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Abstract

One of the most powerful and commonly used approaches for detecting local adaptation in the genome is the identi-
fication of extreme allele frequency differences between populations. In this article, we present a new maximum like-
lihood method for finding regions under positive selection. It is based on a Gaussian approximation to allele frequency
changes and it incorporates admixture between populations. The method can analyze multiple populations simulta-
neously and retains power to detect selection signatures specific to ancestry components that are not representative of
any extant populations. Using simulated data, we compare our method to related approaches, and show that it is orders
of magnitude faster than the state-of-the-art, while retaining similar or higher power for most simulation scenarios. We
also apply it to human genomic data and identify loci with extreme genetic differentiation between major geographic
groups. Many of the genes identified are previously known selected loci relating to hair pigmentation and morphology,
skin, and eye pigmentation. We also identify new candidate regions, including various selected loci in the Native
American component of admixed Mexican-Americans. These involve diverse biological functions, such as immunity,
fat distribution, food intake, vision, and hair development.
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Introduction
The emergence of population genomic data has facilitated
fine-scale detection of regions under recent positive selection
in humans and other species. There are multiple different
methods for carrying out such selection scans. Some of these
rely on patterns of long-range linkage disequilibrium (Voight
et al. 2006; Sabeti et al. 2007), one of the characteristic geno-
mic footprints left by a selective sweep (Kim and Stephan
2002; Kim and Nielsen 2004; McVean 2007). However, this
pattern fades rapidly over time, and these methods are, con-
sequently, best suited for detecting very recent selective
sweeps from de novo mutations. Other techniques, based
on distortions in the allele frequency spectrum caused by
positive selection, can allow for the detection of more ancient
events, but are generally only applicable to one population at
a time (Tajima 1989; Fu and Li 1993; Fay and Wu 2000; Nielsen
2005; DeGiorgio et al. 2016; Huber et al. 2016).

A different class of methods for detecting selection
involves analyzing patterns of allele frequency differentiation
between populations. The basic idea is that regions that have
experienced episodes of positive selection will display fre-
quency differences between populations that are stronger

than what would be expected under pure genetic drift. For
example, one can compute Wright’s fixation index (FST) lo-
cally across different regions of a genome and look for ex-
treme outliers (Beaumont and Nichols 1996; Akey et al. 2002;
Beaumont and Balding 2004). Population differentiation
methods can detect more ancient selective events than link-
age disequilibrium-based methods (Sabeti et al. 2006), and are
sensitive to different types of positive selection events, includ-
ing sweeps from a de novo mutation, sweeps from standing
variation, incomplete sweeps, and adaptive introgression
(Bonhomme et al. 2010; Yi et al. 2010; Fumagalli et al. 2015;
Racimo et al. 2017). Recent methods have allowed researchers
to detect excess local differentiation on particular branches of
a three-population tree (Yi et al. 2010; Racimo 2016), a four-
population tree (Cheng, Xu, et al. 2017), or an arbitrarily large
tree (Librado and Orlando 2018), albeit without modeling
postsplit admixture events.

A generalization of these approaches was developed by
Coop et al. (2010), Günther and Coop (2013), and Gautier
(2015). It involves the detection of genomically local distor-
tions from a genome-wide covariance matrix, which is used as
a neutral baseline. An advantage of this approach is that one
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can apply it to an arbitrary number of populations. Other
researchers have used hierarchical Bayesian models (Foll
and Gaggiotti 2008; Foll et al. 2014) or principal compo-
nent analysis (Duforet-Frebourg et al. 2016; Luu et al.
2017) to model patterns of population differentiation
to identify local distortions across the genome. Another
method extended single-locus differentiation-based
methods to the analysis of haplotype differentiation
(Fariello et al. 2013). More recently, Mathieson et al.
(2015) developed an admixture-aware selection test
based on a linear model and applied it to human data.
The analysis took advantage of the fact that present-day
European populations could be modeled as a mixture of
three highly differentiated ancestral components. Regions
of the genome that exhibited strong deviations from the
genome-wide mixture proportions were therefore strong
candidates for positive selection. Finally, Refoyo-Mart�ınez
et al. (2019) developed a method to test for selection on
an admixture graph, which represents the history of di-
vergence and admixture events among populations.
Although useful for detecting selection in the presence
of admixture, it still requires the user to specify which
individuals belong to which populations, and to infer
the graph in advance.

Here, we introduce a new selection detection framework
that can explicitly model admixture and detect selection from
populations of admixed ancestries. It can simultaneously
compare arbitrarily many populations and ancestry compo-
nents and is encoded in a flexible framework for testing se-
lection on a specific lineage or set of lineages. The method
allows the user to identify signals of positive selection via
population differentiation, without relying on self-reported
ancestry or admixture correction to group individuals into
populations. The method can also determine if a selective
event is specific to a particular population or shared among
different populations.

Unlike previous methods, we fully take advantage of
admixed populations, and we do not require the user to a
priori categorize samples into populations, or to correct allele
frequencies to account for recent admixture. Thus, the selec-
tion scan does not rely on user-supplied sample labels or
ancestry compositions. These methods identify positive selec-
tion by searching for loci showing distortions in the popula-
tion covariance matrix, relative to the genome-wide baseline.
It provides a flexible framework to specifically test for selec-
tion on individual components or sets of components. This
functionality allows researchers to accommodate specific evo-
lutionary scenarios into the range of testable hypotheses, in-
cluding local adaptation, adaptive introgression, and
convergent selection. The method first coestimates the pop-
ulation structure of the input panel and the allele frequencies
of the ancestral admixture components through an unsuper-
vised learning process (Cheng, Mailund, et al. 2017), before
testing for selection on the ancestral components themselves.
Researchers can also use the method to examine estimated
population structure and visualize trees connecting the an-
cestral components using plotting functionalities provided by
our software package, Ohana, as part of the analysis pipeline.

Results

Simulations
Power to Detect Selection
We first evaluated the performance of our method against
comparable methods in detecting whether a locus has
evolved under positive selection (fig. 1a–c). For all tests, we
use the empirical null distribution to find the threshold asso-
ciated with 5% false positive rate (FPR). We compute power
as the proportion of simulations with test statistic exceeding
this threshold. For all three methods, the test statistic was the
site statistic with the maximum value across the whole 2 Mbp
locus; with Ohana, the test statistic used was the log-
likelihood ratio (testing for selection in the specified ancestry
group); with BayPass, the test statistic was the “XtX” statistic;
and with pcadapt, the test statistic was the selection test P
value, using K¼ 3 PCs (because there are four ancestral
populations in each case). For all three methods, power in-
creased uniformly with the value of the selection coefficient
(fig. 1a–c). However, different demographic scenarios result in
different power levels; for example, all methods were better-
powered under the simple demographic scenario (model 1,
figs. 1a and 2a) compared with selection preadmixture
(model 1, figs. 1b and 2b) or in the human demographic
model (model 3, figs. 1c and 2c).

pcadapt was significantly less well-powered than Ohana in
most scenarios, for example, 72% versus 88% and 90% versus
98% power under moderate and strong selection, respectively
(see fig. 1a). In most scenarios, we found Ohana to have
power equivalent to or greater than that of BayPass; for ex-
ample, in models 1 and 2, we fail to reject that Ohana and
BayPass have different power curves with 95% confidence (fig.
1a and b). However, in one simulation scenario, we found
Ohana had significantly higher power than Baypass, under a
model of human demography (fig. 1c). However, we note that
although BayPass and Ohana have similar power, Ohana’s
test is by design more specific, as it is testing for selection
in a specified ancestry group; hence power calculations are
inherently more lenient for BayPass than Ohana. In figure 1a–
c, we show results assuming 0:001 � f < 0:01, and present
full results illustrating the entire ROC curve (i.e., not condi-
tioned on FPR¼ 0.05) and for other values of f, in figure 3 and
supplementary figures S1 and S2, Supplementary Material
online. Also note the overall low power in figure 3. The
main reason for this low power is that selection is acting in
a relatively short period in the past, and that the population
has experienced 50% admixture after selection. The strong
admixture after selection tends to obscure much of the se-
lection signal.

Efficacy for Fine-Mapping the Causal Site
We also considered the performance of Ohana for fine map-
ping the position of the causal site (fig. 1d–f). We considered
the distribution of the distance between the site of the test
statistics described above (i.e., the locus-wide max statistic)
and the causal site (in the center of the 2 Mbp locus). We plot
the empirical cumulative distribution of these distances for
different values of the selection coefficient under each
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demographic model. We found that in cases where Ohana is
well-powered to detect selection, there is considerable power
to narrow the position of the causal site down to 610 kb of
the max test statistic (e.g., >40% power for s � 0:01 under
model 1 and 25% power for s¼ 0.05 under models 2 and 3;
see fig. 1d–f). Interestingly, under models 1 and 2, there is
similar power to fine-map sites with moderate and strong
selection (s¼ 0.02 vs. 0.05, see fig. 1d and e); in contrast, under
model 3, there is significantly higher power to fine-map sites
with strong selection (fig. 1f); this dramatic difference may be
due to the effects of demography on the pattern of hitchhik-
ing surrounding the causal site. In figure 1d–f, we show results
assuming 0:001 � f < 0:01 and present full results

illustrating other values of f in supplementary figures S3–S5,
Supplementary Material online.

Computational Efficiency
In addition to comparing power to detect selection, we com-
pared computational efficiency of Ohana and BayPass, which
we showed in previous sections was the most competitive
method in terms of statistical power (fig. 1g). We found that
Ohana was >250� faster than BayPass (mean selection scan
runtimes: Ohana, 0.626 s [60.008 s]; BayPass, 168 s [62 s];
N¼ 1,000 replicates). We reiterate that our power compari-
son revealed Ohana to generally have comparable power to
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FIG. 1. Simulation tests of Ohana performance and efficiency in detecting and mapping selected sites. (a–c) Power to detect selection relative to
two comparable methods, BayPass and pcadapt. Error bars are 95% CIs; (d–f) efficacy of Ohana to fine-map the causal site; (g) computational
efficiency compared with that of BayPass. Error bars are 5th to 95th percentiles.
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FIG. 2. Illustration of simulation models. (a) Model 1, a basic model of four-population split with no admixture. (b) Model 2, a four-population split
with subsequent admixture. (c) Model 3, a four-population model mimicking human demographic models. Population size changes in model 3 are
omitted from the visualization for simplicity. Selection is simulated to operate on the branch that has a larger width.
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that of BayPass, despite multiple orders of magnitude im-
provement in computational efficiency.

Analysis of Real Data
We identified regions in the genome that are likely to have
been under the influence of positive selection using a merged
data set containing several population panels from phase 3 of
the 1000 Genomes Project (1000 Genomes Project
Consortium et al. 2015). We randomly selected 64 genomes
from each of four populations from the 1000 Genomes proj-
ect: the British from Great Britain (GBR), the Han Chinese
from Beijing (CHB), the Yoruba Africans (YRI), and the
admixed Mexican-Americans from Los Angeles (MXL) (the
number 64 was chosen because it was the size of the smallest
panel). We only included variable sites with no missing data
and a minimum allele frequency of 0.05 across the entire
merged panel. In total, we analyzed 5,601,710 variable sites

across the autosomal genome. We inferred genome-wide al-
lele frequencies and covariances for the latent ancestry com-
ponents as described in Materials and Methods section, using
K¼ 4. To scan for covariance outliers, we performed four
hypothesis-driven scans, in which we specifically searched
for selection separately in each of the four inferred ancestry
components in our data set (fig. 4 and table 1).

After running these scans, we queried the CADD server
(Rentzsch et al. 2019) to obtain functional, conservation, and
regulatory annotations for the top candidate SNPs, including
SIFT (Sim et al. 2012), PolyPhen (Adzhubei et al. 2013), GERP
(Davydov et al. 2010), PhastCons (Siepel et al. 2005), PhyloP
(Pollard et al. 2010), and Segway (Hoffman et al. 2012) anno-
tations, so as to find the changes most likely to be disruptive.
We discuss some of these below. We also queried the GTEx
cis-eQTL database (Lonsdale et al. 2013), the UK Biobank
GeneATLAS (Canela-Xandri et al. 2018), and the GWAS

f = 0.001 f = 0.01

s= 0.01

s= 0.02

s= 0.05

TP
R

FPR

FIG. 3. ROC curves for Ohana versus state-of-the-art methods, assessed using simulations with various values of the initial allele frequency at the
beginning of selection (f) and different selection coefficients (s). Here the demographic model used was our human model (with selection in the
Native American lineage), versus other demographic models considered (i.e., basic tree without and with admixture, supplementary figs. S1 and S2,
Supplementary Material online, respectively).
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catalog (MacArthur et al. 2017), to look for trait-associated
SNPs. We particularly focus on SNPs that have both high log-
likelihood ratios in favor of positive selection (LLRS> 15) and
high CADD scores in favor of functional disruption (>10).

Below, we describe some of the top SNPs with high LLRS
and their surrounding regions, for those cases in which avail-
able genic, expression, or regulatory information can provide
us some clue as to the possible organismal function that may
have been affected by the selective event. We particularly
focus on the Native American ancestry scan (fig. 5), as few
selection scans have been performed in this population, but
also briefly summarize the results from the other scans.

European Ancestry Scan
Results for the top 30 loci in the European ancestry scan are
presented in supplementary table S1, Supplementary
Material online. Most loci have been previously shown to
be under selection in Europeans populations, including
SLC45A2, SLC24A5, BNC2, the OCA2/HERC2 region, the
LCT/MCM6 region, and the TLR region (Bersaglieri et al.
2004; Voight et al. 2006; Barreiro et al. 2009; Vernot and
Akey 2014; Mathieson et al. 2015). We notice that, in several
cases, the presumed causal SNP previously identified in the
literature coincides with the SNP with the strongest selection
signal. This is the case, for example, for rs1426654 (SLC24A5)
(Lamason et al. 2005; Kimura et al. 2009) and for rs16891982
(SLC45A2) (Branicki et al. 2008). This suggest that the top
SNPs for other loci, for which the causal SNPs are not yet
known, may be good candidates for further tests of functional
effects.

East Asian Ancestry Scan
We also performed a scan where we sought to recover SNPs
that were candidates for selection in the ancestry component
that is prevalent among our CHB samples. Results for the top
30 loci in this scan are in supplementary table S2,
Supplementary Material online. Here, we also recover several
candidate regions that have been previously reported in East

Asian selection scans, including ABCC11, POU2F3, ADH1B,
FADS1, and TARBP1 (Peng et al. 2010; Ohashi et al. 2011;
Vernot and Akey 2014; Liu et al. 2018; Refoyo-Mart�ınez et
al. 2019). Here, as in the previous scan, the top-scoring SNPs
also tend to have the strongest phenotypic associations. For
example, the highest scoring SNP (rs17822931) is the well-
known missense variant in ABCC11, which is involved in
sweat and earwax production (Yoshiura et al. 2006).

Yoruba/Ancestral Non-African Ancestry Scan
Because our algorithm relies on an unrooted tree of the an-
cestry components (fig. 4), we cannot distinguish between
SNPs under positive selection in the terminal branch leading
to the Yoruba/Sub-Saharan Africans and the ancestral non-
African branch (supplementary table S3, Supplementary
Material online). Nevertheless, more careful study of the allele
frequencies of these SNPs in other populations may serve to
distinguish among these scenarios in the future. As in the
other ancestry scans, we also retrieve several genes that
have been previously reported in positive selection studies.
For example, the highest-scoring SNP is a missense variant in
SLC39A4 (rs1871534) that has been reported to be under
selection in Sub-Saharan Africa and to be causal for zinc de-
ficiency (Engelken et al. 2014).

Native American Ancestry Scan
The Native American ancestry scan yielded several novel
candidates for positive selection (supplementary table S4,
Supplementary Material online). As this ancestry has been
less studied than the other aforementioned populations in
the selection scan literature, we highlight some of the more
interesting regions here.

The top SNP (rs140736443) is located in an intron of
LINC00871. This SNP does not have a high CADD score
(¼1.125), but is very close to an SNP (rs10133371) with a
very high LLRS (¼16.54) and CADD score (¼15.99). This SNP
is also intronic but is highly conserved in primates (PhastCons
¼ 0.972) and is located in a GERP conserved element
(P¼ 1.92e�21). LINC00871 is a long noncoding RNA gene
that has been associated with number of children born
(Barban et al. 2016), although the specific trait-associated
SNP in that study does not have a high LLRS. This gene
also contains a suggestive association to longevity in females
(Zeng et al. 2018), although this study was under-powered to
retrieve genome-wide significant associations.

The third top SNP (rs2316155) has a low CADD score
(¼0.633) but is located near two SNPs with high LLRS
(rs1466182, rs1466183) that overlap a regulatory region
(ENSR00000088366) and have high CADD scores (¼16.8
and 19.5, respectively). Both of these SNPs have high
PhastCons conservation scores across primates, mammals
and vertebrates, and both overlap a GERP conserved element.

The sixth top SNP (rs10508343) has a low CADD score but
lies very close to another SNP (rs17143255) with a high LLRS
and a very high CADD score (¼14.16). The latter is an inter-
genic SNP overlapping a GERP conserved element between
LINC00708 and GATA3, which has been shown to lead to
abnormal hair shape and growth in mice when mutated

Maximized 
in YRI

Maximized 
in GBR

Maximized 
in MXL

Maximized 
in CHB

FIG. 4. Inferred unrooted tree of latent ancestry components for the
analysis including the CHB, YRI, MXL, and GBR genomic panels. We
label each component by the population in which it is maximized, but
emphasize that the components and the populations are not equiv-
alent entities.
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(Kaufman et al. 2003). Interestingly, SNPs overlapping
LINC00708 have been recently associated with hair shape in
a GWAS of admixed Latin Americans (Adhikari et al. 2016).
There is also a high-LLRS SNP in this region that is significantly
associated with the response to treatment for acute lympho-
blastic leukemia (rs10508343) (Yang et al. 2009).

The seventh top SNP (rs16959274) is a GTEx eQTL for
GOLGA8A for tibial artery and skeletal muscle, and for
GOLGA8B in pancreas. These two genes are members of
the same gene family, and code for an autoantigen localized
in the surface of the Golgi complex (Eystathioy et al. 2000).

The tenth top SNP (rs12580697) is a GTEx eQTL for
TMTC1 in whole blood and has a moderately high CADD
score (¼8.676). TMTC1 codes for an endoplasmic reticulum
transmembrane protein that is involved in calcium homeo-
stasis (Sunryd et al. 2014).

The 11th top SNP (rs75607199) has a low CADD score but
lies near three other SNPs (rs41325445, rs4901738, and
rs59250732) with almost equally high LLRS and high CADD
scores (¼13.49, 19.7, and 12.67, respectively). All of these SNPs
are intronic and overlap OTX2-AS1, a long noncoding RNA
gene. The SNP with the highest CADD score (rs4901738) is
located in a GERP conserved element and has high PhastCons
conservation scores across primates and mammals (>0.98).
They all lie upstream of OTX2, coding for a developmental
transcription factor implicated in microphthalmia (Ragge et
al. 2005), retinal dystrophy (Vincent et al. 2014), and pituitary
hormone deficiency (Diaczok et al. 2008). In mice, this gene
has been found to be involved in the embryonic development
of the brain (Boncinelli et al. 1993), photoreceptor develop-
ment (Nishida et al. 2003), and susceptibility to stress (Pe~na
et al. 2017).

Table 1. Top Ten Most Differentiated SNPs from Each of the Ancestry-Specific Scans.

Chr Pos Rsid LLRS Target Ancestry Nearest Gene

5 33951693 rs16891982 22.085902 European SLC45A2
15 48426484 rs1426654 19.707464 European SLC24A5
15 28356859 rs1129038 19.290553 European HERC2
15 28495956 rs12912427 18.270213 European HERC2
9 16792200 rs10962596 15.819739 European BNC2
1 1385211 rs1312568 15.066101 European ATAD3C
2 136407479 rs1446585 14.957582 European R3HDM1
2 136616754 rs182549 14.629386 European MCM6
1 204784969 rs3940119 14.393216 European NFASC
4 38798648 rs5743618 14.38681 European TLR1
16 48258198 rs17822931 23.271759 CHB ABCC11
16 48375777 rs6500380 22.474103 CHB LONP2
1 234635790 rs2175591 20.95541 CHB TARBP1
4 100142780 rs75721934 20.453247 CHB LOC100507053
11 61579427 rs72643557 20.114033 CHB FADS1
11 120154631 rs12224052 19.696284 CHB POU2F3
21 43974948 rs228088 19.518001 CHB SLC37A1
11 133043841 rs79802711 19.157192 CHB OPCML
5 128016573 rs79478220 18.476104 CHB FBN2
19 51441759 rs11084040 18.158963 CHB KLK5
14 46745012 rs140736443 32.730697 Native American LINC00871
9 82968379 rs6559543 27.584847 Native American LINC01507
16 80619307 rs2316155 27.399123 Native American LINC01227
14 21647765 rs77549780 27.355769 Native American LINC00641
12 14189549 rs12425115 25.867367 Native American GRIN2B
10 8150713 rs10508343 25.609772 Native American GATA3
15 34936250 rs16959274 25.424824 Native American GOLGA8B
8 4490837 rs71523639 24.59957 Native American CSMD1
1 14301862 rs72640512 24.455822 Native American PRDM2
12 29817716 rs12580697 23.967094 Native American TMTC1
8 145639681 rs1871534 11.906794 Yoruba/Ancestral Non-African SLC39A4
5 178626609 rs6869589 11.541667 Yoruba/Ancestral Non-African ADAMTS2
15 29427400 rs10152250 11.48232 Yoruba/Ancestral Non-African FAM189A1
1 1106112 rs6670693 11.447873 Yoruba/Ancestral Non-African TTLL10
4 3666494 rs58827274 11.341367 Yoruba/Ancestral Non-African LOC100133461
17 2631985 rs4790359 11.118134 Yoruba/Ancestral Non-African PAFAH1B1
9 136769888 rs2789823 11.031687 Yoruba/Ancestral Non-African VAV2
6 169656029 rs6930377 10.824098 Yoruba/Ancestral Non-African THBS2
17 29350769 rs8073072 10.794224 Yoruba/Ancestral Non-African RNF135
5 173642871 rs10067518 10.787147 Yoruba/Ancestral Non-African HMP19

LLRS ¼ log-likelihood ratio score for positive selection.
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FIG. 5. Top 5 annotated peaks in each of the ancestry-specific selection studies. MXL-specific¼ scan for selection in Native American ancestry of
MXL. GBR-specific¼ scan for selection in European ancestry of GBR. CHB-specific¼ scan for selection in CHB ancestry of CHB. YRI-specific¼ scan
for selection in Yoruba African ancestry or ancestral non-African ancestry. We analyzed 5,601,710 variable sites across the autosomal genomes. We
inferred genome-wide allele frequencies and covariances as described in Materials and Methods section. We applied a likelihood model for each
SNP by rescaling all variances and covariances by a scalar multiplier a. Descriptions of each candidate region are in table 1. LLR, log-likelihood ratio
score.
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The 14th top SNP (rs78441257) has a fairly high CADD
score (¼12.72) and lies in a GERP conserved element of the 30

UTR of LRAT. This gene is implicated in retinal dystrophy
(Thompson et al. 2001) and retinitis pigmentosa (S�en�echal et
al. 2006).

The 15th top SNP (rs1919550) is a GTEx eQTL for FBXO40
in whole blood, but does not have a high CADD score.
However, it lies near an SNP (rs9813391) with a high LLRS
that leads to a nonsynonymous change (R145Q) in ARGFX—
a homeobox gene—and another SNP (rs4676737) with both
a high LLRS and high CADD score (¼14.07) overlapping a
repressor region in an intron of FBXO40. The latter SNP is a
GTEx eQTL for IQCB1 in fibroblasts, muscular esophagus, and
thyroid. IQCB1 is associated with Senior-Loken syndrome
(Otto et al. 2005), a ciliopathic eye disorder.

The 22nd top SNP (rs4946567) is an eQTL of TBC1D32 in
cerebellar brain. This SNP has a high CADD score (¼11.02)
and is conserved across vertebrates (vertebrate PhyloP ¼
0.916 and vertebrate PhastCons ¼ 0.747). Interestingly, the
region in which it is located also harbors signature of selection
in Yucatan miniature pigs (Kim et al. 2015; Kwon et al. 2019).
TBC1D32 plays a role in cilia assembly (Ko et al. 2010) and
may be involved in ciliopathic congenital abnormalities, in-
cluding midline cleft, microcephaly, and microphthalmia
(Adly et al. 2014).

The 23rd and 24th top SNPs (rs5758430 and rs4822061)
are close to each other and lie in a large region with several
high-LLRS SNPs. They are both linked GTEx eQTLs to several
genes in a variety of different tissues. They are also both sig-
nificantly associated with several traits related to body fat,
food intake and white blood cells in the UK Biobank
GeneATLAS (P < 10�8). Although these SNPs do not
have particularly high CADD scores, there are several neigh-
boring linked high-LLRS, high-CADD SNPs with significant
associations to the same traits, including splice site and mis-
sense mutations. We also find two significantly associated
SNPs in the GWAS catalog in this region (P < 10�8):
rs4822024 is associated with Vitiligo (Jin et al. 2012) and
rs13054099 is associated with neuroticism (Nagel et al. 2018).

We also repurposed our aforementioned neutral simula-
tions under human demography to estimate the false discov-
ery rate (FDR) of these selected variants in aggregate. We
estimate the expected number of SNPs to exceed a threshold
log LR T, assuming a genome length of 3� 109 bp, a simple
LD structure of 2 Mbp blocks, and ascertaining the SNP with
the top log LR within each block. Under this approach, we
find that at the cutoffs of top 1, 5, 10, 20, and 30 SNPs, the FDR
is approximately 0.0% (i.e., up to simulation precision), 15.1%,
22.6%, 30.1%, and 42.6%, respectively. We encourage users of
the program to do similar simulations for estimating FDRs for
inferences made on their specific data sets.

Signals of Selection in Mexican Ancestry
We wanted to verify that our method was picking up signals
of selection that were supported by alternative methods not
explicitly relying on single-SNP patterns of population differ-
entiation. For this, we used the program CLUES (Stern et al.
2019), which relies on a likelihood approach based on

reconstructed approximation to the ancestral recombination
graph along the genome (supplementary table S5,
Supplementary Material online). We applied CLUES using
parameters corresponding to the demographic history of
Mexican-ancestry (MXL) individuals in the 1000 Genomes
Project (i.e., effective population size inferred by the method
Relate [Speidel et al. 2019]) to the set of hits identified using
Ohana with selection acting on the Native American branch.
We found that nine out of the ten tested SNPs showed sig-
nificant (P< 0.05) signals of positive selection in MXL, under
the asymptotic interpretation of the log-likelihood ratio sta-
tistics, supporting the evidence that these top hits in Native
American ancestry have been targets of selection.

To learn more about the mode and time-frame of selec-
tion in these loci, we also used CLUES (Stern et al. 2019) to
estimate the trajectory of allele frequency changes for the ten
loci in the Native American component mentioned in table 1
(supplementary fig. S6, Supplementary Material online). In all
cases, the estimated allele frequency trajectory was compat-
ible with relative old selection leading to alleles with current
day intermediate frequencies, typically between 0.4 and 0.6,
that is, incomplete sweeps. The fact that we only detect in-
complete sweep might be related to the filtering procedure
we have used to eliminate SNPs with small MAF. The fastest
change in allele frequency is found for the SNP in CSMD1
(s71523639), which currently is at frequency close to 0.5 but
was at a frequency of approximately zero 700 generation ago,
suggesting relative strong selection on a de novo mutation.

Discussion
We describe a new modeling framework that can detect
signals of positive selection on ancestry components, using
allele frequency patterns across admixed populations. It mod-
els admixture explicitly and works with an arbitrary number
of populations with or without admixed ancestries. It also
does not rely on labeling of samples into particular popula-
tions, and allows for testing of different positive selection
models reflecting different historical adaptive hypotheses. It
is in many ways similar to the Bayesian methods by Coop et
al. (2010) and Günther and Coop (2013) in the structure of
the likelihood function. The major differences being the use of
optimization of the likelihood function in Ohana instead of
Markov Chain Monte Carlo (MCMC) used by Coop et al.
(2010) and Günther and Coop (2013), which provides some
computational advantages. The methods also differ in other
ways, including the enforcement of a tree-structure in Ohana,
the use of ancestry components to model selection in hy-
pothesized ancestral populations in Ohana, and the function-
ality to perform branch-specific detection of selection, or
detection of selection in multiple branches if one has an a
priori selection hypothesis one wants to test.

The run-time complexity of our method is linear in the
number of markers, but we still recommend a high-
performance cluster to be used in a typical genomic analysis.
With parallelization, a selection scan takes <10 min to ana-
lyze a 6 Mbp genome for <10 ancestry components using
100 cores. An example of how to perform this parallelization
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can be found on the project’s wiki page on GitHub: https://
github.com/jade-cheng/ohana.

Our method works by testing for selection in specific
components of the ancestry covariance matrix. We also ex-
plored what would occur if we used a likelihood model in
which the ancestry covariance matrix was multiplied by a
scalar, so as to find “global” candidates for selection rather
than testing for selection in particular ancestries. We found,
however, that this was not an optimal way to detect candi-
dates for selection, as it is biased toward finding many variants
in highly drifted populations, likely because the excess vari-
ance in the Wright–Fisher process is not well modeled by the
multivariate Gaussian assumption, especially at the bound-
aries of fixation and extinction.

We note, however, that the latent ancestry components
inferred by Ohana and other similar programs cannot be
strictly interpreted as corresponding to existing populations
(now or in the past) and that the labels we assign to them
(“European,” “Asian,” “African,” etc.) are largely for conve-
nience. This is especially true when the studied individuals
are not descended from recent admixture events among
highly differentiated populations, so care should be taken in
the interpretation of the identity of these components. We
refer the reader to Lawson et al. (2018); Mathieson and Scally
(2020) for more in-depth studies and discussions on the
assumptions and limitations of latent ancestry inference
methods.

We note that there is currently some debate in the field on
the possibility that FST outliers could be caused by negative
selection in various forms (see, e.g., Matthey-Doret and
Whitlock 2019; Johri et al. 2020; Schrider 2020). Although it
has been argued that such an effect is unlikely to explain FST

outliers in real data (Matthey-Doret and Whitlock 2019;
Schrider 2020), our method will be similarly challenged by
this effect, as the information used is very similar to that of
FST outlier scans.

When specifically testing for candidates for selection in the
“European,” “East Asian,” and “Sub-Saharan African” compo-
nents, we identified several well-known candidates under
positive selection, including OCA2, SLC24A5, SLC45A2,
ABCC1, and SLC39A4. Many of our top scoring SNPs were
also previously known to be causal for particular traits, as in
the case of rs17822931 in ABCC11 in East Asians, rs16891982
in SLC45A2 in Europeans, rs1426654 in SLC24A5 in
Europeans, and rs1871534 in SLC39A4 in Sub-Saharan
Africans.

Our scan for positive selection in the Native American
ancestry component of Latin Americans yielded several novel
candidates for adaptation in the human past. We found
signatures of selection near genes involved in fertility
(LINC00871), hair shape and growth (LINC00708), immunity
(GOLGA8A/GOLGA8B and IRAK4), vision (OTX2 and LRAT),
the nervous system (MDGA2), and various ciliopathies
(IQCB1 and TBC1D32). Several of the highest-scoring SNPs
in the candidate regions are known to be cis-eQTLs to their
nearby genes, as is the case for rs12580697/TMTC1 (involved
in calcium homeostasis) and rs4676737/IQCB1 (involved in
ciliopathies). We also found individual SNPs with high

likelihood ratio scores in favor of selection that are associated
with a variety of phenotypes, including rs12426688 (fat per-
centage), rs10508343 (response to leukemia treatment),
rs34670506 (insomnia), and the cluster of high-scoring SNPs
that include rs5758430 and rs4822061, among other SNPs.
This particular cluster is especially interesting, as the SNPs
in the region are associated with a variety of traits related
to body fat distribution, food intake and white blood cells,
suggesting a possible underlying phenotype related to these
traits that may have driven an adaptive event. Estimates of
the FDR suggest that the lion’s share of these SNPs are se-
lected, especially toward the higher end (e.g., the top eight
SNPs have an FDR of <10%).

We provide a list of functional annotations for all the SNPs
with high LLRS (>15) within a 2 Mb region surrounding each
of the top genome-wide SNPs, including CADD, conservation,
regulatory, and protein deleteriousness scores, which we hope
will guide future functional validation studies in these regions
of the genome (supplementary table S6, Supplementary
Material online).

In conclusion, Ohana provides a fast and flexible selection–
detection and hypothesis-testing framework. It is easy to use
and has in-built visualization functionalities to explore pat-
terns on a genome-wide and locus-specific scale. We believe
that it will be a useful tool for biologists aiming to study
positive selection and understanding the genomic basis of
adaptation, particularly in cases where demographic histories
are complex or not well characterized.

Materials and Methods

Basic Model
The new method is based on the Ohana inference framework
(Cheng, Mailund, et al. 2017), which works with both geno-
type calls and genotype likelihoods. In brief, the classical struc-
ture model (Pritchard et al. 2000) is used to infer allele
frequencies, ancestry components, and admixture propor-
tions using maximum likelihood (ML). Then a covariance
matrix among components is inferred using a multivariate
Gaussian distribution while enforcing constraints imposed by
the assumption of a tree structure. The covariance between
leaf nodes is proportional to the amount of shared phyloge-
netic history between the nodes. Consider, for example, the
example of the matrix and corresponding tree in the left side
of figure 6. In this tree, all branches have length 0.1 and the
tree is rooted in node A. The covariance between node E and
node B is then 0.1, because B and E share one edge in the path
from A. However, the covariance between node C and E
is 0.2 because they share two edges in common in the
path from A. The covariance matrix, X ¼ fXijg, can be con-
verted into a distance matrix, d ¼ fdijg, using the rule
dij ¼ Xii þ Xjj � 2Xij. Treeness can then be tested using
the four point condition applied to d.

This system is underdetermined because the tree can be
rooted in any node (see, e.g., Felsenstein 1985), and the same
joint probability distribution is obtained no matter which
rooting is chosen. We root the tree in one of the ancestry
components and condition on the allele frequencies in this
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component when calculating the joint distribution of allele
frequencies in the other components. This idea is similar to
Felsenstein’s restricted ML approach (Felsenstein 1985). We
emphasize that the rooting is arbitrary but that it does not
imply any assumptions about this component actually being
ancestral.

We estimate the covariance matrix X via ML. This matrix
has size ðK � 1Þ � ðK � 1Þ, where K is the number of pop-
ulations assuming a joint density of allele frequencies given by

PðfjjX; lj; fajÞ � N faj; ljð1� ljÞ

X1;1 � � � X1;k�1

..

. ..
.

Xk�1;1 � � � X1;k�1

2
666664

3
777775

0
BBBBB@

1
CCCCCA
;

(1)

where faj is the allele frequency in the ancestry component
arbitrarily assigned as ancestral and fj is a vector of the allele
frequencies in the other K� 1 components, at SNP j. lj is the
mean allele frequency for SNP j (averaged over all compo-
nents). Note that this model of joint allele frequencies is
similar to the model implemented in TreeMix (Pickrell and
Pritchard 2012) which also uses a Gaussian approximation to
allele frequency change. The full-likelihood function is
obtained by taking the product of equation (1) over all
SNPs in the genome. The method for optimizing this function
is described in a subsequent section.

Selection Model
Following the genome-wide estimation of X, a natural exten-
sion of this framework is to detect SNPs that deviate strongly
from the globally estimated covariance structure. The idea of
testing for deviations from a Gaussian distribution follows
Günther and Coop (2013), but differs in the use of an
enforced tree-structure, an ML inference framework and
fast optimization algorithms, thereby avoiding some of the
computational challenges associated with MCMC. We also
note that admixture is incorporated into the inference frame-
work, thereby enabling the possibility to test for positive se-
lection that acted on the ancestral components of a panel,
before interbreeding occurred between the ancestors of the
sampled individuals.

Ohana uses a likelihood ratio test that identifies SNPs with
allele frequency patterns that are poorly described by the

genome-wide pattern. After estimating X jointly for all
SNPs, each SNP is then independently tested for deviations
from this model, using a scalar factor introduced to certain
elements of the covariance matrix. This scalar factor can be
introduced in different ways depending on which selection
hypotheses are tested. In our analyses, we chose to scale the
covariance matrix such that one of its diagonal values is mul-
tiplied by a scalar, a, corresponding to differences in allele
frequency in one of the ancestry components relative to
the rest, for example:

Xa ¼

X1;1 � � � X1;k�1

..

. ..
.

Xk�1;1 � � � a � X1;k�1

2
666664

3
777775
: (2)

The value of a is then estimated via ML using equation (1)
(assuming all other values in Xa is fixed at the genomic ML
estimates) and a likelihood ratio is formed by testing the
hypothesis of a¼ 1 against the alternative of a > 1. A signif-
icantly high likelihood ratio indicates a larger deviation in
allele frequency in a focal component than expected under
the globally estimated null-model. Figure 6 shows an example.
This test can also be implemented to test selection on ances-
tral nonterminal lineages by multiplying the corresponding
values in the covariance matrix by a scaling factor.

Under the null-hypothesis, the likelihood ratio test statistic
is expected to approximately follow a 50:50 mixture between
a v2

1-distribution and a point mass at zero (Self and Liang
1987) because a is bounded at 1, and we use this asymptotic
distribution to calculate P values.

In summary, we estimate a scaling factor for one or more
components of the covariance matrix in a multivariate nor-
mal model of allele frequency distribution among popula-
tions. For each candidate SNP, we then compare the
estimated covariance matrix to that obtained genome-wide,
using a likelihood ratio test.

Optimization
To estimate allele frequencies, we assume a classical struc-
ture/admixture model (Pritchard et al. 2000) and first esti-
mate Q, a matrix of admixture proportions for each
individual, and F, the matrix of allele frequencies for all loci,

  B   C   D   E
B 0.2 0.1 0.1 0.1  
C 0.1 0.4 0.3 0.2
D 0.1 0.3 0.4 0.2
E 0.1 0.2 0.2 0.6
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D
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  B   C   D   E
B 0.2 0.1 0.1 0.1  
C 0.1 0.4 0.3 0.2
D 0.1 0.3 0.4 0.2
E 0.1 0.2 0.2 0.3
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FIG. 6. Selection hypotheses and their encodings as covariance matrices. In this example, the ancestry component E is assumed to be the potential
target of selection. The entry E: E in the covariance matrix is therefore allowed to deviate from the globally estimated value.
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using a quadratic programming algorithm described in full
detail in Cheng, Mailund, et al. (2017) and we refer the reader
to the description in this paper. This method can also incor-
porate genotype likelihoods.

Conditional on these estimates of values of fj and faj for all j,
we then maximize the likelihood in equation (1) for X. This
optimization is done using the Nelder–Mead simplex method
(Nelder and Mead 1965). It uses Cholesky decomposition
(Cholesky 1910) to determine the positive semidefiniteness
of a matrix and to compute matrix inverses and determinants.
For the initial starting point, we use sample covariances:

Sc ¼
1

J

XJ

j
xj � �xj

� �
ðxj � �xjÞT xj ¼

f1

..

.

fK�1

2
666664

3
777775

�xj ¼

fA

..

.

fA

2
66666664

3
77777775
: (3)

To enforce treeness, instead of using a costly constrained
optimization, we convert the covariance matrix into a dis-
tance matrix, d ¼ fdijg, which is converted into a tree using
the Neighbor-Joining algorithm (Saitou and Nei 1987). We
then use the covariance matrix induced by this procedure. For
estimating a during a selection scan for a single SNP, condi-
tionally on the globally estimated value of X, we use a simple
Golden-section search algorithm (Kiefer 1953).

Simulations
We conducted population genetic simulations using the for-
ward simulator SLiM 3 (Haller and Messer 2019). We consider
three distinct demographic models (fig. 2):

• A basic four-population tree with no admixture (fig. 2a):
An ancestral population splits into four subpopulations
at times 4,000, 2,000, and 800 generations before present,
following the topology in figure 2a. Selection is simulated
on the yellow branch in figure 2a. Tests for selection are
conducted for yellow ancestry (i.e., the main ancestry
component in the third branch).

• A four-population tree with admixture (fig. 2b): The same
model as in (1), but split times are shifted backwards in
time by 100 generations; at 100 generations before pre-
sent, selection is turned off, and each population is sup-
planted by a (1/3,1/3,1/3) mixture of the other three
populations. Tests for selection are conducted for yellow
ancestry (i.e., the most depleted ancestry component in
the third branch).

• A model based on human demography of Mexican
(MXL), Northwestern European (CEU), CHB (EAS), and
African Yoruba (YRI) populations (fig. 2c): The model is
based on parameter estimates from Gravel et al. (2011)
and Gutenkunst et al. (2009). MXL is modeled as a (1/2,1/
2) mixture of CEU and Native American (NA) ancestry.
We simulate selection only in the ancestral NA popula-
tion (i.e., no ongoing selection in MXL). We use Ohana to
test for selection in this NA ancestry component, which is
only observed in the admixed MXL individuals.

In simulations (1) and (2), we assume all populations are
constant in size with Ne ¼ 10; 000. For all simulations, we
simulate a locus of 2 Mbp with mutation and recombination
rates l ¼ r ¼ 10�8 per bp per generation. In all cases, we
sample 20 diploid individuals from each extant population
(i.e., 160 chromosomes sampled). We simulate a single se-
lected site occurring within a 610 kb window of the center
of the simulated locus. In order to simulate selection during
particular time periods, we simulate sweeps from standing
variation (an initial frequency f), although we consider
such low frequencies (down to f¼ 0.0001) that these should
produce indistinguishable patterns from those produced
by hard sweeps (Przeworski et al. 2005). For each demo-
graphic scenario, we consider four different selection
coefficients (s¼ 0, 0.01, 0.02, and 0.05) and three different
ranges of starting frequencies for the selected allele (f in
½0:0001; 0:001Þ; ½0:001; 0:01Þ, and ½0:01; 0:1Þ). (Simulations
under model (3) exclude sweeps with f< 0.001 because the
ancestral NA population size is too small for any such varia-
tion at that low frequency.) We use a neutral burn-in phase of
100,000 generations. For all simulations, as is typical in for-
ward simulations, we scale times down by a factor of 10, and
scale up the selection coefficients and mutation and recom-
bination rates by a factor of 10, in order to ease computa-
tional burden. In all simulation scenarios we use 1,000
independent replicates. Open-source implementations of
each model are provided at https://github.com/35ajstern/
ohana_simulation_models.

We compared Ohana’s performance to that of two other
state-of-the-art methods: pcadapt and BayPass (Gautier 2015;
Duforet-Frebourg et al. 2016). Like Ohana, both methods
depend on some sort of empirical null model. To this end,
we simulated three 20 Mb-long neutral regions under other-
wise the same settings as previously described, with s¼ 0, in
order to generate a null data set for calibrating each method.
In the case of Ohana and BayPass, this null data set is used to
estimate the covariance matrix for each population; in pca-
dapt, we append this null data set to each region we test for
selection (we do this because the pcadapt package does not
have an equivalent two-step process for calculating PCs in
one region and testing for deviation from these PCs in a
separate region). In all cases, we filter out SNPs with MAF
<0.05 prior to any analysis. In Ohana, we test for selection in
specific ancestry groups; in contrast, BayPass and pcadapt test
for any significant deviation from the empirical covariance
matrix (BayPass models population-level covariance, whereas
pcadapt models individual-level covariance). In this sense, it is
important to keep in mind that Ohana is performing a more
specific test for selection, and can be used to methodologi-
cally attribute selection to a particular ancestral component/
branch.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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