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Due to a large number of potential applications, a good deal of effort has been recently

made toward creating machine learning models that can recognize evoked emotions

from one’s physiological recordings. In particular, researchers are investigating the use

of EEG as a low-cost, non-invasive method. However, the poor homogeneity of the

EEG activity across participants hinders the implementation of such a system by a

time-consuming calibration stage. In this study, we introduce a new participant-based

feature normalization method, named stratified normalization, for training deep neural

networks in the task of cross-subject emotion classification from EEG signals. The new

method is able to subtract inter-participant variability while maintaining the emotion

information in the data. We carried out our analysis on the SEED dataset, which contains

62-channel EEG recordings collected from 15 participants watching film clips. Results

demonstrate that networks trained with stratified normalization significantly outperformed

standard training with batch normalization. In addition, the highest model performance

was achieved when extracting EEG features with the multitaper method, reaching a

classification accuracy of 91.6% for two emotion categories (positive and negative) and

79.6% for three (also neutral). This analysis provides us with great insight into the potential

benefits that stratified normalization can have when developing any cross-subject model

based on EEG.

Keywords: deep learning, feature normalization, stratified normalization, SEED dataset, EEG, cross-subject,

emotion recognition, affective computing

1. INTRODUCTION

Emotion recognition has gained great attraction due to its large number of potential applications
in fields such as human-computer interaction (Brave and Nass, 2009), interactive storytelling
(Fels et al., 2011), and mood disorders (El Keshky, 2018). Specifically, researchers are exploiting
emotion recognition via EEG signals due to its advantages compared to other low-cost, non-
invasive methods such as electromyogram (EMG) and electrocardiography (ECG), whose current
limitations restrain them to be used mainly in multimodal emotion recognition (Dzedzickis et al.,
2020), or to facial expression and speech emotion recognition methods, which are susceptible to
cognitive bias such as social desirability bias (Gery et al., 2009; Heuer et al., 2007).

However, themain bottleneck in the development of models trained with EEG signals is the poor
homogeneity of between-sessions data and between-participants data, which, interestingly, is not
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apparent in the literature in the context of emotion recognition
from facial expressions or other physiological data (Cimtay
and Ekmekcioglu, 2020). In order to solve this problem with
EEG, current methods rely on participant-dependent models
tuned with tedious and time-consuming calibration sessions
implemented before each experiment.

In the past years, a significant effort has been made in
building participant-independent models that eliminate the need
for calibration sessions. Specifically, the primary focus of these
models is to find common features across participants using
algorithms which usually regard variance among individuals as
mere statistical noise (Shu et al., 2018). One example is the study
by Li et al. (2020), where researchers used an unsupervised deep
generative model to capture the emotion-related information
between participants. Another example is from Yin et al. (2017),
who present an EEG feature selection approach to determine a
set of the most robust EEG indicators with stable geometrical
distribution across a group of participants. In another study by Li
et al. (2018), researchers extracted nine types of time-frequency
domain features and nine types of dynamical system features
and studied the importance of all those features across different
channels, brain regions, rhythms, and features types. Last but not
least, the study by Song et al. (2020) proposes a graph to model
the multichannel EEG features and then perform EEG emotion
classification based on this model.

Since the average classification accuracy by selecting robust
features is still lower than the participant-dependent models
(Shu et al., 2018), researchers are also investigating other
approaches such as functional brain connectivity patterns,
domain adaptation, or hybrid methods. An example of cross-
subject functional brain connectivity investigation is from Cao
et al. (2020), who studied the key information flow of the
different parts of the brain with minimum spanning trees
(MST). About domain adaption, the study by Chai et al. (2016)
presents several unsupervised domain adaptation techniques
based on autoencoders for non-stationary EEG-based emotion
recognition. Furthermore, Cimtay and Ekmekcioglu (2020)
analyzes the use of pre-trained convolutional neural network
(CNN) architectures to improve the feature extraction and
inherent exploitation of the domain adaptation. Lastly, the study
by Yang F. et al. (2019) gives an example of a hybrid method for
cross-subject emotion recognition by extracting multiple features
for the formation of high-dimensional feature space.

Another approach in transfer learning classification tasks,
not only relevant in neuroscience but also in image processing,
machine learning or pattern recognition, is data normalization.
According to Milligan and Cooper (1988), data normalization
not only simplifies the numerical calculation, which may help to
speed up the learning process during the backpropagation, but
also allows the data to have similar dynamic range.

In the context of neuroscience, researchers have investigated
and compared different normalization methods for both
participant-dependent and participant-independent models. For
example, the study by Yousif et al. (2020) compared the
performance of three different types of feature normalization—
Z-score, min-max, and decimal-scaling normalization—vs. non-
normalization in EEG signal-based emotion classification,

achieving optimal performance with the Z-score normalization
method. Issa and Shedeed (2016) also compared normalized and
non-normalized sets of data using four types of feature extraction
methods, concluding as well that the normalization procedure
enhanced the performance and increased the classification
accuracy. Besides, Logesparan et al. (2011) assessed five
previously reported normalization techniques—mean memory,
standard deviation memory, peak detector, signal range method,
and median decaying memory—to correct the amplitude
differences in recorded signals between different patients. They
discovered that only the last method improved accuracy,
which indicates the importance of selecting an appropriate
normalization method.

Regarding the importance of normalization in cross-subject
classification, the studies by Koelstra et al. (2012) and
Jatupaiboon et al. (2013) already gave the first insights into the
advantages of this approach after applying participant-based data
normalization to reduce the inter-participant variability. They
observed that the distance between the clusters, where each
cluster corresponds to one participant since the contribution
of the participant identification information is higher than the
effect of the emotion (Arevalillo-Herráez et al., 2019), reduces
when normalizing the data for each participant independently.
Later on, the work of Arevalillo-Herráez et al. (2019) exploited
this result and proposed a nonlinear data transformation using
the median for each feature and participant that seamlessly
integrated individual traits into an inter-participant approach.
After applying the proposed transformation, they trained a
classifier and compared their results with a standard Z-score
standardization. Despite proving that their method was able
to reduce the magnitude of this component when using PSD
features and showing that their results overpassed the Z-score
standardization’s performance, they noticed in their study that
it is necessary to find new normalization methods since the
removal of the subject-dependent component in the signal is
indeed feature and problem dependent.

In all the mentioned articles, to the best of the author’s
findings, the researchers’ effort has been in reducing the inter-
participant variability using data normalization in the pre-
processing or before the training stage. However, they have
not considered the large benefits that data normalization may
have when included within the training process. This is, in
fact, a common practice in deep learning with the well-known
normalization method called batch normalization (Ioffe and
Szegedy, 2015), which was first introduced to address the
problem of internal covariate shift or an unwanted drift in the
distribution of neuron’s activations resulting from the learning
process. Nevertheless, this method should not in principle reduce
the inter-participant variability substantially since it normalizes
per batch of data, not distinguishing across participants as
Arevalillo-Herráez et al. (2019) mentioned in his work.

In recent years, the rapid progress of machine learning
has brought new normalization methods applied in different
machine learning fields such as layer normalization (Ba et al.,
2016), commonly used in recurrent neural networks (RNN), and
instance normalization (Ulyanov et al., 2017), applied in style
transfer so that output stylized images do not depend on the

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 626277

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fdez et al. Neural Networks With Stratified Normalization

FIGURE 1 | Our experimental setup captures the effects that the experimental data, labeling method, feature extraction method, and normalization method have onto

the emotion recognition accuracy of the models.

contrast of the input content image. Interestingly, we observed
that the latter method resembled our approach where, instead
of removing the contrast of the input image, we were aiming to
remove the participant identification information contained in
the data.

Therefore, we designed and assessed a new participant-based
feature normalization approach, named stratified normalization,
that normalizes the data per feature and participant within the
layers of the neural network classifier. Compared with instance
normalization, which can be only used with images and does not
normalize across the batch, ourmethod uses the participant labels
as additional information to normalize the features and can be
extended to any type of data. To deepen the evaluation and assess
whether our method reduces the inter-participant variability, we
compared our results with standard batch normalization using
different labeling and feature extraction methods.

To encourage further research on these topics, we have made
the source code of this work freely accessible to all1.

2. MATERIALS AND METHODS

We designed an experiment to capture the effects of one
control variable—the experimental data—and three independent
variables—the labeling method, the feature extraction method,
and the normalization method—onto the dependent variable
that we aim to assess—the cross-subject emotion recognition
accuracy of the trained models. Figure 1 details the variables and
their conditions for the experiment. The four sections of this

1https://github.com/javiferfer/Cross-subject-EEG-emotion-recognition-

through-NN

chapter detail each of the experiment’s control and independent
variables, respectively.

Our methodology unfolds as follows. Firstly, we picked an
EEG dataset and a preprocessing stage of the data so as to feed
our models (c.f., section 2.1). Secondly, we prepared two strains
of models to perform either binary or ternary classification
(c.f., section 2.2). Subsequently, we defined models that would
extract the features according to the three conditions of the
feature extraction method variable (c.f., section 2.3). Lastly, we
implemented the two conditions of the normalization method
variable (c.f., section 2.4) and assessed each model (2 × 3 ×
2 = 12 models in total) through a leave-one-out cross-validation
over all the participants from the EEG dataset.

2.1. Experimental Data
Despite the large number of potential applications of emotion
recognition from EEG signals, to the best of our knowledge,
MAHNOB-HCI (Soleymani et al., 2012), SEED (Duan et al.,
2013; Zheng and Lu, 2015), SEED IV (Zheng et al., 2019),
and DEAP (Koelstra et al., 2012) are the only four publicly
available emotional EEG datasets on the topic. From those
four datasets, the most studied ones in cross-subject emotion
classification are the DEAP and SEED datasets (e.g., Li et al.,
2020; Cimtay and Ekmekcioglu, 2020, from which we decided
to focus on the SEED dataset because of the following reasons.
Firstly, the collected data is well-balanced between sessions and
participants, which simplifies the assessment of the classification
results. Secondly, as Li et al. (2018) mentioned in his study, the
performance on DEAP is significantly inferior to that on SEED,
which may be due to the relatively low quality of the data and
the emotional ratings of trials. This led them to conduct further
evaluation only in the SEED dataset. Thirdly, neural networks

Frontiers in Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 626277

https://github.com/javiferfer/Cross-subject-EEG-emotion-recognition-through-NN
https://github.com/javiferfer/Cross-subject-EEG-emotion-recognition-through-NN
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fdez et al. Neural Networks With Stratified Normalization

easily overfit with the DEAP dataset, which would increase the
complexity of the neural network models since it would be
necessary to include data augmentation, early stopping, higher
dropout, and/or regularization for each model (e.g., Cimtay and
Ekmekcioglu, 2020; Yang H. Y. et al., 2019). Lastly, the literature
offers many reports on cross-subject emotion recognition models
using the SEED dataset, which permits the comparison with
other papers.

The SEED dataset contains 62-channel EEG data collected
from 15 participants, who carried out three sessions over the
same 15 film clips. An emotional rating was previously assigned
to each film clip and obtained by averaging the ratings of 20
participants who were asked to indicate one keyword (positive,
neutral, or negative) after watching them. In the subsequent
experiment with EEG recordings, the clips used across sessions
and participants at each trial shared the same pseudo-random
order of ratings to balance evoked emotions throughout the EEG
recordings smoothly.

In addition to the raw EEG data, the SEED dataset contains
a preprocessed version of the signals which consisted of
downsampling to 200 Hz and noise filtering with a bandpass
filter of 0.5–70 Hz. Since the downsampling reduces the high
dimensionality, and the noise filtering increases the signal-to-
noise ratio (Bigdely-Shamlo et al., 2015), we have chosen to use
this preprocessed data for our analysis.

2.2. Labeling Method
Our first independent variable indicated the number of emotional
classes: two categories (positive and negative) and three
categories (positive, neutral, and negative). The two approaches
can be conveniently compared due to the large number of articles
that reported their results with binary classification (e.g., Li et al.,
2018; Yang F. et al., 2019; Li et al., 2020; Cimtay and Ekmekcioglu,
2020) or ternary classification (e.g., Chai et al., 2017; Zhang et al.,
2019; Lan et al., 2019; Cimtay and Ekmekcioglu, 2020).

2.3. Feature Extraction Method
The second independent variable concerns the feature extraction
method, which refers to either the (1) Welch, (2) multitaper, or
(3) Differential Entropy (DE) method in our study. The first two
methods were selected since they belong to the Power Spectral
Density (PSD) category, which, according to Craik et al. (2019), is
a typical approach when training deep neural networks for EEG
classification tasks. Our selection of DE was based on the high
accuracy reported in some EEG emotion recognition studies such
as by Duan et al. (2013) and by Chen et al. (2019).

For all three methods, the total number of extracted features
for each trial is 248 (62 channels × 4 band frequencies). The
four band powers for each EEG signal correspond to the theta
rhythm (4–7 Hz), alpha rhythm (8–13 Hz), beta rhythm (14–30
Hz), and gamma rhythm (31–50 Hz). The delta rhythm (0.5–4
Hz) was excluded as it is traditionally associated with sleep stages
(De Andrés et al., 2011) and therefore assumed to be less relevant
to our study.

2.3.1. Welch’s Method
Welch’s method (Welch, 1975) is an approach to estimate the
power of a signal at different frequencies. It is carried out by
averaging consecutive periodograms of small time-windows over
the signal. To encompass at least two full cycles of the lowest
frequency of interest (4 Hz), the duration of the time-windows
was set at 0.5 s, with an overlap of 0.25 s between each consecutive
window. To smooth the discretization process, each window
was filtered with a Hann function. The band frequencies were
thereafter extracted from the PSD by implementing Simpson’s
rule, which approximates integrals using quadratics.

2.3.2. Multitaper Method
Multitaper method is an alternative to Welch’s method, which
still produces high variance for the direct spectral estimation
(Mansouri and Castillo-Guerra, 2019). This method reduces
the variance of the spectral estimation by using multiple time-
domain windows rather than a single-domain window. As well
as Welch’s method, the band frequencies were extracted by
implementing Simpson’s rule over the PSD.

2.3.3. Differential Entropy Method
The DE is used to measure the complexity of a continuous
random variable (Duan et al., 2013). Its calculation formula can
be expressed as,

h(X) = −
∫

X
f (x)log(f (x))dx (1)

where X is a random variable and f(x) is the probability density
function of X. When the time series X obeys the Gaussian
distribution N(µ, σ 2), its differential entropy can be defined as,

h(X) = −
∫ ∞

−∞

1√
2πσ 2

e
− (x−µ)2

2σ2 log(
1√
2πσ 2

e
− (x−µ)2

2σ2 )dx

= 1

2
log(2πeσ 2) (2)

For a fixed-length EEG sequence, we can approximate the EEG
data to a Gaussian distribution, constructing features using
Equation (2).

2.4. Normalization Method
The last independent variable is the normalization method,
which indicates the two types of classifiers implemented in this
study: multilayer neural network with batch normalization and
multilayer neural network with stratified normalization.

The models used to classify emotions are independent of
the normalization method, meaning that batch and stratified
normalizations apply to the same neural architectures (c.f.,
Figure 2). Both types of classifiers were trained for 100 epochs;
the whole training data (15 participants × 3 sessions × 15 trials)
was input in one unique batch; the learning rate was set to
0.005 for the first 40 epochs, then decreased to 0.001 for the
remaining 60 epochs; the optimizer was the Adam optimizer
(Kingma and Ba, 2014); the loss function was the negative log-
likelihood loss (Zhu et al., 2020). For further information about
the hyperparameters or architecture of the neural network, please
refer to the source code.
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FIGURE 2 | Architecture of the classifiers. Features first go through a min-max normalization of the data before being input to the neural network. The first three layers

consist of dense layers with 64 neurons, a dropout for the first two, ReLu activations, and either a batch or a stratified normalization. The last layer is a 3-neuron dense

layer that outputs the classification prediction through a Softmax function.

2.4.1. Batch Normalization
Batch normalization was first introduced by Ioffe and Szegedy
(2015) in order to address the problem of internal covariate
shift, an unwanted drift in the distribution of neuron’s
activations resulting from the learning process. As explained
further below, we slightly adapted the method for our
purposes. Figure 3 illustrates our implementation of the batch
normalization method.

The extracted features are first min-max normalized
according to the following equation:

x̂ijk =
xijk −min(xk)

max(xk)−min(xk)
(3)

where the parameter i indicates the number of the participant and
session (45 in total), j refers to the number of the trial (15 in total),
and k identifies the number of the feature (248 in total).

The output of this min-max normalization is input to the
neural network, which implements mean normalization of the
output of each of the first three layers according to Equations (4),
(5), and (6).

µk = 1

45 ∗ 15

45
∑

i=1

15
∑

j=1

xijk (4)

σ
2
k = 1

45 ∗ 15

45
∑

i=1

15
∑

j=1

(xijk − µk)
2 (5)

x̂ijk =
xijk − µk
√

σ
2
k
+ ε

(6)

These equations correspond to the first three steps of the batch
normalization transform described by Ioffe and Szegedy (2015).
The fourth step of the algorithm is a scale and shift of the
normalized values, where the parameters are learned along with
the original model parameters. However, we observed that this
step decreased the emotion recognition accuracy, so we decided
to exclude it from our analysis.

2.4.2. Stratified Normalization
The stratified normalization consists of a feature normalization
per participant and session. Figure 4 details our implementation
of the stratified normalization method.

The extracted features are first min-max normalized
according to the following equation:

x̂ijk =
xijk −min(xik)

max(xik)−min(xik)
(7)

The output of this min-max normalization is input to the neural
network, which implements mean normalization at the output
of each of the first three layers according to Equations (8), (9),
and (10).

µik = 1

15

15
∑

j=1

xijk (8)

σ
2
ik = 1

15

15
∑

j=1

(xijk − µik)
2 (9)

x̂ijk =
xijk − µik
√

σ
2
ik
+ ε

(10)
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FIGURE 3 | Batch normalization method. The data is normalized per feature, independently of the participant, and session.

3. RESULTS AND DISCUSSION

This section first presents the results of the experiment, then
analyzes the between-participant variance and cross-subject
emotion recognition in the layers of the neural networks,
and finally compares the results of this work with state-of-
art literature.

3.1. Overall Evaluation
Figure 5 reports the performance, tested after 100 epochs of
training, of the models in each experimental condition.

To evaluate the performance of the models, we ran a three-
way ANOVA where the between factors were the (1) labeling,
(2) normalization, and (3) feature extraction methods. The
statistical results revealed an effect of the labeling method
[F(1, 168) = 97.7, p< 0.001, η2p = 0.368], meeting our expectations
of an overall better performance in task of binary classification
compared to ternary classification. A strong effect of the
normalization method was captured as well [F(1, 168) = 33.8,
p < 0.001, η

2
p = 0.17], confirming that stratified normalization

is a more efficient approach than batch normalization in such an
experimental context. However, our manipulation of the feature
extraction method did not elicit any effect [F(2, 168) = 0.32,
p= 0.73, η2p = 0.004], meaning that all methods have the potential

to perform equally well. No two-way or three-way interactions
were captured by our analysis either (Fs < 4).

Despite a lack of effect of the feature extraction method, we

have decided to look deeper into the performance of models

according to each feature extraction method. Our aim was

to allow comparison with the state-of-the-art literature and
to further deepen our theoretical interpretation of the results.

For binary classification, the methods that performed with the

highest accuracy for batch and stratified normalization were
DE (M = 0.876, SD = 0.101) and multitaper (M = 0.916,

SD = 0.074), respectively. For ternary classification, Welch
(M= 0.671, SD= 0.088) andmultitaper (M= 0.796, SD= 0.104)
were the optimal methods for batch and stratified normalization,
respectively. Thus, models using themultitaper feature extraction
method in combination with stratified normalization elicit the
highest performance both in binary and ternary classification
tasks. We will therefore focus on these models for the remaining
of our study.

3.2. Descriptive Summary for the
Multitaper and Stratified Methods
In this section, we present a descriptive summary of the results
obtained when using, as normalization method, the stratified

Frontiers in Neuroscience | www.frontiersin.org 6 February 2021 | Volume 15 | Article 626277

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fdez et al. Neural Networks With Stratified Normalization

FIGURE 4 | Stratified normalization method. The data is normalized per feature, participant, and session.

normalization and, as feature extraction method, the multitaper
method. We selected the former method since it resulted in
being statistically significant compared to batch normalization
in terms of models’ accuracy. About the feature extraction
method, the statistical test did not draw any significant result
that could allow us to conclude on which method is the most
effective. However, we decided to select the multitaper method
since it was the feature extraction method with which models
performed with the highest accuracy on average, for both binary
(M = 0.916, SD = 0.074) and ternary classification (M = 0.796,
SD= 0.104).

Table 1 indicates the leave-one-out classification accuracies

for models based on the multitaper and stratified normalization

methods. Each column represents the test accuracy of the models
on the untrained data (1 participant out of 15) throughout
our 15-fold cross-validation design. The comparison between
binary and ternary classification results highlights a moderate
correlation between the models’ performance on these two tasks
(Pearson correlation of 0.343), suggesting that models extract
participant identification information with some consistency
over tasks (but see section 3.3).

The confusion matrices for the multitaper method when
combining the results of the leave-one-out cross-validation of
all the participants for two and three categories are shown

in Tables 2, 3, respectively. The classification accuracy for
positive (92.44%) and negative (90.67%) labels is well-balanced
in binary classification. However, for ternary classification, while
the classifiers keep an accurate performance for positive labels
(90.67%), their accuracy is lowered for negative (75.11%) and
neutral (78.34%) labels, indicating that introducing the neutral
labels hinders the classification of the negative labels.

Table 4 lists a performance comparison between state-of-

the-art models and our proposed method for two categories

(positive and negative) and three categories (positive, neutral,

and negative).
For binary classification, the last benchmark was reported by

Yang F. et al. (2019), who themselves obtained an accuracy of
89.0% by first extracting multiple features for the formation of
high-dimensional features and then integrating the significance
test/sequential backward selection with the support vector
machine for the classification. Our best accuracy for binary
classification is 91.6%, which overpasses all reported methods.

For ternary classification, our best accuracy is 79.6%. From
the articles listed, our proposed method is overpassed by Zhang
et al. (2019), whosemodel based on convolutional neural network
(CNN) and deep domain confusion (DDC) achieved an accuracy
of 82.1%, and by Chai et al. (2017), who reached 80.4% by
using adaptive subspace feature matching (ASFM). Nevertheless,
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FIGURE 5 | The boxplots of the figure indicate the distribution of the emotion recognition accuracies (y-axis) of the models in each experimental condition, with either

(1) a binary classification (left graph) or ternary classification (right graph) labeling method, (2) a Welch, multitaper, or Differential Entropy (DE) feature extraction method

(graph’s columns), (3) a batch (blue bars) or stratified (orange bars) normalization method. The value inside the boxplots is the median value of the distribution. Besides,

the figure also reports the p-value of the dependent-samples t-test between the two normalization method conditions for each feature extraction method condition.

TABLE 1 | Leave-one-out classification accuracies for two and three categories.

Participant No. s01 s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s12 s13 s14 s15

Pos-Neg 76.7 80.0 93.3 86.7 96.7 90.0 93.3 100.0 96.7 96.7 100.0 80.0 93.3 90.0 100.0

Pos-Neu-Neg 77.8 57.8 93.3 82.2 84.4 80.0 80.0 91.1 84.4 71.1 75.6 86.7 62.2 71.1 95.6

Participant numbers (s01–s15) correspond to each test data of the 15-fold cross-validation.

TABLE 2 | Confusion matrix when combining the results of the leave-one-out

cross-validation of all the participants for two categories.

Predicted label

Positive Negative

True label
Positive 208 17 92.44%

Negative 21 204 90.67%

90.83% 92.31%

compared with our approach, both Zhang et al. (2019) and Chai
et al. (2017) used the validation set during the training process,
which can increase the cross-subject accuracy.

3.3. Evaluation on Input, Hidden, and
Output Layers of the Neural Network
In the previous sections, we evaluated the normalization
methods and established that stratified normalization improves

TABLE 3 | Confusion matrix when combining the results of the leave-one-out

cross-validation of all the participants for three categories.

Predicted label

Positive Neutral Negative

True label

Positive 204 8 13 90.67%

Neutral 14 170 41 75.56%

Negative 23 39 163 72.44%

84.65% 78.34% 75.11%

the cross-subject emotion recognition accuracy. Nevertheless,
an interesting question to be asked is at what depth of the
neural network does stratified normalization help increase the
accuracy. To answer this question, we further analyzed the
emotion recognition accuracy of the models, and their ability
to capture and exploit the brain signature of each participant—
defined as the part of information extracted from the brain signals
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TABLE 4 | Performance comparison between this work and the

state-of-art literature.

References
SEED performance

Acc (Pos-Neg) Acc (Pos-Neu-Neg)

Chai et al. (2017) – 80.4

Li et al. (2018) 83.33 –

Zhang et al. (2019) – 82.1

Lan et al. (2019) – 72.47

Yang F. et al. (2019) 89.0 –

Li et al. (2020) 85.81 –

Cimtay and Ekmekcioglu (2020) 86.5 78.3

This work 91.6 79.6

that is specific to that participant [also called subject-related
component by Arevalillo-Herráez et al. (2019)], such that it can
directly inform us on which participant it’s been extracted from.
Intuitively, we would expect the emotion recognition accuracy
to increase with each layer of the neural network, while the brain
signature would fade out due to a decrease of the inter-participant
variability with each data normalization.

Therefore, we carried out the evaluation in accordance with
the following methodology. For starters, we retrained our models
in a three-fold cross-validation design, using the data of 10
participants for training and 5 for testing. For each of the three
testing sessions, we recorded the output, or predicted values, of
each of the model’s layers (after normalization for the input,
first hidden, second hidden, and third hidden layers, and after
softmax for the output layers). We then fed these predicted
values to a series of Support Vector Machines (SVM) with RBF
kernels (Chang et al., 2010). To do so, we mixed the data of
all 5 test participants and ran a five-fold cross-validation per
layer on the following tasks. In one case, we used the emotional
ratings of the five test participants as labels, thus evaluating the
capacity of each layer to contribute to the emotion recognition
accuracy of the model. In another case, we used as labels the
participant identification numbers (from 1 to 5), here evaluating
the amount of brain signature still available at each layer. The
classification results are shown in Figure 6. We also separated the
dataset between two and three emotional categories for running
the analyses.

The statistical analysis of the results is carried out in the
following subsections. The dependent variable to study is the
classification accuracy obtained. The between factors are the
(1) labeling method (two categories, three categories), (2)
normalization method (batch or stratified normalization), and
(3) layer’s depth (input layer, first layer, second layer, third layer,
output layer).

3.3.1. Emotion Recognition
To evaluate the emotion recognition in the layers of the
neural network, we first implemented a three-way ANOVA test.
Results indicated no effect of the layer’s depth [F(4, 40) = 1.49,
p = 0.22, η

2
p = 0.13]. However, we were able to capture main

effects of labeling [F(1, 40) = 401.4, p < 0.001, η
2
p = 0.91]

and of normalization [F(1, 40) = 541.0, p < 0.001, η
2
p = 0.93]

methods. Besides, results indicated that there was an interaction
between the labeling method and the normalization method
[F(1, 40) = 7.38, p = 0.010, η2p = 0.16]. Hence, we implemented
a two-way ANOVA test for each of the two conditions of the
labeling method. For both of them, the normalization method
was found statistically significant [F(1, 20) = 180.5, p < 0.001,
η
2
p = 0.90 for two categories and F(1, 20) = 405.9, p < 0.001,

η
2
p = 0.95 for three categories].
Although the ANOVA didn’t capture any other interaction

with layer’s depth (all Fs < 2), we also evaluated normalization
methods separately at the input and output layers of the neural
network. Results of two-way ANOVA tests for the input layer
[F(1, 8) = 156.8, p < 0.001, η

2
p = 0.95] and the output layer

[F(1, 8) = 114.1, p < 0.001, η
2
p = 0.93] both indicated that

stratified normalization surpasses batch normalization.
Therefore, (1) the emotion recognition accuracy does not

increase significantly along with the layers of the neural
network, and (2) the stratified normalization outperforms
batch normalization in emotion recognition, as we already
concluded above.

3.3.2. Participant Identification
To analyze results in terms of the participant identification
accuracy, we first ran a three-way ANOVA test, which pointed
out an interaction between the three factors [F(4, 40) = 3.44,
p = 0.017, η2p = 0.256], and main effects of the labeling method

[F(1, 40) = 6.15, p< 0.05, η2p = 0.13], of the normalizationmethod

[F(1, 40) = 401.1, p < 0.001, η2p = 0.91] and of the layer’s depth

[F(4, 40) = 57.27, p< 0.001, η2p = 0.85]. As a result, we carried out
a two-way ANOVA test for each condition of the normalization
method separately.

For the batch normalization method, we found a significant
interaction between the labeling method and the layer’s depth
[F(4, 20) = 3.07, p = 0.040, η2p = 0.38]. Hence, we implemented a
one-way ANOVA test for each condition of the labeling method,
each revealing effects of the layer’s depth [F(4, 10) = 60.3s,
p < 0.001, η

2
p = 0.96 for two categories and F(4, 10) = 15.7,

p < 0.001, η2p = 0.87 for three categories]. Specifically, we found
out by implementing several dependent-samples t-tests between
each pair of consecutive layers that the accuracy only drops
significantly between the third and the output layers [t(4) = 6.54,
p= 0.003, d = 7.70 for two categories and t(4) = 3.72, p= 0.043,
d= 10.7 for three categories].

For the stratified normalization method, analyses showed a
significant effect of the layer’s depth [F(4, 20) = 26.9, p < 0.001,
η
2
p = 0.84]. Subsequently, we implemented a two-way ANOVA

test between each pair of consecutive layers and this time, we
captured a significant drop in accuracy between the input and
the first layer [F(1, 8) = 43.6, p < 0.001, η

2
p = 0.84]. This

result suggests a strong correlation between the use of the
stratified normalization method and an early drop in participant
identification accuracy.

Lastly, to determine if the normalization methods were
statistically different, we computed a two-way ANOVA test for
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FIGURE 6 | This figure indicates the classification results for the emotion recognition and participant identification in the input, hidden layers, and output of the neural

network using multitaper as feature extraction method. (A,B) Plot the emotion recognition accuracies, and (C,D) show the participant identification accuracy.

each layer of the neural network. All analyses revealed statistically
significant effects of the normalization method [F(1, 8) = 20.4,
p= 0.002, η2p = 0.72 for the input layer, F(1, 8) = 217.6, p< 0.001,

η
2
p = 0.97 for the first layer, F(1, 8) = 352.1, p < 0.001, η2p = 0.98

for the second layer, F(1, 8) = 118.9, p < 0.001, η2p = 0.94 for the

third layer, F(1, 8) = 8.83, p = 0.018, η
2
p = 0.53 for the output

layer]. This confirms that the normalization method shows an
effect for every layer’s depths, including for the input and the
output layers.

Hence, (1) both normalization methods significantly reduce
the participant identification information, (2) the layers where
the participant identification information is significantly
reduced varies depending on the normalization method (output
layer for batch normalization and first layer for stratified
normalization), and (3) the stratified normalization overpasses
batch normalization, having an accuracy ofM= 0.33, SD= 0.072
for two categories andM = 0.31, SD= 0.079 for three categories
in the last layer, where the chance level is 0.2 since we are
classifying five participants.

To conclude, as hypothesized, the decrease of participant
identification accuracy observed for both normalization methods
confirms that the brain signature is effectively suppressed
throughout the Neural Network, preventing the SVM classifiers

from recognizing which participant their input data belongs

to. Still, we can still see that some participant identification
information remains in the output of the models. Indeed, if

there wasn’t, then the accuracy of the participant identification
would be at a chance level of 20% (considering 5 participants),
but instead, it is still at 33% (M = 0.33, SD = 0.072) for two

categories and 31% (M = 0.31, SD = 0.079) for three categories
in the last layer of the models with stratified normalization.
This difference is much higher with batch normalization, 41%
(M = 0.41, SD = 0.057) for two categories and 59% (M = 0.59,
SD= 0.012) for three categories.

We are now wondering about the type of mechanism that
operates the brain signature suppression in the model with
stratified normalization, and specifically about how it affects
the data.
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3.3.3. Visualization on the Input and Output Layers of

the Neural Network
To have a clearer visualization of the classifier’s performance, we
run the dimensionality reduction tool UMAP (McInnes et al.,
2018) to reduce to two dimensions all the predicted values for
the input and output layers of the neural network.

Figures 7, 8 show the embedding of the predicted values at
the input layer of the neural network. We have established in
the section above that a significant amount of brain signature
is already suppressed by this layer. Interestingly, the UMAP for
batch normalization shows a handful of compact clusters. These
clusters match relatively well the participant numbers, but not
the emotional rating. Conversely, the UMAP for the stratified
normalization is much more spread out along both dimensions,
and neither the emotion ratings nor the participant numbers
are recognizable in the cloud of embeddings. This difference

suggests that the stratified normalization method induces a
redistribution of the activations in output of the first layer in
a more spread space of representation, possibly to facilitate
further processing in the rest of the network. Then the spread
would cause the embeddings to lose their information about the
participant number.

Figures 9, 10 show the embedding of the predicted values
at the output layer of the neural network. Our previous results
showed that at the output layer, the emotion recognition accuracy
is higher and the participant identification accuracy is lower
for models trained with stratified normalization. Indeed, this
time, embeddings are more compact on the UMAP for the
stratified normalization rather than for the batch normalization,
and easily recognizable for the emotion ratings rather than for
the participant numbers—for which the spread of colors seems
to indicate that most of the brain signature is gone indeed.

FIGURE 7 | Embedding of the input of the neural network with batch normalization and with three emotion categories.

FIGURE 8 | Embedding of the input of the neural network with stratified normalization and with three emotion categories.
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FIGURE 9 | Embedding of the output of the neural network with batch normalization and with three emotion categories.

FIGURE 10 | Embedding of the output of the neural network with stratified normalization and with three emotion categories.

4. CONCLUSION

In recent years, researchers have introduced and evaluated
different approaches that permit to build robust participant-
independent models without the need for prior recorded
data from each participant. Specifically, the primary focus
is on finding features that do not vary across participants.
However, since these methods still present lower accuracy than
participant-dependent models, researchers are also investigating
other approaches, such as data normalization. In this study,
we propose and evaluate a new participant-based feature
normalization method, named stratified normalization, to
improve the cross-subject emotion recognition accuracy of
participant-independent models.

The evaluation of this method has been carried out by
setting an experiment where we recorded the effects of three

independent variables (labeling method, normalization method,
and feature extraction method) onto the cross-subject emotion
recognition accuracy. The selected dataset for this analysis has
been the SEED dataset, where the brainwaves of 15 participants
were recorded while watching the same 15 film clips across three
different sessions.

We first compared the Welch, multitaper, and differential
entropy methods for extracting features in task of binary and
ternary classification. Our participant-independent model was
a CNN-based network with an input and three hidden layers
each followed by our new, stratified normalization method, and
an output followed by a softmax function for classification. The
highest leave-one-out cross-validation mean accuracy with our
model was M = 0.916, SD = 0.074 for binary classification
and M = 0.796, SD = 0.104 for ternary classification, when
extracting the features with the multitaper method. We also
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compared our stratified normalization method with batch
normalization, obtaining after implementing an ANOVA test
that the classification accuracies for stratified normalization was
statistically higher than batch normalization. We also observed
that including the neutral labels in the model hinders the
classification of the negative labels, decreasing their classification
accuracy from 90.67 to 75.11%.

Then, we found out that implementing stratified
normalization is highly efficient in reducing the inter-participant
variability from the data. Indeed, by training SVMs to try and
recognize which participant the activation data of a given layer
belongs to, we could observe that the participant identification
information, or brain signature, was lost from a layer
to another.

As we compared the embeddings at the level of the
input and output layers, we could see that the stratified
normalization already erases this brain signature in the input
layer, such that by the end of the network, it is almost
gone already—33% for two categories and 31% for three
categories in the last layer of the models with stratified
normalization, approaching a chance level of 20%. It would
be interesting to look for new ways of improving this
result further.

Regarding the published articles, our method outperforms
the rest of the proposed methods for binary classification and
overpasses the works that did not use the data for validation
during the training process for ternary classification.

These results indicate the high applicability of stratified
normalization for cross-subject emotion recognition tasks,
suggesting that this method could be applied not only to other
EEG classification datasets but also to other applications that
require domain adaptation algorithms.
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