was a 3D simulated
scene and did not involve real-life challenges such as
occlusion.

Importance of capturing perceptual and
conceptual information

Fixations can be considered pointers to perceptually
important regions of an image while spoken narratives
can reveal conceptual elements associated with
those regions. Capturing perceptual and conceptual
information relevant to the image processing
system’s end user’s goal is of paramount importance
for improving the annotation of images. Image-
information systems must be reliable enough to assist
in goal-oriented performance (Müller et al., 2004). End
users typically do no merely seek images or regions that
have similar low-level features such as color or texture
but they instead want to locate, classify, or segment an
image based on high-level reasoning features. Studies
have found that perceptual and conceptual information
help a user formulate more specific and comprehensive
descriptions of images and these correlate with the
user’s ability to express their information needs
(Goldstone, 1998; Krupinski, 2000; Vakkari, 2002;
Hoffman & Fiore, 2007).

Researchers have used various knowledge-elicitation
methods to capture human users’ expertise. One of
the most common methods is interviewing and asking
participants to describe the decision making process
through the think-aloud protocol. One problem with
this method is that it will only produce what an expert
can verbalize as an answer to the particular question
(Shadbolt & Smart, 2015). It also requires the expert to
perform a secondary task in parallel with the primary
task. Any non-verbalizable information, such as where
these experts look in the image, is lost, and there is
a risk that the expert may not verbalize freely when
they are uncertain or confused. Another widely used
technique is to ask the experts to manually mark
important regions in images (Shyu et al., 1999; Wang
et al., 2012b). The drawback with this technique is the

loss of any information pertaining to how the expert
arrived at that decision. This work uses eye movements
and spoken language as they are non-invasive and
more natural tools that enable us to draw out the tacit
perceptual and conceptual information of humans.

Need to integrate eye movements and spoken
narratives

Experiments have shown that eye movements are
closely time-locked with human language processing
(Just & Carpenter, 1976; Ferreira & Tanenhaus, 2007;
Griffin, 2004). In the field of psycholinguistics, eye
movements have been used as a tool to understand
language processing. Similarly, eye movement
researchers have incorporated linguistic input into
their studies. Just and Carpenter (1980) described how
measures like fixation duration changed depending on
the linguistic characteristics of the text being read.
Soon several researchers began using eye movements as
a tool to reveal the way written language is processed
(Frazier & Rayner, 1982; Heller, 1988; Pollatsek et al.,
1993; Rayner, 1998). Some researchers studied language
comprehension through the use of eye movements
(Tanenhaus et al., 1995; Dahan et al., 2001; Spivey
et al., 2002; Richardson & Dale, 2005; Cooper, 1974).
They revealed that it was possible to investigate how
people understand spoken language by measuring
people’s eye movements while listening to verbal
commands and executing them. Richardson and
Dale (2005) conducted a study to understand the
coupling between speakers and listeners, reporting
that the interlocutors’ eye movements were closely
time-locked. Kaiser and Trueswell (2008) showed that
eye movements can be used to understand the stages of
language comprehension such as hearing a command,
interpreting it, and engaging in resolving and executing
commands. This work revealed that a relation between
cognition, vision, and language exists and that by
integrating eye movements and spoken narratives,
complex cognitive tasks can be understood. Meyer et al.
(1998) investigated eye movements and object naming
and found that fixations on objects were delayed
for lexical processing; when required to name the
objects, gaze did not move to the next object until the
phonological form of the current object was retrieved.
Meyer et al. (1998) also observed that mean viewing
time for speakers was significantly longer for objects
with low frequency names than with high frequency
names. In another study, van der Meulen (2003)
demonstrated that participants fixated the objects to
be named in the order of mention and once just before
naming or describing using an adjective. This indicates
that speech is performed in an incremental fashion, i.e.
speakers keep looking at the current object until they
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find the words for the object before moving to the next
object.

The growing interest in this multimodal field
motivated Griffin and Bock (2000) to study the
temporal relation between event apprehension, sentence
formulation, and speech execution. Their study involved
an ‘agent’ and a ‘patient’ (the object being acted on)
involved in a simple event. Participants were asked to
inspect and describe the event in one sentence without
pronouns. They analyzed the timing of specific fixations
to agents and patients and found that speakers’ eye
movements were guided by an overall understanding
of the event/scene rather than by the salience of the
individual objects in it. The distribution of fixation
times anticipated the order of mention regardless of
sentence structure, partly confirming the findings by van
der Meulen (2003). We believe that as the complexity of
the image and task increases, fixations on objects may
not follow the same order in which objects were named.
This indicates we need methods like word alignment to
handle repetitive or unimportant words and fixations
as well as one-to-many and many-to-one relationships.
They also found that when speaking extemporaneously,
speakers began fixating elements less than a second
before naming them, suggesting that people spend some
time looking at objects prior to naming them (Griffin &
Bock, 2000; Griffin, 2004). More recently, a study was
conducted to understand how complex noun phrases
are produced and if the production process was similar
to that of simple noun phrases (Shao et al., 2013).

The above findings indicate that vision and language
are tightly integrated. Several researchers have
investigated methods to combine the two cognitive
modalities to understand semantic processing (Badler,
1975; Waltz, 1980; Herzog & Wazinski, 1994; Srihari,
1995). Deb Roy proposed a technique to integrate
vision and language elicited from infants using a
mutual information model (Roy, 2000; Roy & Pentland,
2002). In the last decade, several researchers began
studying the multimodal integration problem in relation
to sentence prediction and object naming in scenic
images (Coco & Keller, 2012; Clarke et al., 2013;
Yun et al., 2013a, 2013b). Although there is some
relationship between the timing of eye movements and
spoken narratives, an exact or fixed-delay temporal
match indicating that a fixation on a region will occur
simultaneously or after a fixed time interval with
the verbal naming of the region cannot be assumed.
Holsanova (2006) studied the interaction of vision and
language over time by investigating the dynamics of
picture viewing and picture description. Her research
revealed that correspondence between the spoken
words and the objects in the scene could be of different
types, for example, one-to-one or many-to-one. These
findings partly confirm hypotheses such as the existence
of a temporal relationship between when objects are
fixated and when their names are uttered, but lack any

quantitative consistency that would enable modeling
that could be used in automated systems. Therefore, we
need to use other techniques such as bitext alignment.

There has been a large body of research on using
machine learning to identify objects or regions in
images using human-generated keywords or captions.
Duygulu et al. (2002) investigated a method to
automatically recognize and annotate objects in scenes.
They segmented images into regions and clustered
them into region types that they referred to as blobs.
Then, an expectation-maximization method was used
to learn the mapping between the blobs and the
keywords for a given image. However, the image regions
or blobs and keywords were obtained using image
segmentation methods and a large vocabulary from
captions without any human-elicited eye movements
and spoken narratives. A similar technique was used
by other scholars to automatically match words to the
corresponding pictures (Barnard et al., 2003), faces
in pictures to names (Berg et al., 2004a, 2004b), and
natural language instructions to video frames for a
particular task (Naim et al., 2014). However, none of
these works incorporate gaze information.

Yu and Ballard (2004b) seem to be the first to explore
how word alignment methods could be extended to
the challenging task of grounding spoken language in
visual perception. Similar to our work, they transcribed
the audio and extracted nouns as object names. For the
perceptual representation of objects, Yu and Ballard
(2004b) segmented the objects in the video using
gaze data. Further, these objects were represented
using multidimensional color and shape features. The
multimodal data consisting of words and objects was
then integrated using IBM Model 2 (Brown et al., 1993;
Liang et al., 2006), a non Hidden Markov Model-based
word alignment method commonly used in machine
translation, to learn correspondences. In their extended
work, they combined scene video, participant’s gaze,
head motion, and object names obtained from verbal
narratives while performing simple everyday tasks,
such as stapling printed papers, to annotate objects
and categorize action scenes in video (Yu & Ballard,
2004a). Their work provides a good understanding of
how multimodal data can be combined for a video
annotation task. However, their work involved only six
(Yu & Ballard, 2004a) and nine (Yu & Ballard, 2004b)
participants and three simple video stimuli. Primarily,
Yu and Ballard explored object annotation with
images that had uniform backgrounds and consisted
of distinct objects that were easy to segment from the
background. Also, their work did not provide a clear
evaluation and baseline comparison. Qu and Chai
(2008) collected gaze data and spoken responses for
computer-generated videos involving 3D objects in a
room scene. Participants were asked various questions
about the decoration of the 3D simulated room (e.g.
describe the left wall, what do you dislike about this
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Figure 3. Example images from MSCOCO used in the data collection process. The images vary in number of objects, scale, lighting, and
resolution posing challenges to the alignment framework. Image credits from left: “Giraffes” by Garret Voight, used under
CC BY-NC 2.0, “USACE division visit to Europe District coincides with German Fasching celebrations” by
U.S. Army Corps of Engineers Europe District, used under CC BY 2.0, “Fresh Water in the House” by Megan, used under CC BY-NC 2.0.

room.) They proposed a modified IBMModel 2 (Brown
et al., 1993) to integrate gaze information and spoken
language to help interpret unexpected user language
inputs in conversational systems. The use of a simulated
3D room scene does not capture the challenges such
as clutter and ambiguity that come with natural
images. Similarly, use of question-answering method
only provides us with the subject’s final answer and
may not capture all the elements of gaze and speech
leading up to the final answer. Motivated by the work
of Yu and Ballard (2004b), we investigate multimodal
image region annotation with images that do not
have uniform background and consist of multiple
objects in images that are challenging to segment. We
explore the annotation task using a dataset consisting
of general-domain images and provide baseline
comparisons.

Multimodal data collection

In this section, we describe our multimodal Spoken
Narratives And Gaze (snag) dataset (Vaidyanathan
et al., 2018) that is used to evaluate the proposed
framework. This dataset contains eye movements and
spoken narratives co-captured from participants while
viewing general domain images (Figure 3) and has been
released2 to the research community. Coco and Keller
(2010) have released a similar dataset; however, in their
experiment they showed participants a cue word before
each image and instructed them to use the cue word in
the description. Recently, van Miltenburg et al. (2018)
released a dataset that contains co-captured gaze and
spoken Dutch descriptions for images that do not
necessarily contain any action. Our dataset is different
because it involves images depicting an event and do
not involve any cue words that need to be used by
participants. Additionally, we use the master-apprentice
method to elicit rich descriptions.

Our alignment-annotation framework consists of the
following four major steps:

(1) Collecting multimodal data: In this step, we collect
multimodal data, specifically raw speech and gaze
data that are subsequently processed to obtain
transcriptions and fixations, respectively.

(2) Collecting and retrieving units of analysis: In
this step, we extract the units of analysis namely
linguistic units from the transcripts and visual units
from the fixations.

(3) Multimodal bitext alignment: These extracted units
of analysis are then fed into the bitext alignment
algorithm where they are aligned.

(4) Labeling the image regions: The output from the
multimodal aligner is used to label image regions.

Participants: Our institutional review board-
approved data collection involved 40 subjects ranging
in age from 18 to 25 years. To ensure reliable automatic
speech recognition (ASR) transcription and a consistent
vocabulary, only native speakers of American English
were selected as participants. Participants were
recruited campus-wide from the Rochester Institute of
Technology. We used an adapted Master-Apprentice
(Beyer & Holtzblatt, 1997) data collection method to
elicit more details from observers in a natural context
compared to the traditional think-aloud method. Prior
studies (Lloyd & Dykes, 2011; Gurses et al., 2012)
have shown that, when human experts are placed in
a teaching mode, they provide more information and
richer detail than when they are in a think-aloud mode.
For this reason, we ask our participants to take on
the role of a master whose task is to describe and
explain the image to the examiner, who acts as the
apprentice. We instructed participants to describe the
action in the images and tell the experimenter what is
happening and say next when they were done to move
to the next image. Although in some contexts the
act of viewing and describing simultaneously might
seem unnatural, we note that it is commonplace in

https://www.flickr.com/photos/bloodlessr/7381450190/
https://www.flickr.com/photos/bloodlessr/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/europedistrict/6886413159/
https://www.flickr.com/photos/europedistrict/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/meganpru/5666947662/
https://www.flickr.com/photos/meganpru/
https://creativecommons.org/licenses/by-nc/2.0/
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Figure 4. Data collection set-up: the SMI eye-tracker was
positioned underneath the stimulus display. The participant
wore a lapel microphone connected to a TASCAM recorder that
captures the spoken descriptions. The task requires the
participant to describe the action in the image to the
experimenter. Inset image credit:
“Creative Commons Asian black bear” by Taro Sako, used under
CC BY-NC 2.0. Original modified to fit as inset.

many settings. Radiologists, for example, routinely
dictate descriptions of radiologic images for their
reports, military personnel and journalists describe
their visual environments to remote collaborators and
listeners, museum visitors discuss works of art while
viewing them, and caregivers comment on the contents
of picture books or interesting things they see when
interacting with babies and toddlers.

Stimuli

We showed participants 100 general-domain images
selected from the Microsoft Common Objects in
Context (mscoco) open-source dataset (Lin et al.,
2014) which consists of more than 300,000 images. The
images represent complex everyday scenes containing
common objects and people. For our dataset, the first
author selected images that typically depicted an event.
Example images are shown in Figure 3. The images
were presented to the participant on a 22-inch LCD
monitor (1680 × 1050 pixels) located at a viewing
distance of approximately 68 cm. At 68 cm, the full
display subtends 38° × 22° of visual angle.

Gaze and verbal data

Eye movement data was collected using a
SensoMotoric Instruments (SMI) RED 250Hz
eye-tracker attached to a display as shown in Figure 4.
The SMI is a nonintrusive remote eye-tracker with a
reported accuracy of 0.5°. We used a double computer

Time Lx[px] Ly[px] Rx[px] Ry[px] L Event R Event

7456470899 550.0 406.07 550.0 406.07 Fixation Fixation

Table 1. Sample raw data as obtained from the SMI eye tracker
showing from left to right: system timestamp, left eye
horizontal and vertical fixation locations, right eye horizontal
and vertical locations, left eye and right eye event, respectively.

set-up with one computer used to run the SMI software
iViewX gaze tracking system and Experiment Center
2.3 and the other used for stimulus presentation. Each
stimulus was followed by a blank gray slide to minimize
the effect of gaze from the prior stimulus. The blank
gray slide was followed by a test slide with a small,
visible target at the center with an invisible trigger area
of interest. Using the test slide, we could measure any
drift between the location of the target at the center
and the predicted gaze location over time that may have
occurred owing to the participants’ movements. Each
participant performed a nine-point calibration at the
beginning of their trial, followed by a validation after
every 10 images and recalibration if their validation
error was more than one degree. We used a TASCAM
DR-100MKII audio recorder with a lapel microphone
to collect the speech recordings. Participants were given
a mandatory break after 50 images and otherwise
smaller breaks if needed to avoid fatigue. They were
given a snack and either a chance to enter a raffle or
course credits for their participation.

Fixations, narratives, and data quality

To detect the eye-tracking events we used the
SMI software package BeGaze 3.1.117 with default
parameters and a velocity-based algorithm. An
example of the detected fixations is shown in Table 1.
Because the accuracy of an eye tracker in use rarely
meets the ideal-case value stated by the manufacturer
(Wang et al., 2012a), we measured the data quality
of all observers’ gaze data. We averaged over each
participant’s calibration data across the full trial to
obtain an average calibration accuracy in the horizontal
and vertical directions. We then calculated the overall
average and standard deviation across all participants
in the two directions. Participants whose averages in
both directions were within two standard deviations
of the overall average in that direction were included
in a further analysis. Nine participants had a mean
calibration and validation accuracy of more than
two standard deviations in at least one direction
and one participant had partial data loss. These 10
participants were removed from further analysis. The
mean calibration accuracy for the dataset is reported
in Table 2. The corpus size is 3000 instances of image
descriptions (100 images × 30 participants), with 13

https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
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X Mean X SD Y Mean Y SD Participants Images

0.67 0.25 0.74 0.27 30 (75%) 100

Table 2. Mean calibration accuracy across all participants and
images. Some participants had a mean calibration accuracy of
more than two standard deviations from the overall calibration
accuracy and were not included in further analysis.

female participants and 17 male participants. Figure 5
shows an example of the scanpath, that is, fixations
(blue/green circles) and saccades (blue/green connecting
lines) of an observer overlaid on the corresponding
image. Information about saccades is not used in our
work.

We use the term narrative to refer to a participant’s
spoken description of an image, in which the
speaker richly describes a depicted event in a
visual environment. Our definition of narrative
is characterized by description with a story-like
progression, but is distinct from the narrow sense
of narrative as a literary text. To fully automate
data processing, the speech recordings of the
narratives for the 30 participants for 100 images
were machine-transcribed using the cloud-based
IBM Watson Speech-to-Text service, an ASR system
accessible via a Websocket connection3 (IBM, 2015).
Example output is shown in Figure 5 (left). Figure 6

shows an additional comparison of output from
the IBM Speech-to-Text tool for two observers. The
transcription in Figure 6 (top left) contains few errors,
which underscores the usefulness of using ASR rather
than manual transcription of speech in large datasets.
The ASR output shown in Figure 6 (bottom left),
however, contains many errors, indicating that the use
of ASR for transcription should be closely supervised.
All of the spoken descriptions for a subset of five
images from the snag dataset were manually corrected
using (Praat Boersma, 2002) to be able to empirically
explore the feasibility of substituting automatically
generated transcriptions for careful but laborious
manual transcriptions. The word error rate is 5%,
which is state-of-the-art for ASR and is comparable
with reported error rates of human transcription of
conversational speech (Chiu et al., 2018). We discuss
the comparison of annotation results using uncorrected
and corrected transcripts for these five images later in
the Results section.

Gaze and narrative analysis

Analyzing the gaze and narrative duration shows that
the average fixation duration across the 30 participants
was 250 milliseconds and average duration of narratives
was about 22 seconds. We observed that on average

Figure 5. Co-captured multimodal data example. Left: Automated transcription of a participant’s spoken description for two different
images. Right: The eye movement data for the same participant overlaid on the corresponding images. The blue/green circles show
fixations with the radius of the circles representing the duration of fixation. Saccades, connecting two fixations, are represented using
the blue/green lines. Image credits: “Creative Commons Asian black bear” by Taro Sako, used under CC BY-NC 2.0. Scanpath overlaid
on original, “USACE division visit to Europe District coincides with German Fasching celebrations” by
U.S. Army Corps of Engineers Europe District, used under CC BY 2.0. Scanpath overlaid on original.

https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/europedistrict/6886413159/
https://www.flickr.com/photos/europedistrict/
https://creativecommons.org/licenses/by/2.0/
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Figure 6. Examples of the transcribed speech for two participants obtained using IBM’s Speech-to-Text ASR for the image shown at
right. Whereas the narrative on the top left has only one incorrectly transcribed word (lot where the correct word is log), highlighting
that using automated transcription can save manual labor, the narrative on the bottom left shows the limitations of ASR use with
more word transcription errors. For the narrative on the bottom, the correct transcription for [of, wooden, in] are [a, wood on, and],
respectively. Image credit: “Creative Commons Asian black bear” by Taro Sako, used under CC BY-NC 2.0.

Mean SD Min. Max.

NO. OF TOKENS 55 31 5 295
NO. OF TYPES 38 17 5 132
TYPE-TOKEN RATIO 0.75 0.11 0.41 1.00

Table 3. Mean, standard deviation (SD), minimum, and
maximum number of word tokens, word types, and
type-token-ratio per narrative over 3,000 narratives (30
observers, 100 images). The high value of mean type-token
ratio indicates greater lexical diversity.

observers viewed the image for approximately 0.58
seconds before uttering their description. Using the
default NLTK word tokenizer (NLTK, 2015) we
segmented the ASR-transcribed narratives into word
tokens. Various measures for the first-order analysis
of the narratives were then calculated. Table 3 shows
the mean number of word tokens and word types, and
mean type-token ratio across all the 3000 narratives
(30 participants x 100 images) along with the standard

deviation, minimum and maximum number of tokens,
types, and type-token ratio. The mean number of
tokens and the average duration of narratives together
suggest that on average observers uttered 2.5 words per
second. The mean type-token ratio of 75% in Table 3
suggests that there is significant lexical diversity across
the dataset, supporting the richness of the dataset.
Figure 7 shows a scatter plot for the mean number of
word types against the mean number of word tokens
for the 100 images. The plot is linear because a higher
number of tokens typically result in higher number of
types. Images 3 and 53 have fewer mean word tokens
and types than image 86. For this dataset, this may be
due to the number of significant objects in the images
where a significant object is defined as an object that
occupies a large area of the image. Images 3 and 53
have on average one or two objects, whereas image 86
has more than two. Comparing, the image number 3
has two significant objects (two giraffes) whereas image
number 86 has more than five objects (banana, eggs,
foil, sugar, laptop). The number of significant objects

Figure 7. Scatter plot showing mean word types versuss. mean word tokens for each image across all observers. Each image is a data
point. Highlighted images are shown at right. Image credit: “Giraffes” by Garret Voight, used under CC BY-NC 2.0,
“Creative Commons Asian black bear” by Taro Sako, used under CC BY-NC 2.0,
“I had three overripe bananas, and there is only one thing that can be made with overripe bananas” by Rachel+Micah, used under
CC BY-NC-ND 2.0.

https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/bloodlessr/7381450190/
https://www.flickr.com/photos/bloodlessr/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/rachemicah/7620009912/
https://www.flickr.com/photos/rachemicah/
https://creativecommons.org/licenses/by-nc-nd/2.0/
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Figure 8. Bar plot showing the mean number of word tokens, word types, and type-token ratio (TTR) for each observer across the 100
images. All the observers have a mean type-token ratio of greater than 0.6, suggesting stronger lexical diversity. Observer number 28
has the highest mean type-token ratio.

together with the task instruction may have resulted
in the distribution obtained in Figure 7. We observe
that a greater number of visually important regions in
the image tend to result in a greater number of word
tokens and types. Figure 8 shows the mean word tokens,
mean word types, and mean type-token ratio for each
observer across all the images. The high values of the
mean type-token ratio suggest the lexical richness and
heterogeneity present in the descriptions provided by
the observers. In the following sections, we explore and
discuss the applicability of the alignment-annotation
framework to the snag dataset.

Alignment

In this section, we describe the process to obtain
linguistic units and visual units followed by the bitext
alignment approach that the framework uses. We also
discuss reference alignments we obtain from human
annotators and two baseline alignments we use to
compare against our framework. A flowchart showing
the four main steps in our alignment annotation
framework is shown in Figure 9.

Linguistic units

To automate the transcription process, we used
the IBM Watson Speech-to-Text (ASR) service for
automatic transcription of the audio recordings.
Recordings of the descriptions were transmitted
as .wav files over a WebSocket connection to the
Speech-to-Text service which returned transcription
results in JSON format. After performing minor

text normalization, we parsed the transcripts with
the Berkeley parser, using the English grammar that
is included with this parser distribution (Petrov &
Klein, 2007). From the parsed output we extracted
all adjectives (e.g., orange), singular and plural
nouns (e.g., bear), singular and plural proper nouns
(e.g., Achilles), gerunds (e.g., sniffing), and foreign
word tokens. The tokens were filtered to remove any
remaining stopwords (e.g., okay, some) along with words
used by the observers when following the task-specific
instructions (e.g., next). Additionally, we removed any
word tokens that were transcribed only once for a given
image to avoid including ASR errors in our data. The
frequency of word tokens in the narratives per image
is a parameter that needs to be explored in depth.
Importantly, throughout this preprocessing, the linear
order of the linguistic units was maintained. Figure 10
shows an example of the linguistic units obtained for
this dataset. There are some errors introduced by the
ASR system such as wood on transcribed as wooden,
which we do not correct. After comparing results with
five images that were manually corrected (see subsection
Effect of manual correction versus. ASR only), we chose
to retain the automated transcriptions to investigate the
result on the performance of the framework.

Visual units

Output from the eye tracker consisted of fixation
locations given as (x, y) image coordinates and
fixation durations per image per observer as shown
in Figure 10. Visual inspection of the scanpaths of
observers suggested existence of latent groups of
fixations. To explore these emergent fixation clusters,
we assigned fixations to image regions using three
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Figure 9. Implemented alignment-annotation framework. Step 1 involves collecting multimodal data, which is then processed to
retrieve visual and linguistic units of analysis in step 2. In step 3, the units of analysis are fused using multimodal bitext alignment. In
step 4, the alignment results are used to annotate image regions. Image credit: “Creative Commons Asian black bear” by Taro Sako,
used under CC BY-NC 2.0. Scanpath and text overlaid on original. Also shown, “Segmented Bear”, is a derivative of
“Creative Commons Asian black bear” by Taro Sako, used under CC BY-NC 2.0. “Segmented Bear” is licensed under CC BY-NC 2.0 by
Preethi Vaidyanathan.

Figure 10. (Left) Process to extract linguistic units for an image. The original narrative is automatically transcribed using ASR and
linguistic units are extracted. Transcription errors are not corrected manually to investigate their effect on the framework. Also, word
tokens occurring only once per image are removed because they may not necessarily belong to any particular region in the image,
occur owing to ASR errors or may reflect idiosyncratic word choices. Right: A similar process extracts visual units by labeling fixations
based on the cluster they belong to according to the MSFC for a given image. In both cases, the linear order is maintained.

different techniques: mean shift fixation clustering
(MSFC) (Santella & DeCarlo, 2004), Lloyd’s k-means
(Lloyd, 1982), and gradient segmentation (Ugarriza
et al., 2009). The outputs of the three clustering or
segmentation methods are shown in Figure 11.

The first technique was the MSFC algorithm. It is a
data-driven method that clusters visual fixations into
regions-of-interest. The advantage of MSFC over other
techniques is that it does not require prior knowledge
of the number of clusters and it is insensitive to outliers
(Santella & DeCarlo, 2004). In this work we cluster the

fixations spatially but also note that the same method
could be used to cluster fixations temporally. MSFCwas
applied to each observer’s eye-tracking data, assigning
each fixation to a cluster in the image. Figure 11 shows
fixations from all observers for one image. In this case,
MSFC identified eight clusters. Clusters containing
fixations outside of the image regions owing to blinks
or track losses were discarded. For each observer, we
then used this cluster information to obtain a linearly
ordered sequence of visual units (i.e., image regions
determined by fixations) that acted as the other input

https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
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Figure 11. Original image (top left), MSFC (top right), k-means (bottom left, k = 8 for this image) and GSEG (bottom right) clustering or
segmentation output for the image, used for extracting visual units. Image credit: This work, “Segmented Bear”, is a derivative of
“Creative Commons Asian black bear” by Taro Sako, used under CC BY-NC 2.0. “Segmented Bear” is licensed under CC BY-NC 2.0 by
Preethi Vaidyanathan.

to the alignment algorithm, as shown in Figure 10. On
average, MSFC yielded approximately 11 clusters per
image. Fixations are encoded based on the cluster they
belong to resulting in visual units. The linear order of
the fixations is maintained.

In the k-means method, image pixels are divided
into k clusters based on low-level image features. It is a
fast, interpretable, and straightforward approach, but
requires that the number k be determined a priori. We
collected the RGB and spatial features for each image
and applied Lloyd’s k-means algorithm resulting in a
segmented image. This is shown in the bottom left in
Figure 11. For any given image, the number of clusters
obtained using the MSFC is used as k for the k-means
segmentation. The fixation sequence of each observer
is overlaid on the segmented image and encoded using
the segment label they fall within, without loss of linear
order. The gradient segmentation (GSEG) method
efficiently integrates spectral intensity, gradient, and
texture information for segmentation purpose. It uses
color space gradient information to identify clusters
in an image, characterizes the texture in the identified
clusters, and applies a region-merging procedure to
generate a final segmentation. Sankaranarayanan
Piramanayagam, a researcher at the Rochester Institute
of Technology working on improving the GSEG
algorithm, provided a toolbox that was applied to the

snag images. Further mathematical details about GSEG
can be found in Ugarriza et al. (2009). As with the
other methods, fixations sequences are overlaid on the
segmented image and encoded using the segment label.

Bitext alignment

Studies have reported that fixations are generated
before the end of words and that participants look at
an object before naming it (Griffin & Bock, 2000). Our
preliminary analysis showed that there is a temporal lag
between when fixations on an object begin and when
the person begins naming it (Vaidyanathan et al., 2012).
For this reason, visual and linguistic units cannot be
aligned merely by considering their time of occurrence.
Instead, we require a method that can perform the
alignment without making assumptions about the
temporal relationship between the units. Conceptually,
this is similar to translating one language into another
in that the structural characteristics such as word order
of the source language may not parallel those of the
target language. We take advantage of this insight
to explore whether a bitext alignment approach can
discover meaningful alignments of multimodal data.

In statistical machine translation, bitext word
alignment models are traditionally derived using a

https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
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Table 4. Toy example illustrating the bitext alignment between
Hindi and English sentences. The probability of English word
house being a translation of Hindi word ghar in the first pair of
sentences is small. Over time this probability increases (black to
red to blue) as more parallel sentences containing the two
words are added to the training data. Similarly, the bitext
alignment algorithm keeps track of the number of times the
Hindi word chhota occurs in parallel to the English word small.

parallel corpus of sentences in which each sentence is
rendered in two different languages. Table 4 shows a
Hindi-English toy example. The principle behind bitext
word alignment is as follows: proceed through each
pair of training sentences, keeping track of the number
of times words co-occur in the two languages. These
counts are iteratively used to estimate the probability
that a word in one language is a translation of (aligns
with) each possible word in the other language. In the
toy example above, a bitext alignment model would
eventually estimate a high probability that the Hindi
word ghar is a translation of (aligns with) the English
word house. In the multimodal scenario of this study,
the linguistic (nouns, adjectives, gerunds, and foreign
words) and visual (numeric labels of cluster/segments)
units extracted for an image represent a pair of
“sentences” in the training data.

Using a sliding window of T seconds, linguistic and
visual units within each sliding window are extracted
and added as additional “sentences” or multimodal data
pairs to the corpus, as shown in Figure 12. Therefore,

Figure 13. Example training data: A sliding window of 5 seconds
is applied to the pair of visual and linguistic “sentences” to
expand the data. Subsequently, contiguous visual units are
merged and visual units with longest fixation duration are
selected. The selected visual units, together with the linguistic
units, comprise the training data.

the number of linguistic or visual units can be different
between the sliding windows. By applying the sliding
window, the parallel corpus grows substantially. The
original linguistic and visual unit sequence pair, on
which the sliding window is applied, is also included
in the training data. We use the sliding window for
two reasons. First, the narratives are long, which is
very challenging for expectation maximization-based
word alignment. A windowing approach allows us to
break each narrative into smaller chunks. In addition,
windowing allows us to expand the number of parallel
sentences for each image, from only 30 to several
hundred or more parallel sentences, which results
in a more robust model. Second, as we have noted,
people do not say words at the exact time they look
at regions corresponding to those words. A sliding
overlapping window has the potential to capture this
visual-linguistic behavior.

An example of our training data is shown in
Figure 13.

Figure 12. (Left) Linearly ordered linguistic units obtained from the transcribed narrative. (Right) Linearly ordered visual units
obtained by labeling fixations using the MSFC algorithm. The labels are different when using other segmentation methods for
identifying visual units. Note the linguistic units or visual units are not isochronous. Therefore, the number of linguistic units or visual
units between the sliding windows may be different.
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Figure 14. RegionLabeler GUI used to acquire reference alignments. The person preparing the manual alignments is able to draw
borders with a mouse around regions and label them with linguistic units. For this image, all pixels within the blue border are marked
as tie in the SURE alignments whereas all pixels within the pink border are marked as laughing in the POSSIBLE alignments. Image
credit: “USACE division visit to Europe District coincides with German Fasching celebrations” by
U.S. Army Corps of Engineers Europe District, used under CC BY 2.0. Region outlines overlaid on original.

Another complication in using this multimodal data
is that the sequences of visual units are substantially
longer than the sequences of linguistic units. In order
to balance the sequence lengths, we merge contiguous
identical visual units (e.g., cluster3, cluster2, cluster2,
cluster3 is converted to cluster3, cluster2, cluster3).
This is applied to each sliding window. Subsequently,
visual units with the longest fixation duration are
selected (keeping the linear order intact) based on
the visual-linguistic ratio. The visual-linguistic ratio
is defined as β = Numberof visualunits

Numberof l inguisticunits , where β = 1
results in an equal number of visual and linguistic
units within each data pair. We also report on the
impact of changing the value of T and β as well as the
visual unit selection method (α), on the framework’s
performance.4. Using this method, the training data for
each image increased to approximately 1000 sentences.

We use the Berkeley aligner (Liang et al., 2006) rather
than Giza++ (Och et al., 2000) because of its reported
greater alignment accuracy and flexibility in testing an
existing alignment model on unseen data. One of the
greatest strengths of the Berkeley aligner is the use of
joint training. Further details can be found in Liang
et al. (2006). The Berkeley aligner was run with default
parameters settings (two iterations each of IBM Model
1 and an HMM, joint training, and posterior decoding)

with the exception of the posterior threshold used for
decoding, which was lowered to 0.1. This value was
empirically determined to maximize alignment accuracy
on a small held-out set of multimodal data.

Reference alignments

Reference alignments (ground truth) were prepared
using a GUI called RegionLabeler5 (Vaidyanathan
et al., 2018) to allow evaluation of the resulting
multimodal alignments. This represented the manual
alignments obtained by associating each fixation cluster
in the case of MFSC and image segment in the case of
image segmentation with its corresponding word tokens
(linguistic units). Figure 14 shows a screenshot of the
GUI developed specifically to allow the annotator to
perform the manual alignments by drawing borders
around image regions and then selecting linguistic units
from a pop-up box that contains all the linguistic units
for that image. The output from the GUI consists of
sets of image pixel coordinates labeled with one or more
associated linguistic units, which are then processed to
obtain linguistic units corresponding to either fixation
clusters in the case of MSFC or image segments in the
case of k-means and GSEG. The annotator specifies

https://www.flickr.com/photos/europedistrict/6886413159/
https://www.flickr.com/photos/europedistrict/
https://creativecommons.org/licenses/by/2.0/
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Total no. of linguistic units in narratives 34621
No. of linguistic units in narratives and images 25225
% of linguistic units in narratives and images 72.86

Table 5. Percent linguistic units present in both the narratives
and the images for the general-domain SNAG dataset.

two kinds of alignments: sure (S) and possible (P)
(Och & Ney, 2003). sure alignments define alignments
where there is no ambiguity. For example, for the image
in Figure 14, the annotator aligned the word tie to
the image region marked in blue. This alignment is
therefore added to the set of sure reference alignments
(set S). In cases where there was ambiguity in whether
a word represented the marked region, the word was
added to the possible alignments (set P). Och and
Ney (2003) use possible alignments to accommodate
idiomatic expressions, free translations, and missing
functions words, for example, when a preposition in one
language does not have a direct translation in the other
language, possible alignments allow the aligner not to
be penalized for not aligning the preposition to the
verb or the article. Slightly differently, we use possible
alignments to capture words that are ambiguous in
whether they correspond to a region. For example, for
the image in Figure 14, the annotator was not absolutely
certain if the word laughing belongs to the image region
marked in pink, thereby adding this alignment pair to
the possible reference alignment (set P). The amount of
overlap between narratives and reference data is shown
in Table 5.

Each concrete noun or adjective that was used by
an observer was presented to the annotator, and the
annotator simply had to indicate which regions in
the image corresponded to that word. Most speakers
in a speech community share terminology to refer to
objects. For these reasons, we used only one annotator
and given the general-domain nature of this dataset, the
first author of this work performed both the sure and
possible manual alignments. All the manual alignments
were done using the post-filtered word tokens. We
observed that not all the linguistic units present in the
narratives were present in the image. Therefore, these
linguistic units would also be absent from the reference
alignments that are used for evaluation. The percent of
linguistic units present in the narratives that are also
present in the image is close to three-fourths.

Baseline alignments

We compare the performance of the proposed
alignment method with two temporal methods of
alignment, namely simultaneous and 1-second delay
baselines. Figure 15 shows the simultaneous (solid
line) and 1-second delay (dashed line) baseline for an

Figure 15. Visual units (bottom) are aligned with linguistic units
(top) uttered simultaneously (solid line) and after a 1-second
delay (dashed line) for the image shown in Figure 11.

example set of visual and linguistic units. Simultaneous
baseline alignments are obtained assuming that the
observers utter the word corresponding to a region at
the exact moment their eyes fixate on that region. The
1-second delay baseline assumes that there is a 1-second
delay between a fixation and the utterance of the region
label, based on prior research (Griffin, 2004). Although
the amount of delay is a parameter that can be varied
for comparison against the proposed alignment, it is
unlikely that a fixed-delay alignment will be sufficient.
Prior research has shown that the delay between when a
person looks at an object and mentions it depends on
factors such as usage frequency and complexity of the
object’s name (Griffin & Bock, 2000) and complexity of
the image (Vaidyanathan et al., 2012).

Results and discussion

Evaluation of results

Figure 16 shows the framework output for a given
linguistic and visual “sentence” pair. We use the
following metrics and equations from Och and Ney
(2003) to test how well the framework identifies the
correct word-region correspondences compared with
the reference alignments:

Precision = |A ∩ P|
|A| (1)

Recall = |A ∩ S|
|S| (2)

Alignment error rate = 1 − |A ∩ S| + |A ∩ P|
|A| + |S| (3)
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Figure 16. Example illustrating output from our framework, the reference alignment, and baseline alignment for a given pair of
linguistic and visual “sentences.” Image credit: “Creative Commons Asian black bear” by Taro Sako, used under CC BY-NC 2.0. Region
labels and boundaries overlaid on original.

Figure 17. (Top left) Reference alignments as provided by the annotator. Alignment output when using the (top right) MSFC, (bottom
left) k-means, and (bottom right) GSEG methods, respectively. Correct alignments are shown in pink, whereas misalignments are
shown in yellow. MSFC has fewer misalignments compared with k-means and GSEG methods. The visualization tool places the label
within the corresponding segment, however, in cases where the segments are small, the labels may seem to belong to the adjacent
segments too (e.g., scissors in bottom right). Image credit: This work, “Annotated tie-cutting,” is a derivative of
“USACE division visit to Europe District coincides with German Fasching celebrations” by U.S. Army Corps of Engineers Europe District,
used under CC BY 2.0. “Annotated tie-cutting” is licensed under CC BY 2.0 by Preethi Vaidyanathan.

where A is the set of alignment pairs in the output
alignment, S is the set of sure alignments in the
reference, and P is the set of possible alignments in the
reference. AER is the alignment error rate, which is
commonly used to evaluate word alignment in machine
translation. A high precision and recall resulting in a

low AER is considered good. The image regions and
their labels change with the segmentation technique
being used. Therefore, each segmentation method
has its own set of simultaneous and 1-second delay
baselines, reference alignments, and alignments from
the proposed framework that are used to compute the

https://www.flickr.com/photos/faultier1985/8434624463/ 
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https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
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Figure 18. Annotation results for a different image with reference alignments in the top left, MSFC in the top right, k-means in the
bottom left, and GSEG in the bottom right. Again, correct alignments are shown in pink, whereas misalignments as well as labels not
belonging to reference alignments are shown in yellow. Note that, as in the previous case, both k-means and GSEG tend to misalign
more often than MSFC. Image credit: This work, “Annotated Bear,” is a derivative of “Creative Commons Asian black bear” by
Taro Sako, used under CC BY-NC 2.0. “Annotated Bear” is licensed under CC BY-NC 2.0 by Preethi Vaidyanathan.

metrics. In general, the 1-second delay baseline tends
to perform as well as or better than the simultaneous
match baseline.

Alignment Plotter,6 a qualitative visualizer, was built
to visualize the resulting annotations corresponding
to the image regions. The visualizer sorts the words in
increasing order of frequency of utterance and displays
W words on the corresponding image region locations.
The number of visualized words W, if needed, can be
different for different images. Various results shown
and discussed in this article use the visualizer with the
value of W ranging from 2 to 4 (e.g., see Figures 17 and
18) in order to illustrate the output annotations. Low
values of W were picked to avoid clutter for illustration
of results.

Alignment annotation results

We calculated the average precision, recall, and
AER and compared them against the baselines.
The comparison was done for three clustering or
segmentation methods: MSFC, k-means with RGB
color features, and k equal to the number of fixation
clusters obtained by MSFC for each image, and GSEG.

The simultaneous baseline’s performance measures
are similar to the 1-second delay baseline. As shown
in Table 6, the proposed framework for alignment
performs better than either of the baselines. Among
the three clustering or segmentation methods, MSFC
yields the highest recall and lowest AER. It achieves
an absolute improvement of 0%, 19%, and 10% for
precision, recall, and AER, respectively, over the
1-second delay baseline. The absolute improvement
percentages are shown in the last row of Table 6.
In contrast, k-means with k equal to the number of
clusters from MSFC results in greater precision with
an absolute improvement of 6%, 14%, and 14% over
the 1-second delay baseline for precision, recall, and
AER, respectively. In comparison with MSFC and
k-means, the performance of GSEG is comparable with
an absolute improvement of 6%, 13%, and 13% for
precision, recall, and AER, respectively. Table 7 shows
the performance for each clustering or segmentation
method based on the number of images. Although all
three methods yield higher recall and lower AER than
baseline for almost all 100 images, k-means and GSEG
yield higher improvement in precision for 96 images
outperforming MSFC.

A visual comparison of reference alignments
provided by the annotator with the alignments obtained

https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
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MSFC k-means GSEG

Precision Recall AER Precision Recall AER Precision Recall AER

Simultaneous 0.42 0.30 0.65 0.49 0.17 0.74 0.41 0.14 0.78
1-second delay 0.43 0.31 0.64 0.50 0.17 0.74 0.42 0.15 0.78
Alignment framework 0.43 0.50 0.54 0.56 0.31 0.60 0.48 0.28 0.65
% improvement (over 1-second delay) 0 19 10 6 14 14 6 13 13

Table 6. Average alignment performance across images for three different clustering or segmentation methods. Our framework with
the MSFC clustering method provides the best recall and lowest AER (as indicated in bold). However, k-means provides the best
precision (highlighted in bold). The absolute improvement achieved by the different clustering or segmentation methods over the
1-second delay baseline are shown in the last row.

MSFC k-means GSEG

Precision 62 96 96
Recall 100 100 100
AER 99 100 100

Table 7. Number of images for which our alignment framework
provides an improvement over the baselines, for each case of
clustering or segmentation method. All three methods provide
improvement over the baselines for both recall and AER on all
images with k-means and GSEG providing improvement in
precision as well. The total number of images used in the
dataset was 100.

through our framework for the three clustering or
segmentation methods shows (Figures 17, 18) most
of the words are correctly aligned (pink) by all three
methods. MSFC correctly aligns many labels present in
the sure reference alignments such as army, scissors,
yielding a higher recall. It also aligns some of these
labels such as suit to regions they do not belong to
explaining the low precision values. Both k-means and
GSEG misalign labels such as suit, scissors more often
leading to a lower precision in comparison with MSFC.
Annotation results for a different image are shown in
Figure 18. Again, MSFC seems to correctly align labels
more often than k-means and GSEG methods.

Many state-of-the-art image annotation methods
involve humans superficially, for example, for marking
objects in the images (Karpathy & Fei-Fei, 2015;
Anderson et al., 2018). Some recent work involves
humans at a deeper level, but they limit the observer’s
vocabulary (Gygli & Ferrari, 2018) or lack the benefit
of multimodal information (Vasudevan et al., 2018b).
Some computer vision and deep learning approaches
that involve multimodal information such as gaze and
speech are constrained to objects in the image, as well
as objects learned through annotation (Vasudevan
et al., 2018a). In contrast, our framework provides
the affordances of the human-centered gaze and
language-based approach. For instance, for some
images where the subject in the image is directly looking

at the camera that was used to take the picture, our
framework annotates the subject with the term camera,
although the camera itself is not in the picture. Our
framework can capture the human interpretation of
this perspective and the narrative description allows
people to take different approaches to interpreting
what is noticeable in an image. However, such abstract
labels that are not present in either sure or possible
reference alignments decrease the precision values of
the framework. The improvement over the baselines
suggests that purely temporal alignment of fixations
and utterances is insufficient for region annotation
and underscores the promise of our alternative
alignment-annotation approach. This is true regardless
of the method used for the identification of visual
units or the type of image. These results indicate
that the alignment-annotation framework could in
the future consist of a clustering or segmentation
method that uses both fixations and image features
during the segmentation process. This will help to
decrease the likelihood of image regions representing
different concept labels correspond to the same region
label.

To study the impact of image complexity on the
annotations, we divided the images in the snag dataset
into four categories ranging from simple to complex,
as shown in Figure 19. Category O = 1 consisted of
images with one primary object to gaze at and describe.
For instance, image on the top left of Figure 19 consists
of one prominent object bear. Although there are other
objects in the image to look at and describe since there
is only one prominent object the annotator categorized
this image in O = 1 category. Likewise, category O = 2
andO = 3 consisted of two and three primary objects to
gaze at and describe. Category O ≥ 4 represents images
with more than three primary objects. There were 16,
37, 12, and 35 images in each category, respectively. The
MSFC yielded on average 11, 10, 11, and 11 clusters for
the four categories, respectively. The k-means resulted
in the same number of segments for each category
because it uses the number of clusters provided by
MSFC. As indicated in Table 8, the categorization
does not have much of an effect on the general trend
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Figure 19. Example images from category top left: O = 1, with one primary object (bear). Top right: O = 2, two primary objects (cat,
toilet). Bottom left: O = 3, three primary objects (gentleman, army officer, scissors). Bottom right: O≥4, four or more primary objects
(person 1, person 2, person 3, person 4, etc), respectively. Labels in pink indicate all the three methods correctly aligned them.
Incorrect alignments are shown in black (MSFC), red (k-means), and blue (GSEG). The number of misalignments increases as the
images get more cluttered. Image credit clockwise: “Creative Commons Asian black bear” by Taro Sako, used under CC BY-NC 2.0.
Region labels and boundaries overlaid on original. “Freshest Water in the House” by Megan, used under CC BY-NC 2.0. Region labels
and boundaries overlaid on original. USACE division visit to Europe District coincides with German Fasching celebrations by
U.S. Army Corps of Engineers Europe District, used under CC BY 2.0. Region labels and boundaries overlaid on original.
“130513-N-WL435-087” by U.S. Pacific Fleet, used under CC BY-NC 2.0. Region labels and boundaries overlaid on original.

Precision Recall AER

MSFC k-means GSEG MSFC k-means GSEG MSFC k-means GSEG

O = 1 (16) 0.43 0.57 0.47 0.55 0.31 0.3 0.53 0.59 0.63
O = 2 (37) 0.47 0.59 0.51 0.55 0.32 0.29 0.51 0.58 0.63
O = 3 (12) 0.44 0.55 0.48 0.44 0.28 0.25 0.56 0.62 0.67
O ≥ 4 (35) 0.38 0.51 0.44 0.47 0.29 0.27 0.59 0.63 0.66

Table 8. Comparison of alignment performance for four different categories of images for different clustering or segmentation
methods. These four categories are defined based on the approximate number of primary objects in the image, for example O = 1
indicates the images in this category had one primary object to gaze at and describe. Not surprisingly, as the number of primary
objects increase, the alignment performance decreases. Also, regardless of the category of image, k-means provides the best
precision whereas MSFC provides best recall and AER (as indicated in bold).

of performance of the clustering or segmentation
methods. MSFC claims high recall and low AER values
while k-means claims high precision. However, the best
performance is obtained for images in category O =
2 followed by category O = 1. This finding that the
number of objects in an image may affect the alignment

framework’s performance. This categorization is coarse
and may involve subjectivity because it was performed
by one annotator, the primary researcher. Further work
is required to explore dividing the images based on
number of objects and using more annotators to reduce
subjectivity.

https://www.flickr.com/photos/faultier1985/8434624463/ 
https://www.flickr.com/photos/faultier1985/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/meganpru/5666947662/
https://www.flickr.com/photos/meganpru/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/europedistrict/6886413159/
https://www.flickr.com/photos/europedistrict/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/compacflt/8735605303
https://www.flickr.com/photos/compacflt/
https://creativecommons.org/licenses/by-nc/2.0/
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Figure 20. Output from top left: MSFC, top right: k-means, where k is equal to the number of clusters obtained from MSFC, bottom
left: GSEG, and bottom right: k-means, where k = 4, respectively. The k-means and GSEG tend to oversegment leading to multiple
segment labels for a given word-label whereas k = 4 may lead to undersegmentation in other cases leading to one segment-label
shared by various word-labels. A semantic segmentation method built using gaze data and image features may be the solution to this
issue. Image credit: This work, “Segmented tie cutting”, is a derivative of “USACE division visit to Europe District coincides with
German Fasching celebrations” by U.S. Army Corps of Engineers Europe District, used under CC BY 2.0. “Segmented tie-cutting” is
licensed under CC BY 2.0 by Preethi Vaidyanathan.

Figure 19 shows the obtained alignments overlaid
on their respective images for the four categories. In
general, labels are aligned correctly, but we also get
some misalignments, regardless of the clustering or
segmentation method used. These misalignments seem
to increase in number as the complexity of an image
(i.e., number of objects) increases, thereby lowering
performance. MSFC seems to have fewer spurious
alignments compared with k-means and GSEG,
possibly because it is derived entirely from the fixation
data. An increase in the number of primary visual units
(i.e., objects to look at) stimulates lexical diversity in
the description. Another factor is object occlusion
resulting in objects being less distinguishable and
separated. This reduced frequency of fixated regions
(visual units) or uttered words (linguistic units) impacts
the performance; in particular, the visual units seem to
be more prone to misselection because of the variations
in eye movements among observers. Using part-whole
relationships for both the visual and linguistic data
would help to address these issues.

As previously mentioned, MSFC is less sensitive
to the errors introduced owing to sharing of image
features by various objects. Sharing of image features
can lead to common image segment-labels during the
segmentation process. For example, in both GSEG
and k-means (Figure 20), the man’s coat and part
of the scissors have the same segment-label. This
would lead the framework to incorrectly learn that
labels coat and scissors both belong to the same image
region, increasing the AER. For our purposes, the
image region corresponding with the word scissors
need not be segmented into further segments, because
our participants do not mention parts or regions of
the scissors. MSFC also faces the same issue in cases
where the algorithm clusters fixations falling on two
unrelated regions of the image into one cluster. These
observations strongly suggest that our framework
would benefit from a segmentation technique that
builds on both image features and gaze data.

We compared the framework’s performance on
the snag dataset containing general-domain images

https://www.flickr.com/photos/europedistrict/6886413159/
https://www.flickr.com/photos/europedistrict/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
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Figure 21. (Left) A dermatologist describing aloud the dermatology image to the experimenter while being eye tracked. (Middle)
Example of transcribed narrative for the image shown in the right. (Right) Scanpath of an observer overlaid on the image. This figure
has also appeared in Vaidyanathan et al. (2016).

with the performance on the derm dataset containing
images from the domain of dermatology (Vaidyanathan
et al., 2016). This dataset consists of SNAG data for
26 dermatologists inspecting 29 dermatology images.
Figure 21 shows our data set-up, an example of a
transcribed narrative, and gaze data for this dataset. The
data collection set-up was similar to the snag dataset.
In this case, when using the adapted Master-Apprentice
method, the experimenter functioned as an “apprentice”
to elicit rich descriptions from the dermatologist. The
dermatologists were instructed to “examine each image
while moving toward a diagnosis and describe it aloud
as if tutoring the experimenter.” The descriptions in
this dataset usually included differential diagnosis,
final diagnosis, and a self-estimated certainty of the
final diagnosis. Again, dermatologists have specific
shared terminology to refer to the morphology they
describe; therefore, a manual annotation for this
dataset was provided by an expert dermatologist using
the RegionLabeler tool. More details regarding this
dataset can be found in (Vaidyanathan et al., 2016). For
the comparison, we only considered the results from
alignment framework that used MSFC and k-means
with k = 4. Interestingly, recall values are higher for the
derm dataset when compared with the snag dataset.
Recall values indicate the number of alignment pairs
in the reference alignments that are also obtained
in the framework’s output alignments. One possible
reason for high recall values could be that, as a result
of task instructions, the derm dataset has a precise
and limited vocabulary. Owing to the nature of the
dermatology field, most of the regions in the images
usually correspond with exactly one label. On the
other hand, owing to the general-domain nature of the
images in the snag dataset, many objects in the images
correspond to various labels. For example, for the
woman in the image in Figure 17, observers mentioned
the labels lady, woman, and female. Thus, labels that
were not mentioned by majority of the observers will
have low probability of being associated with the
corresponding image region leading to low recall values.
Table 9 shows the average precision and recall values for
the two datasets for the two segmentation methods.

MSFC k-means

Precision Recall Precision Recall

DERM 0.45 0.56 0.41 0.56
SNAG 0.43 0.50 0.56 0.46

Table 9. Comparison of precision and recall from the alignment
framework for the two datasets for MSFC and k-means with k =
4. Precision is generally lower than recall except for the case of
k-means with the SNAG dataset.

Precision Recall AER

SNAG −0.29 (0.003) −0.29 (0.003) 0.43 (5 × 10−6)

Table 10. Pearson’s correlation value (r) and the corresponding
significance value (p) between the performance metrics and
the number of clusters obtained using MSFC.

We also investigated the effect of the number of
clusters obtained from MFSC on the framework’s
performance. Table 10 shows the Pearson’s correlation
coefficient between the number of clusters in the
images and the precision, recall, and AER values. Also
shown are the corresponding significance values. All
three metrics are highly correlated with the number of
clusters obtained using MSFC. The negative coefficient
shows that as the number of clusters increases the
performance decreases. This finding may be due
to that, when there are fewer clusters, the output
alignments are more likely to be right just by randomly
guessing a cluster less number of clusters mean fewer
incorrect output alignments. Further work is needed to
investigate the cause of this correlation.

Effect of parameters

As illustrated in Figure 22, we experimented with
the following framework parameters: T, the sliding
window, that aids in increasing training data size, β,
the visual-linguistic ratio that ensures equal length of
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Figure 22. General effects on performance for (Left) VL ratio (β). (Middle) fixation selection method (α). (Right) moving window (T).
The effect (positive or negative) reflected all measures. Default values used in this work resulting in high performance are: β = 1, α =
longest duration, and T = 5 seconds.

MSFC k-means GSEG

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

Precision 0.5 0.69 0.6 0.83 0.51 0.71
Recall 0.53 0.55 0.33 0.36 0.28 0.3
AER 0.48 0.37 0.55 0.47 0.62 0.55

Table 11. Comparison of average alignment performance across five images in the SNAG dataset for uncorrected versusmanually
corrected narratives. There is substantial improvement in both precision and AER for all the clustering or segmentation methods. The
MSFC still offers the best AER performance for uncorrected versus corrected narratives.

sequences of visual and linguistic units, and α, the
method of visual unit selection referred to as fixation
selection method. When the longest fixations within
a sliding window were selected as visual units, the
framework’s performance was higher. This finding
supports the intuitive notion that participants would
fixate longer on image regions that play an important
role in achieving the end goal. The default sliding
window value of 5 seconds performs the best and
higher values do not result in any improvement.
Both the visual-linguistic ratio in our framework
and the posterior decoding threshold in the Berkeley
aligner have a negative effect on the framework’s
performance as they are increased. The observed trend
was similar to the results for effect of parameters for
the dataset involving dermatology images and experts
(Vaidyanathan et al., 2015).

Effect of manual correction versus ASR only

Wemanually corrected the transcriptions for 5 images
and applied our annotation-alignment framework to
the manually corrected narratives. Table 11 shows the
performance of the framework with the corrected and
uncorrected narratives. Narratives were on average 60
words in length and on average needed correction of
three words resulting in an average word error rate
of 5%. There is improvement in both precision and

AER for all three clustering or segmentation methods
between the uncorrected and corrected narratives.
Using ASR transcriptions decreases manual labor by a
substantial amount, but the performance improvement
suggests the limitations of the automated transcription.
Therefore, performance could be improved by using
automated transcription followed by manual correction,
which would require significantly less manual labor.
The precision for corrected narratives is higher than for
the uncorrected narratives. This could be due to higher
percentage of overlap between linguistic units obtained
from the corrected narratives and reference alignments.
This finding indicates that we need improved methods
to filter out or otherwise handle words that cannot be
grounded in regions of the image.

Future work and conclusions

Addressing RQ1 and RQ2, we have established
quantitatively that people do not typically name-while-
looking when speaking about visual content. Rather,
they tend to fixate objects in images before they talk
about them. We learn that, when humans describe a
visual scene, there is almost always a time lag between
fixations and words and that this lag is not fixed.
Various quantitative and qualitative results reported
in this work support RQ2 and highlight the usefulness
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of our multimodal snag dataset and the proposed
framework (RQ3). Our snag dataset shows that
observers on average spent approximately 0.58 seconds
viewing the image before to the commencement of
their description while dermatologists spent an average
of 3 seconds inspecting the dermatology image before
they began to talk (Vaidyanathan et al., 2013). This
finding that observers might be trying to obtain a quick
holistic view of the image and plan their speech before
executing and that image complexity affects this timing.
The snag dataset also shows that subject demographics
(age, sex) do not seem to have an effect on the number
of words and fixations people use to analyze a visual
scene.

From our results, it is evident that the proposed
alignment framework performs better than the
simultaneous and delayed baselines. This finding shows
that integration of multimodal data, specifically visual
and linguistic data, is possible using bitext alignment.
This conclusion is supported by both qualitative
and quantitative results. The resulting annotations
confirm that bitext alignment as used by our alignment
framework can be used to obtain image region
annotation. Additionally, the framework’s performance
also confirms that naturally elicited spoken narratives
through the Master-Apprentice model (as opposed
to written captions) are valuable for image region
annotation. This framework does not depend on a
specific type of expertise or image type and it can be
applied to expert-domain images (Vaidyanathan et al.,
2016) and images with different types of valence (Gangji
et al., 2017; Haduong et al., 2018). Additionally, this
framework can be extended to involve multiparty gaze
and dialogue (Wang et al., 2019).

Overall, the MSFC clustering method outperforms
the other segmentation methods. This finding indirectly
validates the crucial role gaze data can play in an
image region annotation framework. Other image
segmentation methods such as k-means and GSEG
provide comparable values of precision, suggesting
that image features are also necessary for modeling
image region annotation. Thus, to build an image
annotation framework that can assist in developing
advanced image-based application systems, we can
leverage multimodal data elicited from humans. The
ability of different segmentation methods to handle
different aspects of images suggests that an extended
framework could benefit by including an ensemble of
distinct image segmentation techniques to address the
heterogeneity of images and conceptual regions across
images.

We observed that parameters such as the size of the
time window used to expand the parallel corpus did not
have major effect on the framework’s performance, but
that eliminating the sliding window entirely resulted in a
degraded performance. Although there is an interaction
between AER and the number of parallel sentences and

their length, the most effective way to increase the size
of the parallel corpus would likely be to collect data
from additional observers rather than to adjust the
parameters of the sliding window.

The framework’s performance on uncorrected
narratives suggests that there is potential in using
automated speech-to-text transcription tools. However,
the improved performance of the alignment framework
on manually corrected narratives when compared
to uncorrected narratives indicates that automated
transcription followed by manual correction is
advisable.

Currently, we are focused on extracting mostly
nouns, adjectives, and some verbs as linguistic units,
which consist of both units that can be grounded in an
image and abstract units, but such abstract units cannot
be aligned to any image region. In our future work, we
will explore applying abstract concept filtering (Kiela
et al., 2014) to remove these words from our linguistic
units. Another method to remove linguistic units that
are not present in the image from the narratives is by
weighing linguistic units by the percent of participants
that mention them. Our work somewhat achieves this
by filtering out linguistic units that were only uttered
once. The existing system could be improved further
by incorporating a more holistic knowledge about
the image and information about actions, verbs, and
conceptual relations such as meronymy, commonly
known as part-whole relationships, in both the linguistic
and visual modalities.

Combining image features with gaze has the
potential to further improve our results. Few prior
studies have investigated gaze with image features for
image annotation, but these studies either limit the end
user’s vocabulary or the region annotation to certain
objects that can be detected using known computer
vision techniques (Qu & Chai, 2008; Vasudevan et al.,
2018a, 2018b). In our work, we instead innovatively
integrate gaze and language to meaningfully annotate
open domain images that are not limited by the type or
number of objects. In contrast with standard computer
vision techniques, gaze can capture which information
in an image feature is useful at a particular point in
time, for a particular perspective and semantic concept.
This finding was confirmed by the preliminary results
we obtained from applying our framework to the
dermatology dataset. Our work acknowledges and
highlights that gaze and speech data, in combination,
provide comprehensive knowledge about the user’s
perception, thought processes, and intent. These
advantages will eventually also benefit automated
annotation frameworks that rely on image features.

MSFC and k-means with k = 4 show better
performance than k-means with a larger k and
GSEG owing to oversegmentation. Therefore,
oversegmentation is an important issue to keep in
mind when the new segmentation approach is designed
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for the framework. Apart from oversegmentation,
images with more objects pose a challenge to the
segmentation methods. For general-domain images such
as ones discussed in this work, several state-of-the-art
segmentation methods including deep learning
methods have been shown to successfully perform
on these images. We can further investigate the
performance with DeepMask, a deep learning method
and Convolutional Oriented Boundaries, a contour
detection and hierarchical segmentation approach
(Maninis et al., 2017). It would also be interesting to use
deep learning methods with gaze and image features
to identify improved visual units. Additionally, object
recognition and scene understanding algorithms could
help to group meaningful image regions and segments,
eliminate spurious image regions, and provide more
holistic interpretation. For example, in Figure 20
regardless of the segmentation algorithm used, an
object recognition algorithm would identify the two
individuals in the image as two people instead of several
small segments.

A key advantage of our framework is its flexibility.
For example, instead of using MSFC for detection
of perceptually important regions for observers, one
can apply k-means with RGB or other image features,
GSEG, or any other segmentation or clustering method
and different types of image features. Also, the approach
is both domain independent and language dependent; it
is generalizable to other contexts straightforwardly as
long as simple part of speech tagging can be performed.
In addition, we demonstrate its usefulness both in
expert (Vaidyanathan et al., 2016) and in general
domains by addressing the application to both visual
environments. This flexibility of our framework makes
it a particularly useful and powerful tool for integrating
gaze and language.

The proposed alignment framework shows how we
can adapt natural language processing and computer
vision methods to creatively integrate visual and
linguistic information. We show how such a multimodal
integration could be used to achieve unsupervised
semantic annotations for images. Like many datasets
involving multimodal data elicitation from humans,
our dataset is modest in size. Nevertheless, our results
clarify our method’s promise, and the quantitative
metrics we apply and visualized results obtained
support our conclusions. With advanced technologies
such as virtual reality glasses, wearable eye-trackers,
and smartglasses, collecting multimodal data could
eventually become straightforward and natural resulting
in more data that could benefit alignment-annotation
framework and image-based application systems.
Our work is an important contribution toward the
highly challenging problem of fusing human-elicited
multimodal data sources, a problem that will become
increasingly important as such data become more
common.

Keywords: multimodal fusion, eye movements, spoken
descriptions, gaze, bitext alignment, machine translation,
computer vision, image annotation
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Footnotes
1https://mvrl-clasp.github.io/MultimodalFusionFramework/.
2https://mvrl-clasp.github.io/SNAG/.
3https://www.ibm.com/watson/services/speech-to-text/.
4We empirically studied the impact of selecting visual units and the values
of other parameters in different ways.
5https://mvrl-clasp.github.io/SNAG/.
6https://mvrl-clasp.github.io/MultimodalFusionFramework/.
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