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ABSTRACT

Background: Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses.
Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to
possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the in-
flammatory responses remains poorly understood.
Methods: We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells
stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced
mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using
enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and
hypoxia-inducible factor 1¢. (HIF1a) expression levels were detected using Western blot analysis.
Results: Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in
activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation.
The HIFla expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-
administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3
inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and
HIF1a expression levels in the ear tissue homogenate were suppressed by Rg3.
Conclusion: Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1a
pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the
treatment of skin inflammatory diseases.
© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Various cells such as macrophages, keratinocytes, T cells, B cells,
monocytes, eosinophils, neutrophils, and basophils are associated

Inflammation is associated with numerous skin diseases [1—3].
Inflammatory reactions are characterized by swelling, heat, pain,
and redness. Moreover, inflammation is regarded as an important
factor of organ dysfunction which requires pharmacological inter-
vention [4].
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with the inflammatory reactions [5—7]. Mast cells also play roles in
the inflammatory reactions [8]. Young et al. [9] reported that mast
cells enhanced inflammation in chronic nonbacterial osteomyelitis
and mast cell deficiency showed decreased inflammatory reactions
in mice. Mast cell-depleted mice showed reduced joint inflamma-
tion in arthritis models [10]. Furthermore, mast cells ablation
inhibited ear swelling response induced by 24-
dinitrofluorobenzene (DNFB) in mice [11].

Thymic stromal lymphopoietin (TSLP) is crucial in the patho-
genesis of skin inflammatory disorders such as contact dermatitis
and atopic dermatitis. Recombinant TSLP treatment in the nape of
the neck elevated scratching frequency in mice [12]. TSLP produced
by mast cells plays a role in skin inflammatory responses [13].
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Wong and colleagues [14] reported that TSLP acts as a master
switch for inflammatory reactions by means of mast cell activation.

TSLP was produced via murine double minute 2 (MDM2)
signaling in macrophages [15]. Because MDM2 induces tissue
inflammation, blockade of MDM2 would show potent antiin-
flammatory effects [16]. MDM2 induces activation of hypoxia-
inducible factor 1o (HIF1a) [17]. Our previous study showed that
treatment with MDM2 inhibitor (nutlin-3a) resulted in down-
regulation of HIFle, indicating that HIF1a is a downstream factor
of MDM2 [15]. Jang et al. [18] reported that TSLP expression was
mediated by HIF1a in keratinocytes.

Ginsenoside Rg3 (Rg3) is an active ingredient of Korean Red
Ginseng (Panax ginseng Meyer) and has a variety of beneficial ef-
fects such as anticancer, antidiabetes, antivirus, antiinflammatory,
antiosteoporotic, antiatherosclerosis, antiarthritic, antifatigue,
antiadipogenic, and antioxidant [19—26]. In addition, Rg3 pro-
moted beta-amyloid peptide degradation, suggesting a preventive
effect on Alzheimer's disease [27]. However, the beneficial effect
and precise mechanism of Rg3 on TSLP level in mast cells have not
been clearly elucidated.

We hypothesized that Rg3 has a regulatory effect by inhibiting
the TSLP production level via blockade of MDM2-HIF1a signaling
pathway in mast cells during inflammatory responses. Thus, we
assumed that inhibitions of MDM2 and HIF1a expression levels by
Rg3 would reduce TSLP levels in serum and ear edema in mice.

2. Materials and methods
2.1. Enzyme-linked immunosorbent assay (ELISA)

The levels of TSLP and vascular endothelial growth factor (VEGF)
in HMC-1 cell supernatants, sera and ear tissue homogenates were
detected according to the manufacturer's instructions (R&D Sys-
tems, Minneapolis, MN, USA), as previously described [28]. Each
cytokine level was quantified by analyzing the absorbance with a
microplate absorbance reader (Versa Max, Molecular Devices,
Sunnyvale, CA, USA).

2.2. Quantitative RT-qPCR

Total RNA was extracted with an easy-BLUE™ RNA extraction kit
(iNtRON Biotech Inc., Seongnam, Korea) and mixed with chloro-
form. After centrifugation, the collected upper aqueous phase was
mixed with isopropanol. After centrifugation, RNA was treated with
75% and 100% ethanol specifically. The RNA was reverse-
transcribed with a cDNA synthesis kit (Bioneer Corporation, Dae-
jeon, Korea). The cDNAs were used for quantification of gene
expression by quantitative real-time PCR (Applied Biosystems,
Foster City, CA, USA) using Power SYBR® Green Master Mix
(Thermo Fisher Scientificc Waltham, MS, USA), as previously
described [29]. The primer sequences were shown in
Supplementary Table 1. The mRNA expression levels of TSLP and
VEGF were normalized to GAPDH for each sample. Samples were
run in duplicate.

2.3. Western blot analysis

The harvested HMC-1 cells were lysed in cell lysis buffer (Invi-
trogen™, Carlsbad, CA, USA) for analyses of MDM2 and GAPDH or
lysed in nuclear extraction reagent (Thermo Fisher Scientific) for
analyses of HIF1a and Poly (ADP-ribose) polymerase (PARP) with
minor modifications [30,31]. Lysates were separated on a 10% so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis. After
proteins were transferred to nitrocellulose membranes (GE
Healthcare, Chicago, IL, USA), the membranes were blocked with 5%
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bovine serum albumin diluted in phosphate buffered saline (PBS)
with Tween 20 (Sigma Chemical Co.). The membranes were incu-
bated overnight with primary antibodies against MDM2, GAPDH,
HIF1a or PARP. GAPDH and PARP were used as loading controls. The
washed membranes were incubated with horseradish peroxidase-
conjugated secondary anti-mouse antibodies (all primary and
secondary antibodies from Santa Cruz Biotechnology). An
enhanced chemiluminescence solution (DoGenBio Co., Seoul, Ko-
rea) was used for development. Blots were quantified by Image ]
software (National Institute of Health, Bethesda, MD, USA). The
density of each target band was normalized to GAPDH or PARP.

3. Results

3.1. Rg3 attenuates TSLP levels in HMC-1 cells stimulated with
PMACI

To investigate whether Rg3 would regulate TSLP levels, we first
examined the effect of Rg3 on cell viability via an MTT assay. HMC-1
cells were pre-incubated with Rg3 (0.1, 1 and 10 pg/ml) of in the
presence of PMA plus calcium ionophore (PMACI) by referring to
the study of [19]. As shown in Fig. 1A, Rg3 treatment up to 10 pg/ml
did not decrease the cell viability. The final concentration of a
vehicle control (DMSO) was < 0.025% and did not affect the assay
(Fig. 1A). DEX (100 nM) which is a critical antiinflammatory agent
[32], did not affect this assay and was used as a positive control
(Fig. 1A). In addition, the treatment with Rg3 reduced B-galactosi-
dase activity in activated HMC-1 cells (p < 0.05; Fig. 1B). Thus, the
concentrations of 0.1, 1 and 10 pg/ml of Rg3 were used to assess the
regulatory effect of Rg3 in HMC-1 cells. In our previous study [33],
TSLP mRNA expression was reached its peak 5 h after PMACI
stimulation. Thus, we activated HMC-1 cells for 7 h to measure TSLP
production level. Rg3 inhibited the increase in TSLP production
level in a concentration-dependent manner in activated HMC-1
cells (p < 0.001; Fig. 1C). A vehicle control did not have an effect
on the TSLP production level in HMC-1 cells stimulated with PMACI
(Fig. 1C). Thus, the following experiments were performed
excluding the vehicle control group. Rg3 suppressed the mRNA
expression level of TSLP increased by PMACI in a concentration-
dependent manner (p < 0.001; Fig. 1D). The inhibitory effects of
Rg3 on the production and mRNA expression levels of TSLP were
similar to those of DEX (p < 0.001; Fig. 1C and D).

3.2. Rg3 attenuates VEGF levels in HMC-1 cells stimulated with
PMACI

VEGEF is associated not only with pathological angiogenesis, but
also with various inflammatory diseases [34]. Thus, we evaluated a
regulatory effect of Rg3 on VEGF production level in activated HMC-
1 cells. In response to PMACI, VEGF production level increased in
HMC-1 cells. Rg3 suppressed the increase in the VEGF production
level in a concentration-dependent manner in HMC-1 cells stimu-
lated with PMACI (p < 0.001; Fig. 1E). A vehicle control did not have
an effect on the VEGF production in activated HMC-1 cells (Fig. 1E).
Rg3 significantly reduced the mRNA expression level of VEGF
increased by PMACI (p < 0.001; Fig. 1F). These inhibitory effects of
Rg3 on the VEGF levels were similar to those of DEX (p < 0.001;
Fig. 1E and F).

3.3. Rg3 down-regulates MDM?2 signaling pathways in HMC-1 cells
stimulated with PMACI

A previous study reported that Rg3 down-regulates NF-kB
signaling pathway in activated HMC-1 cells [20]. MDM2 activates
the NF-kB signaling pathway and acts as a co-transcription factor



N.-R. Han, S.-G. Ko, P--D. Moon et al.

0.6 220
= 2
o % 1.5
> 04 23
3 §5 10
02 ®2
3 & 0.5
(&) ©
4
0.0 < 0.0
PMACI + + + + + + PMACI -
Rg3(pg/ml) - 01 1 10 . Rg3 (ng/ml)
Vehicle control - - - - + Vehicle control -
DEX - - - - - + DEX -
5
#ith
T4
[a) *kk
o
(‘f) 3 *kk
T 2 dekek FEE
|
7
F1
PMACI - - + + + + + PMACI -
Rg3 (ng/ml) 10 01 1 10 - Rg3 (pg/ml) -
DEX - - - - - - o+ Vehicle control -
DEX -

Journal of Ginseng Research 45 (2021) 610—616

0.25
0.20
0.15
0.10
0.05

0.00
PMACI - - + + + + + +
Rg3 (ng/ml) - .
+ - Vehicle control - - - - - - &+ .
+ DEX - - - - - - -

F

TSLP production (ng/ml)

VEGF/GAPDH
H

PMACI - - + + + + +
- Rg3 (ng/ml) - -
+ - DEX - - - - - -+

Fig. 1. Rg3 attenuates TSLP and VEGF levels in HMC-1 cells stimulated with PMACI. HMC-1 cells (4 x 10°) were pre-incubated with Rg3, vehicle control (DMSO, 0.025%) and DEX
(100 nM) for 1 h and then activated with PMACI for 7 h without media change. (A) Cell viability was measured by an MTT assay. (B) B-Galactosidase activity was analyzed by a -
galactosidase assay kit. (C,E) HMC-1 cells (4 x 10°) were pre-incubated with Rg3, vehicle control (DMSO, 0.025%) and DEX (100 nM) for 1 h and then activated with PMACI for 7 h
without media change. The TSLP and VEGF production levels in cell supernatants were determined by ELISA. (D,F) HMC-1 cells were pre-incubated with Rg3 and DEX (100 nM) for 1
h and then activated with PMACI for 5 h without media change. The TSLP and VEGF mRNA expression levels in harvested cells were determined by real time-PCR. ###p < 0.001
considered significant compared to PMACI-inactivated group; *p < 0.05 and ***p < 0.001 considered significant compared to PMACI-activated group.

for NF-kB target genes [35]. Thus, we attempted to further inves-
tigate whether Rg3 would regulate the TSLP and VEGF levels via
MDM?2 signaling pathways. First, we pre-treated an MDM2 inhib-
itor, nutlin-3a, and activated HMC-1 cells with PMACI. The TSLP
(p < 0.001) and VEGF (p < 0.001) production levels were signifi-
cantly reduced by nutlin-3a treatment (Fig. 2A and B). The inhibi-
tory effects of nutlin-3a on the production levels were similar to
those of Rg3 (Fig. 2A and B). Next, we investigated whether MDM2
expression level would up-regulated by PMACI stimulation. As
shown in Fig. 2C and D, MDM2 expression began to be significantly
induced 1 h after PMACI stimulation (p = 0.007). Elevation of
MDM?2 expression was the most at 3 h time point (p = 0.011)
following PMACI stimulation (Fig. 2C and D). Thus, we selected 3 h
time point to analyze the regulatory effect of Rg3 on the MDM2
expression. Expectedly, Rg3 treatment significantly reduced the
MDM?2 expression level increased by PMACI stimulation (p < 0.001,
Fig. 2E and F). DEX also significantly decreased the MDM2
expression level (p < 0.001, Fig. 2E and F).

3.4. Rg3 down-regulates HIF1« signaling pathways in HMC-1 cells
stimulated with PMACI

MDM2 is a positive activator of HIF1a. and VEGF [17]. Both of
MDM2 and HIF1a are key modulators of VEGF pathways [36]. Thus,
we treated nutlin-3a in HMC-1 cells to study whether HIFla
expression would be regulated through MDM2 signaling pathways.
To analyze HIF1a expression level, HMC-1 cells were activated with
PMACI for 4 h, referring to the report of [37]. The PMACI stimulation
significantly induced a marked increase in the HIFla expression
level (Fig. 3A and B, p < 0.001). The increased HIFla expression
level was significantly suppressed by nutlin-3a (p = 0.006, Fig. 3A
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and B). Next, we investigated whether Rg3 would down-regulate
HIF1o. expression in activated HMC-1 cells. Rg3 significantly
restrained the HIFla expression level in activated HMC-1 cells
(p = 0.004, Fig. 3C and D). DEX also significantly restrained the
HIF1a expression level (p = 0.003, Fig. 3). Moreover, an HIF1a in-
hibitor, YC-1 significantly diminished the production levels of TSLP
(p < 0.001) and VEGF (p < 0.001) in activated HMC-1 cells (Fig. 2A
and B). The inhibitory effects of YC-1 on the production levels were
similar to those of Rg3 (Fig. 2A and B).

3.5. Rg3 attenuates PMA-irritated ear edema

Inflammatory reactions can occur when vascular tissues are
subjected to harmful irritation [38]. Based on the above findings,
we used an in vivo model of PMA-irritated ear edema and further
investigated the regulatory effect of Rg3 on inflammatory re-
sponses. An increase in ear thickness indicates the degree of
inflammation responses [39]. The PMA irritation induced signifi-
cant redness and increases in ear thickness (p < 0.05, Fig. 4A and
Table 1). However, Rg3-administered mice showed the decreased
redness and ear thickness when compared to PMA control mice
(p < 0.05, Fig. 4A and Table 1). In addition, Rg3 significantly
decreased the serum TSLP (p = 0.003) and VEGF (p = 0.044) levels
increased by PMA irritation (Fig. 4B and C). The TSLP (p < 0.001) and
VEGF (p = 0.004) levels in the ear tissue homogenate were also
markedly reduced by Rg3 administration (Fig. 4D and E). DEX also
significantly inhibited these responses (Fig. 4 and Table 1). Finally,
to study the regulatory effect of Rg3 on MDM2-HIF1a pathways in
the in vivo model of PMA-irritated ear edema, we analyzed the
MDM?2 and HIF1a expression levels in the ear tissue homogenate.
As shown in Fig. 5, Rg3 significantly suppressed the MDM2
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Fig. 2. Rg3 down-regulates MDM2 signaling pathways in HMC-1 cells stimulated with PMACL. HMC-1 cells (4 x 10°) were pre-incubated with Rg3 (10 pg/ml), nutlin-3a (1 pM) or
YC-1 (10 uM) for 1 h and then activated with PMACI for 7 h without media change. (A) TSLP and (B) VEGF production levels in cell supernatants were assessed by ELISA. (C) HMC-1
cells (5 x 10%) were activated with PMACI for the indicated period. The MDM2 expression level was detected by immunoblot assay. (D) Quantification of relative levels was
expressed as MDM2/GAPDH. (E) HMC-1 cells (5 x 10°) were pre-incubated with Rg3 and DEX (100 nM) for 1 h and then activated with PMACI for 3 h without media change. The
MDM2 expression level was detected by immunoblot assay. (F) Quantification of relative levels was expressed as MDM2/GAPDH. #p < 0.05, ##p < 0.01 and ###p < 0.001
considered significant compared to PMACI-inactivated group; *p < 0.05 and ***p < 0.001 considered significant compared to PMACI-activated group.

(p < 0.001) and HIF1a (p = 0.002) expression levels increased by
PMA irritation in the ear tissue homogenate. DEX also significantly
decreased the MDM2 (p < 0.001) and HIF1a (p = 0.011) expression
levels (Fig. 5).

4. Discussion

Newly synthesized cytokines are secreted to the extracellular
space for leading to inflammation after mast cell activation [40].
This mast cell activation can be reproduced by means of chemical
stimuli. Stimulation with protein kinase C activator PMA plus
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calcium ionophore A23187 led to release of various inflammatory
cytokines from HMC-1 cells [41]. Critical inflammatory cytokines,
TSLP and VEGF were also produced by PMACI [33,37,41]. Serum and
skin lesions of patients with atopic dermatitis contained high levels
of TSLP [42]. TSLP receptor deficiency led to decreased skin
inflammation in mice [43]. TSLP deficiency resulted in reduced skin
inflammation in mice [13]. Transgenic overexpression of VEGF in
the skin resulted in features of skin inflammation [44]. Scaldaferri
et al. [45] suggested that agents that block VEGF signaling could
suppress inflammatory responses in patients with inflammatory
disease. Our findings presented that Rg3 reduced the production
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Fig. 3. Rg3 down-regulates HIF1a. signaling pathways in HMC-1 cells stimulated with PMACL HMC-1 cells (5 x 10°) were pre-incubated with (A) nutlin-3a, (C) Rg3 or DEX (100 nM)
for 1 h and then activated with PMACI for 4 h without media change. The expression levels of HIF1e. and PARP in nuclear extraction were detected by immunoblot assay. (B,D)
Quantification of relative levels was expressed as HIF1a,/PARP. ###p < 0.001 considered significant compared to PMACI-inactivated group; *p < 0.05 and **p < 0.01 considered

significant compared to PMACI-activated group.
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Table 1
Quantification of the ear thickness before/after Rg3 treatment (n = 5/Group)

Journal of Ginseng Research 45 (2021) 610—616

Treatment Dose Pre-thickness (mm) Post-thickness (mm) Increase (mm)
Blank - 0.3410 + 0.0034 0.3454 + 0.0024 0.0044 + 0.0015
PMA control - 0.3414 + 0.0015 0.4396 + 0.0064 0.0982 + 0.0064*
PMA + Rg3 10 mg/kg 0.3412 + 0.0019 0.3910 + 0.0054 0.0498 + 0.0042 *
PMA + DEX 100 nM 0.3414 + 0.0030 0.3932 + 0.0051 0.0518 + 0.0051 *

Blank, acetone-applied and PBS-administered mice; PMA control, PMA-irritated and PBS-administered mice; PMA + Rg3, PMA-irritated and Rg3-administered mice;
PMA + DEX, PMA-irritated and DEX-administered mice. #p < 0.05 considered significant compared to blank group; *p < 0.05 considered significant compared to PMA control

group.

= Blank

c 1.5 Hm PMA control
o #it# =3 PMA + Rg3
g =1 PMA + DEX
01 -
5 . #H#
[} ek ok *
S
2 0.5 e
S
[]
4

0.0

MDM2 HIF1a

Fig. 5. Rg3 down-regulates MDM2 and HIF1a expression levels in PMA-irritated ear edema. (A) MDM2 and (C) HIF1a expression levels in the ear tissue homogenate were detected
by immunoblot assay. (B,D) Quantification of relative levels was expressed as MDM2/GAPDH or HIF1a/GAPDH. ###p < 0.001 considered significant compared to blank group;
*p < 0.05, **p < 0.01, and ***p < 0.001 considered significant compared to PMA control group.

and mRNA expression of TSLP and VEGF in HMC-1 cells (Fig. 1).
Thus, we presume that Rg3 may be useful for us to prevent and/or
treat skin inflammatory disorders.

In general, it has been known that NF-kB is a regulator of
inflammation-related TSLP expression at transcription level
[33,46]. MDM2 is an upstream factor of NF-kB. MDM2 transcrip-
tionally up-regulates NF-kB expression and activates NF-kB-medi-
ated gene expression [47]. Intradermal injection of MDM2 siRNA
significantly suppressed TSLP mRNA and protein levels in the skin
of DNFB-applied mice [48]. Jang and colleagues [18] suggested that
HIF1« also is an important transcription factor of TSLP. MDM2 is an
upstream factor of HIF1a [15]. In the present study, Rg3 inhibited
activation of MDM2 and HIF1a in HMC-1 cells (Figs. 2 and 3). Thus,
we postulate that Rg3 might regulate skin inflammatory reactions
through MDM2/HIF1a signal pathway. Inflammatory stimuli (i.e.,
PMACI stimulation) increased the activation of MDM2 as well as
HIF1o. Furthermore, an MDM?2 inhibitor (nutlin-3a) dose-
dependently inhibited HIF1a activation levels. To our knowledge,
this is the first study showing new signal cascade (MDM2/HIF1a.)
for TSLP expression in mast cells.

PMA-induced ear edema model is a well-established in vivo
model to confirm in vitro results in many studies [1,49—51]. Our
findings presented that treatment with Rg3 ameliorated the ear
swelling responses resulted from PMA irritation (Table 1) and
reduced the levels of TSLP and VEGF as well as the activation of
MDM?2 and HIF1a in mice (Figs. 4 and 5). Thus, we assume that the
antiinflammatory effects of Rg3 would be easily translated to the
human skin inflammatory disease.

A recent study suggested that the no-observed-adverse-effect
level (NOAEL) for Rg3 in dogs is 20 mg/kg [52]. Additionally, Li
and colleagues [53] reported that the NOAEL value for Rg3 in rats is
180 mg/kg. Highest concentration of Rg3 in the present study is 10
mg/kg. Hence, we presume that 10 mg/kg of Rg3 would not be toxic
to humans.

615

Conclusionally, we elucidated the beneficial effect and precise
mechanism of Rg3 on TSLP production in activated mast cells and
found that Rg3 suppressed the TSLP production through down-
regulation of MDMZ2/HIF1a signaling pathway in an in vitro
model of PMACI-stimulated HMC-1 cells and a PMA-induced
mouse ear edema model of inflammation. Our findings provided
the new mechanistic evidence about MDM2/HIF1a. pathway in the
antiinflammatory effect of Rg3, suggesting a new effective thera-
peutic strategy for the treatment of skin inflammatory diseases.
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