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Abstract
Notoginsenoside R1 (NGR1) is a predominant phytoestrogen extracted from Panax notoginseng that has recently been 
reported to play important roles in the treatment of cardiac dysfunction, diabetic kidney disease, and acute liver failure. Stud-
ies have suggested that NGR1 may be a viable treatment of hypoxic-ischemic brain damage (HIBD) in neonates by reducing 
endoplasmic reticulum stress via estrogen receptors (ERs). However, whether NGR1 has other neuroprotective mechanisms 
or long-term neuroprotective effects is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary 
cortical neurons and unilateral ligation of the common carotid artery (CCL) in 7-day-old postnatal Sprague Dawley (SD) rats 
followed by exposure to a hypoxic environment were used to mimic an HIBD episode. We assessed the efficacy of NGR1 by 
measuring neuronal damage with MTT assay and assessed brain injury by TTC staining and brain water content detection 
24–48 h after OGD/HIE. Simultaneously, we measured the long-term neurophysiological effects using the beam walking 
test (5 weeks after HI) and Morris water maze test 5–6 weeks after HI. Expression of PI3K-Akt-mTOR/JNK (24 h after HI 
or OGD/R) proteins was detected by Western blotting after stimulation with HI, NGR1, LY294002 (PI3K inhibitor), 740Y-P 
(PI3K agonist), or ICI 182780(estrogen receptors inhibitor). The results indicated that NGR1 exerted neuroprotective effects 
by inhibiting neuronal apoptosis and promoting cell survival via the PI3K-Akt-mTOR/JNK signaling pathways by targeting 
ER in neonatal hypoxic–ischemic injury.
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Introduction

Hypoxic-ischemic brain damage (HIBD) in neonates is an 
important risk factor for many severe human neurologi-
cal dysfunctions, such as motor and learning disabilities, 
cerebral palsy, epilepsy, and even death [1–3]. In spite of 
the major advances in modern medical technology and the 
increased understanding of fetal and neonatal pathologies, 
neonatal hypoxic–ischemic encephalopathy (HIE) is still 

an unresolved serious condition that leads to significant 
mortality and long-term morbidity [4–7]. Presently, there 
are no well-established effective therapies for neonatal HIE 
[8]. Hypoxic–ischemic brain injury directly results in a 
large amount of neuronal death. Research suggested that an 
important way causing neuronal loss was apoptosis, espe-
cially in the penumbra area [9]. Malagelada et al. [10] found 
that there were at least 50% of dying cells which performed 
morphological characteristics of apoptosis in OGD-treated 
cortical neuron cultures. Therefore, enhancing neuronal sur-
vival, reducing apoptosis have become the most important 
strategies for solving neurological diseases [11].

Notoginsenoside R1 (NGR1) is a predominant phytoes-
trogen extracted from P. notoginseng. NGR1 was recently 
reported to possess anti-inflammatory, antioxidant, and anti-
apoptotic properties, and may play important roles in the 
treatment of cardiac dysfunction [12–15], acute liver failure 
[16], and diabetic kidney disease [17]. Meng et al. [18] found 
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that 3-day pretreatment with NGR1 significantly reduced 
cerebral infarct volume in an adult rat model, while pre-
treatment with NGR1 for 24 h prevented apoptosis induced 
by oxygen glucose deprivation/reoxygenation (OGD/R) 
in primary cortical neurons. Our past study [19] indicated 
that NGR1 treatment exerted neuroprotective effects in the 
acute phase of a neonatal HIBD model. It is worth noting 
that neonatal HIBD often leads to long-lasting neurological 
deficits such as mental deficiency, cerebral palsy, and learn-
ing disabilities, which develop in the immature brain. These 
consequences have seriously affected the quality of life of 
children with HIE. Whether NGR1 treatment can promote 
the long-term recovery of neurological function after HIBD 
has not yet been reported and is worth exploring.

Research [13, 15, 18, 19] has indicated that NGR1 may 
perform its functions through estrogen receptors (ERs). 
The classic ERs have two major subunits, estrogen receptor 
α (ERα) and estrogen receptor β (ERβ). Within the brain, 
ERα/β are found in cognitive brain regions associated with 
learning and memory, such as the cerebral cortex, hippocam-
pus, and basal forebrain [20, 21]. A number of studies have 
shown that ERs play an important role in organ ischemic 
injury. Liu et al. [22] found that calycosin exhibited an 
anti-apoptotic effect via ERα/β and improved Akt phospho-
rylation in cardiomyocytes. Hsu et al. [23] suggested that 
17β-estradiol (E2) treatment reversed hepatic injury fol-
lowing hemorrhagic shock and resuscitation through ERs-
related p38 MAPK-dependent HO-1 upregulation. Wang 
et al. [24] reported that E2 offered protection against retinal 
ischemic injury by inducing upregulation of SDF-1 expres-
sion through activation of ERs. Activating ERs were found 
to provide protection for CA1 neurons in ischemic injury, 
while ICI 182780 (the broad-spectrum ERs antagonist) abol-
ished the protection [25].

As an important signal transduction pathway, PI3K-
Akt-mTOR/JNK is involved in many cellular processes, 
including cell apoptosis, survival and proliferation [26, 
27]. Phosphatidylinositol 3 kinase (PI3K) is an intracellu-
lar phosphatidylinositol kinase which consists of a catalytic 
subunit (p110) and a regulatory subunit (p85) [28, 29]. Pro-
tein kinase B (Akt), a serine/threonine kinase, is a primary 
downstream target in the transduction pathway of PI3K 
signaling. Akt is a key information molecule that promotes 
cell survival, inhibits apoptosis [30] and maintains normal 
functions [31]. Activated Akt can transmit signals to a vari-
ety of downstream substrates. The common downstream 
proteins include TSC1/2-Rheb-mTOR [32], pro-apoptotic 
factor JNK, NFκb, and frontal transcription factor FKHR 
[33]. Mammalian target of rapamycin (mTOR) is a serine/
threonine kinase that can benefit cell growth, survival, and 
metabolism [32]. The main targets of activated mTOR are 
ribosomal protein S6 kinase (p70S6K) and eukaryotic ini-
tiation factor 4E binding protein 1 (4E-BP1). Among them, 

p70S6K is mainly involved in cell-cycle regulation and con-
tributes critically to cell survival. Activated p70S6K pro-
motes the synthesis of ribosome translation regulator pro-
tein, resulting in the positive regulation of protein synthesis. 
Through the phosphorylation of 4E-BP1, mTOR regulates 
cap-dependent protein translation and promotes the prolif-
eration of neurons. JNK which also can be regulated by Akt 
directly or indirectly controls a number of transcriptional 
and non-transcriptional processes, including inflammation 
and cell death or survival [26, 34–39].

Many studies have shown that PI3K-Akt-mTOR/JNK 
signaling plays a major role in cerebral hypoxic–ischemic 
injury [26, 32, 40, 41]. Some researchers [42–44] have found 
that Akt signaling, which is activated after transient cerebral 
ischemia, inhibits delayed neuronal apoptosis and promotes 
cell survival. Activation of the mTOR pathway is sufficient 
for promoting both neuron survival and axon regeneration 
[45, 46]. Research [26, 47, 48] indicates that the JNK path-
way is also involved in ischemia-induced neuronal apoptosis. 
Hence, a number of researchers have proposed that JNK may 
be a target for the treatment of neuronal necrosis and that 
the inhibition of the JNK signaling pathway may reduce the 
apoptosis caused by ischemic brain damage [49–51].

Some studies have reported that NGR1 could protect the 
heart from septic shock via the activation of ERα and PI3K/
Akt signaling [13]. NGR1 activated Nrf2/ARE signaling 
and upregulated phase II antioxidant enzymes in PC12 cells 
via ERs [52]. Our previous findings suggested that NGR1 
could inhibit endoplasmic reticulum stress-induced neu-
ronal apoptosis and brain damage via ERs [19]. However, it 
remained unclear whether NGR1 could exert neuroprotec-
tive effects and reduce neuron apoptosis via ERs by acting 
on the PI3K-Akt-mTOR/JNK signal pathway in a neonatal 
hypoxic–ischemic brain damage (HIBD) model.

In this study, we investigated the neuroprotective effects 
of NGR1 in a neonatal HIBD model, especially concerned 
whether NGR1 had a contribution to the long-term recov-
ery of neurological function in the HIE. Furthermore, we 
explored the neuroprotective mechanisms of NGR1 by inhib-
iting neuronal apoptosis and promoting cell survival via the 
ERs and PI3K-Akt-mTOR/JNK signaling pathway.

Materials and Methods

Drug Preparation

NGR1 (chemical structure C47H80O18, molecular 
weight = 933.13, purity > 98%) was from Sigma-Aldrich 
(Sigma-Aldrich, St. Louis, MO). ICI-182780 (an estrogen 
receptor inhibitor), LY294002 (an inhibitor of PI3K) and 
740Y-P (an agonist of PI3K) were from Tocris (London, 
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UK), Selleck Chemicals (Houston, Texas, USA),and Selleck 
Chemicals (Houston, Texas, USA), respectively.

Animals

Seven-day-old Sprague–Dawley (SD) male rats and rat 
fetuses (18 days) were provided by the Animal Department 
of Chongqing Medical University (Chongqing, China). All 
experiments were put into practice in accordance with the 
National Institutes of Health Guide for the Care and Use 
of Laboratory Animals. All protocols were ratified by the 
Animal Ethics Committee of Chongqing Medical University 
and efforts were made to reduce animal suffering.

Cell Culture and Drug Treatment

The experiment was conducted according to previously 
described methods [19, 53]. Dissociated cultures of corti-
cal neurons were harvested from time-mated embryonic day 
18 (E18) rat brains using established protocols. Cerebral 
cortices were excised and hatched in Ca2+- and Mg2+-free 
HBSS solution. The tissues were mechanically separated 
and then digested in 0.25% trypsin (with 0.02% EDTA) for 
7 min at 37 °C. After trypsinization was terminated, the 
digests were centrifuged for 5 min at 1000 rpm. The centri-
fuged cells were resuspended in Neurobasal medium (Gibco, 
Gaithersburg, MD) with 2% B-27 supplement (Gibco) and 
2 mmol/l l-glutamine (Invitrogen, Gaithersburg, MD). Cells 
were subcultured in 96-well plates (5 × 104 cells/well) for 
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 
bromide (MTT) assays, in 24-well plates (1 × 105 cells/
well) for lactate dehydrogenase (LDH) determination and 
in 6-well plates (1 × 106 cells/well) for other experiments. 
Plates were precoated with polyethylenimine (0.05 mg/ml, 
Sigma-Aldrich) overnight at 37 °C. Cultures were main-
tained in a Heraeus CO2 incubator (Thermo Fisher Sci-
entific, Rockford, IL) containing 5% CO2 and 95% air at 
37 °C. Cultures were used for experiments on the fifth day 
in vitro. Cells were treated with NGR1 (10 µmol/l) [19] 
when subjected to oxygen glucose deprivation and reoxy-
genated. ICI 182780 (0.1 µmol/l) [19] was used to pre-
process cells 2 h before OGD. LY294002 (20 µmol/l) and 
740Y-P (20 µmol/l) were applied to cells 1 h before OGD. 
ICI 182780, LY294002, and 740Y-P were dissolved in dime-
thyl sulfoxide (DMSO). DMSO acted as a vehicle with a 
concentration of 1%.

Oxygen Glucose Deprivation/Reoxygenation

OGD/R was accomplished using day-5 cultured primary cor-
tical neurons to imitate cerebral ischemic/reperfusion injury. 
OGD/R was achieved using a modification of a previously 
described procedure [19]. After the cells were washed once 

with phosphate-buffered saline (PBS), culture plates were 
replenished with glucose-free Dulbecco’s Modified Eagle’s 
Medium. Cultures were placed in an anaerobic chamber 
(Thermo Fisher Scientific) and incubated in an anaerobic gas 
mixture (1% O2, 5% CO2, and 94% N2) at 37 °C. After 1.5 h, 
cultures were returned to a normoxic environment from the 
anaerobic chamber. Simultaneously, the culture plates were 
refilled with Neurobasal medium, and cultures were allowed 
to reoxygenate for 4–24 h.

Hypoxic‑Ischemic Brain Damage Model

HI was imitated by unilateral ligation of the common carotid 
artery (CCL) followed by 2.5 h of hypoxia in 7-day-old SD 
rats. Rat pups were anesthetized with isoflurane (2.5%) 
and supine fixed in the thermostat console. A longitudinal 
midline incision disinfected by iodophor disinfectant was 
made in the anterior neck. After the right common carotid 
artery was identified and freed from the surrounding tissues, 
without any damage to the right vagus nerve, it was dou-
ble ligated and transected between the ligatures. The pups 
were then returned to a heating pad for 1 h for recovery. 
Simultaneously, an airtight chamber containing 7% humidi-
fied oxygen and 93% N2 was prepared using a heating pad 
to maintain the temperature at 35–39 °C. Then the HI ani-
mals were placed in the chamber for 2.5 h. Sham animals 
received an incision but did not undergo CCL treatment, and 
the pups were placed in a similar container but not exposed 
to a hypoxic environment. After modeling, all pups were 
returned to their dams. NGR1 (15 mg/kg q 12 h, for 2 days) 
[19] was administered to the pups by intraperitoneal injec-
tion after CCL immediately, before exposure to the hypoxic 
environment. ICI-182780 (2 mg/kg) was administered to 
pups 2 h before CCL treatment by intraperitoneal injection 
[19].

Cell Viability Assessment

An MTT assay was used to test cell viability. Four or 24 h 
after the OGD/R injury, cells were incubated with MTT 
(0.05 mg/l) for 4 h at 37 °C. The culture medium was then 
completely removed, and all wells were filled with 100 µl 
DMSO to dissolve the formazan crystals. Absorbance was 
surveyed at 570 nm using a microplate reader (Bio-Rad 
Model 680, Bio-Rad, Hercules, CA). Cell viability was cal-
culated using the formula (mean experimental absorbance/
mean control absorbance) × 100%.

Measurement of Cell Membrane Integrity

The rate of LDH release was used to estimate the mem-
brane integrity of cells. The supernatant of each well was 
collected, and the LDH content was determined using an 
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LDH assay kit according to the manufacturer’s instructions 
(Nanjing Institute of Jiancheng Biologic Engineering, Nan-
jing, China). For the positive control, the supernatant of the 
cells was collected after cells were lysed using 0.25% Triton 
X-100. The level of LDH release was calculated using the 
formula (experimental LDH activity/positive control LDH 
activity) × 100%.

Morris Water Maze

Neurocognitive outcomes were measured by using the Mor-
ris water maze (WM) test with a computerized video track-
ing system (BW-mwm101, Shanghai BioWill Co., Ltd., 
China) 5–6 weeks after modeling. The WM consisted of 
a circular pool 120 cm in diameter and 47 cm in height, 
containing water 30 cm deep. A hidden submerged platform 
(9 cm diameter) was placed in the second quadrant 2.5 cm 
below the water surface for rats to step on and escape from 
the water. Rats could identify the position of the platform 
using visual clues placed on the walls. The time to locate 
the submerged platform (defined as the latency, with cutoff 
time 60 s) was measured. Every day, each rat performed 
four trials starting from different quadrants. The test lasted 
for 5 days. On testing day 6, each rat performed a probe 
trial (60 s cutoff) without a platform. All of the activities 
were video recorded, and the animals’ swimming paths were 
measured for quantification of time, frequency, and latency 
[54, 55] using the ANY-maze Animal Behavioral Video 
Analysis System (Shanghai Bio-will Co., Ltd, China).

Beam Walking Test

Coordination and integration of motor movement was 
assessed with a beam (80 cm × 2.0 cm × 2.5 cm; 60 cm 
above floor) walking test 5 weeks after modeling. Each rat 
was tested 3 times, for 2 min each time. The ratio scale was 
modified from Ohlsson [56] and Feeney [57]. Balance per-
formance on the beam was graded as follows: 0, the rat falls 
down and cannot walk on the beam; 1, the rat is unable to 
walk on the beam but can sit on the beam; 2, the rat falls 
down while walking; 3, the rat can traverse the beam, but 
the affected hind limb does not aid in forward locomotion; 
4, the rat crosses the beam with more than 50% foot slips; 
5, the rat traverses the beam with fewer than 50% foot slips; 
6, the rat successfully crosses the beam with no foot slips.

Evaluation of Brain Damage 6 Weeks After Modeling

Hemispheric weight loss has been used as an important vari-
able for assessing brain atrophy in neonatal HI model [58]. 
After Morris water maze test, the brains were extracted and 
the hemispheres were cut along the center line and weighed 
on a high-precision balance. The brain weight ratio (%) was 

calculated using the formula (weight of ipsilateral hemi-
sphere/weight of contralateral hemisphere) × 100%.

Evaluation of Infarction Volume

2,3,4-tiphenyl tetrazolium chloride (TTC) (Sigma-Aldrich, 
MO) staining is a reliable way to evaluate infarction volume. 
Using this method, the brain sections were prepared as fol-
lows: First, the brains were removed and frozen at − 20 °C 
for 10 min. Next, consecutive 2 mm coronal sections were 
obtained by slicing the brains with Brain Matrix (ASI Instru-
ments, Warren, MI). The subsequent incubation of the sec-
tions was performed in a dark environment with 25-min 
immersion in 2% TTC solution at 37 °C. Finally, the sections 
were immersed in a 4% formaldehyde solution. TTC stained 
normal areas of brain deep red but did not stain infarcted 
tissue. Infarction volumes were measured and analyzed with 
ImageJ software (NIH Image, Version 1.61, Bethesda, MD, 
USA) as described previously [19].

Brain Water Content Detection

Rats were sacrificed 24 h after HI for brain water content 
measurement. The wet weight of the brain sample was 
measured immediately after harvest. The brain was then 
placed in an oven at 105 °C for 24 h and weighed again to 
determine the dry weight [59]. Brain water content (%) was 
calculated using the formula[(wet weight − dry weight)/wet 
weight] × 100%.

TUNEL Staining

Coronal brain slices were stained with neuron-specific 
nuclear protein (NeuN) and terminal deoxynucleotidyl 
transferase-mediated nick-end labeling (TUNEL) to measure 
apoptotic neurons 24 h after HI. After dewaxing by xylene, 
sections were subjected to gradient hydration. The slices 
were incubated with anti-NeuN (1:50, Abcam) and Alexa 
Fluor 555-labeled goat anti-mouse IgG (1:100, Beyotime 
Institute of Biotechnology). Afterward, samples were added 
to the TUNEL reaction mixture (Thermo Fisher Scientific) 
for an incubation time of 60 min at 37 °C in a humidified 
atmosphere in the dark. Then, DAPI was used to incubate 
the samples for 2 min. Apoptotic cells were photographed 
under a microscope (Olympus) with an excitation wave-
length of 450–500 nm (green) and a detection wavelength 
of 515–565 nm (red). Three coronal brain sections were 
selected from each brain (six animals in each group), and the 
numbers of positive cells (neurons) in the ipsilateral cerebral 
cortex was counted for each section at high magnification 
in five visual fields. The proportion of TUNEL-positive cell 
nuclei was determined by dividing the number of TUNEL-
positive nuclei by the number of total nuclei.
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Western Blots

Protein expression was evaluated through Western blot anal-
ysis. Cells or brain tissues (Respectively taking the contralat-
eral hemisphere and ipsilateral hemisphere) were homog-
enized by lysis buffer (Beyotime Institute of Biotechnology). 
The insoluble material was removed by centrifugation at 
12,500 rpm for 15 min at 4 °C. The supernatants of the 
lysate were collected to measure the protein concentration 
with a BCA Protein Assay Kit (Thermo Fisher Scientific). 
Protein samples were denatured for 5 min at 100 °C after 
being mixed with sodium SDS gel-loading buffer. Then, 
samples were separated by SDS–polyacrylamide gel elec-
trophoresis and transferred to a polyvinylidene membrane 
(the specific conditions of electrophoresis and transfer var-
ied according to the molecular weight of the target protein). 
Membranes were blocked for 2 h in 5% nonfat dry milk in 
Tween/Tris-buffered saline (TTBS) at room temperature. 
The membranes were then incubated with the primary anti-
body. After incubation overnight at 4 °C, the membranes 
were washed with Tris-buffered saline and incubated with 
a secondary antibody for about 2 h at room temperature. 
Bands were scanned and densitometrically analyzed by auto-
mated ImageJ software (NIHImage, Version 1.61).

Statistical Analysis

All data are expressed as mean ± SEM statistical analyses 
were carried out by SPSS version 17.0 (SPSS, Chicago, 
IL). One-way analysis of variance was used to evaluate the 
significance of differences among experimental groups. 
A p value of 0.05 was regarded as the level of statistical 
significance.

Results

NGR1 Attenuated OGD/R‑Induced Cortical Neuron 
Damage Mediated by Estrogen Receptors

As the main component of the phytoestrogen from P. 
notoginseng, NGR1 protected the cortical neurons from 
injury induced by OGD/R, but this effect could be blocked 
by ERs blocker ICI 182780. Neuronal damage was measured 
by MTT assay and LDH leakage performed at 4 or 24 h after 
OGD/R (Fig. 1). The results showed that NGR1 (10 µmol/l) 
significantly improved neuronal cell viability (83.17 ± 13.68 
vs. 65.71 ± 13.60%, p < 0.05, at 4  h after OGD/R; 
86.01 ± 9.17 vs. 62.85 ± 18.31%, p < 0.05, at 24 h after 
OGD/R) and reduced the LDH leakage rate (19.23 ± 3.24 vs. 
26.92 ± 5.86%, p < 0.05, at 4 h after OGD/R; 28.31 ± 8.34 vs. 
39.75 ± 10.20%, p < 0.05, at 24 h after OGD/R) in the corti-
cal neuron OGD/R model compared with the OGD/R group.

However, ICI 182780 could suppress these neuropro-
tective effects of NGR1. In the OGD/R + NGR1 + ICI 
182780 group, the cell viability was significantly reduced 
(67.19 ± 14.28 vs. 83.17 ± 13.68%, p < 0.05, at 4 h after 
OGD/R; 65.81 ± 17.36 vs. 86.01 ± 9.17%, p < 0.05, at 24 h 
after OGD/R), and the LDH leakage rate was significantly 
increased (25.18 ± 4.76 vs. 19.23 ± 3.24%, p < 0.05, at 4 h 
after OGD/R; 39.36 ± 8.02 vs. 28.31 ± 8.34%, p < 0.05, at 
24 h after OGD/R) compared with the OGD/R + NGR1 
group. There was no significant difference in cell viability 
or LDH leakage rate between the DMSO vehicle group and 
the OGD/R group.

NGR1 Attenuated HI‑Induced Brain Injury 
in Newborn Rats Mediated by Estrogen Receptors

Brain edema was detected at 24 h after HI (Fig. 2a), as 
indicated by increased brain water content. Compared with 
the sham group (85.46 ± 2.43%), the ipsilateral hemisphere 
water content was significantly increased in the HI group 
(93.36 ± 3.41%, p < 0.001 vs. the sham group). The ipsi-
lateral hemisphere water content was significantly reduced 
by treatment with NGR1 (90.12 ± 2.78%, p < 0.05 vs. the 
HI group), but this effect could be reversed by ICI 182780 
(93.09 ± 2.63%, p < 0.05 vs. the HI + NGR1 group).

Infarct volume was used to evaluate brain damage at 
48 h after HI injury. As shown in Fig. 2b, c, HI caused an 
increased magnitude of infarction in the right hemisphere 
(34.49 ± 9.49%), and the infarct volume was significantly 
reduced in the HI + NGR1 group (22.49 ± 11.63%, p < 0.01 
vs. the HI group). The result supported the neuroprotective 
effect of NGR1. Quantitative comparisons of the infarct 
volumes of the HI + NGR1 group and the HI + NGR1 + ICI 
182780 group showed that the degree of infarction was 
intensified in the latter (31.74 ± 8.90%, p < 0.05 vs. the 
HI + NGR1 group).

The cortical neuronal apoptosis was observed at 24 h after 
HI injury. Few TUNEL-positive cortical neurons were found 
in the sham group, while in the HI group, neuronal apoptosis 
was 37.35 ± 10.16%. In comparison, neuronal apoptosis was 
21.10 ± 11.00% in the HI + NGR1 group (p < 0.01 vs. the HI 
group), however the neuroprotective effect of NGR1 could 
be reversed by ICI 182780 (33.48 ± 9.53%, p < 0.05 vs. the 
HI + NGR1 group) (Fig. 2d, e).

In order to observe the long-term effect of NGR1 on 
HIBD, the hemisphere weight was estimated at 6 weeks 
after surgery [38]. The HI injury caused severely brain atro-
phy, marked by a decrease in the right-to-left hemispheric 
weight ratio in HI group(0.35 ± 0.20, p < 0.001 vs. the sham 
group), but the brain atrophy was significantly improved 
in the HI + NGR1 group (0.64 ± 0.18, p < 0.01 vs. the HI 
group) (Fig. 2f). Blockage of ERs reversed the neuroprotec-
tive effect (0.48 ± 0.19, p < 0.05 vs. the HI + NGR1 group).
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NGR1 improved neurobehavioral function Mediated 
by Estrogen Receptors

Balance performance was severely impaired in the HI 
group at 5 weeks after HI insult (Fig. 3a). In contrast, rats 
treated with NGR1 showed significantly improved balance 
performance compared with the HI group (3.44 ± 1.01 vs. 
2.33 ± 1.12, p < 0.05). However, the protective effect of 
NGR1 was blocked by ICI 182780. The result showed sig-
nificantly reduced scores in the HI + NGR1 + ICI 182780 
group (2.56 ± 1.13, p < 0.05 vs. the HI + NGR1 group).

NGR1 could improve spatial learning and memory 
function recovery, as indicated by the Morris water maze 
test which was detected 5–6  weeks after neonatal HI 
injury. The rats’ escape latency reflected their spatial 
learning and memory impairments. The results (Fig. 3b–f) 
showed that the latencies of the sham group were signifi-
cantly shortened after 2 days of training, which indicated 
that the sham group rats had intact learning and memory 

capacities. At the end of the fifth day of training, almost 
all rats could aim to move in the direction of the platform. 
After the platform was removed, some sham group rats 
went directly to the location of the platform and wandered 
nearby, which suggested that the rats had remembered 
the location of the platform. However, the HI group rats 
mostly swam in the pool without showing obvious signs 
of proximity to the platform. The latencies of the HI 
group in each of the four quadrants were 50.11 ± 15.19, 
40.23 ± 15.53, 38.43 ± 13.32, 39.89 ± 15.46 s, respec-
tively. They were higher than those of the sham group 
(13.21 ± 7.70, 4.98 ± 4.20, 5.12 ± 3.46, and 5.01 ± 4.88 s, 
respectively; p < 0.05 vs. the HI group). Moreover, in the 
sham group, the percentage (Fig. 3g) of time spent in 
the target quadrant (55.02 ± 12.90 vs. 24.78 ± 11.13%, 
p < 0.001) and the frequency (4.56 ± 1.32 vs. 0.75 ± 0.77, 
p < 0.001) of crossing the target platform (where the plat-
form was previously located) were significantly higher 
than in the HI group (Fig. 3h). These results indicated 

Fig. 1   The effects of NGR1 treatment on neuron injury after OGD/R 
via estrogen receptors. a and b At 4 and 24 h after OGD/R, NGR1 
increased cell viability compared with the OGD/R group, ICI 182780 
pretreatment could abolish this effects. The OGD/R + NGR1 + ICI 
182780 group had lower cell viability compared with the 

OGD/R + NGR1 group. c and d At 4 and 24 h after OGD/R, NGR1 
treatment reduced LDH release in neurons and ICI 182780 reversed 
this effects. Data are expressed as the mean ± SEM for n = 6. 
*p < 0.05; **p < 0.01; ***p < 0. 001
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that the spatial learning and memory function of HI group 
rats had been severely weakened as a result of the injury. 
NGR1 showed neuroprotective effects by significantly 
decreasing the rats’ latencies(33.43 ± 13.23, 20.57 ± 9.90, 
20.78 ± 8.78, and 27.44 ± 11.43 s, respectively; p < 0.05 

vs. the HI group) and increasing the percentage of time 
spent in the target quadrant (36.51 ± 13.49%, p < 0.01 vs. 
the HI group) and the frequency of crossing the target 
platform (1.72 ± 1.09, p < 0.01 vs. the HI group). How-
ever, the protective effects could be reversed by ICI 

Fig. 2   The effects of NGR1 on brain injury after HI via estrogen 
receptors. a The water content in the ipsilateral hemisphere was sig-
nificantly decreased in the NGR1 treatment group compared with the 
HI group. There was also a significant increase in water content in 
the HI + NGR1 + ICI 182780 group compared with the HI + NGR1 
group. (sham n = 7, HI n = 9, NGR1 n = 9, HI + NGR1 + ICI 182780 
n = 8, HI + DMSO n = 7; + means ipsilateral, − means contralateral). 
b and c NGR1 could reduce the infarction area, but the neuroprotec-
tive effect was blocked by ICI 182780. The HI + NGR1 + ICI 182780 
group showed a larger infarction area than the NGR1 treatment group 
(sham n = 6, HI n = 9, NGR1 n = 9, HI + NGR1 + ICI 182780 n = 8, 
HI + DMSO n = 7). d and e The number of TUNEL-positive corti-

cal neurons were greater in the HI group than in the HI + NGR1 
group, but the administration of ICI 182780 could inhibit the pro-
tective effect of NGR1. A large number of TUNEL-positive corti-
cal neurons were also found in the HI + NGR1 + ICI 182780 group 
(n = 6). Data are expressed as mean ± SEM. f The ipsilateral hemi-
sphere weight was significantly decreased in the HI group compared 
with the NGR1 treatment group 6 weeks after HI. ICI 182780 could 
block this effect. There was also a significant reduction of ipsilat-
eral hemisphere weight in the HI + NGR1 + ICI 182780 group com-
pared with the HI + NGR1 group (sham n = 8, HI n = 9, HI + NGR1 
n = 9, HI + NGR1 + ICI 182780 n = 9, HI + DMSO n = 9). *p < 0.05; 
**p < 0.01; ***p < 0.001
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182780. The latencies of the HI + NGR1 + ICI 182780 
group (44.46 ± 13.33, 33.78 ± 15.45, 34.54 ± 11.54, and 
35.54 ± 15.31 s, respectively) were significantly higher 
than those of the NGR1 treatment group (p < 0.05). 
The same results were found in the percentage of time 
spent in the target quadrant (27.88 ± 9.61%, p < 0.05 vs. 
the HI + NGR1 group) and the frequency (1.03 ± 1.11, 
p < 0.01 vs. the HI + NGR1 group) of crossing the target 
platform. The results suggested that NGR1 might exert its 
protective effects by targeting ERs.

NGR1 Increased Activity of the PI3K‑Akt‑mTOR 
Signal Pathway via Estrogen Receptors

In Vitro and In Vivo

PI3K is an intracellular phosphatidylinositol kinase that 
plays a major role in cerebral hypoxic–ischemic injury by 
regulating its downstream signaling pathway. Western blot 
analysis was used to detect expression levels of PI3K at 

different times after hypoxic–ischemic injury in vitro (pri-
mary cortical neurons) and in vivo (ipsilateral hemisphere). 
As shown in Fig. 4a, expression of PI3K (1.54 ± 0.60 in the 
control group) was significantly decreased at 12 (0.88 ± 0.42, 
p < 0.05 vs. the control group), 24(0.35 ± 0.31, p < 0.01 vs. 
the control group), and 48 h (0.42 ± 0.47, p < 0.01 vs. the 
control group) of reoxygenation cortical neurons. In vivo, 
expression of PI3K in the ipsilateral hemisphere was signifi-
cantly decreased at 24 (0.51 ± 0.34 vs. 1.32 ± 0.78, p < 0.05) 
and 48 h (0.30 ± 0.32 vs. 1.12 ± 0.69, p < 0.05) post HI com-
pared with the contralateral hemisphere (Fig. 4b).

Akt is an important downstream target in the PI3K sig-
nal transduction pathway which can promote cell survival, 
inhibit apoptosis and maintain normal function as a key 
information molecule. As one of the important substrates for 
Akt, mTOR plays an important role in cell survival and dif-
ferentiation. Among its downstream target proteins, 4EBP1 
and p70S6k are the key signaling molecules, involved in 
cell-cycle regulation and promoting the synthesis of riboso-
mal translation regulatory proteins.

Fig. 3   Neurobehavioral effects of NGR1 5–6  weeks after HI via 
estrogen receptors. a Balance performance was severely impaired in 
the HI group at 5 weeks after HI, but NGR1 treatment significantly 
improved balance performance. The protective effect of NGR1 was 
blocked by ICI 182780. b–h The Morris water maze test was per-
formed 5–6 weeks after HI. The results showed that the latencies of 
the HI group were significantly higher than those of the sham group 
(*HI group vs. sham group p < 0.05, #HI group vs.HI + NGR1 group 
p < 0.05, &HI + NGR1 group vs. HI + NGR1 + ICI 182780 group 

p < 0.05) (b–f). The percentage of time spent in the target quadrant g 
and the frequency of crossing the target platform h were significantly 
higher in the sham group than those in the HI group; NGR1 treatment 
could increased the percentage of time and the frequency compared 
to the HI group. However, the protective effects could be reversed 
by ICI 182780 (b, g–h). Data are expressed as mean ± SEM. Sham 
n = 8, HI n = 9, HI + NGR1 n = 9, HI + NGR1 + ICI 182780 n = 9, 
HI + DMSO n = 9. *p < 0.05; **p < 0.01; ***p < 0.001
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To detect activity of PI3K/Akt/mTOR signal path, pri-
mary neurons or hemisphere tissue were harvested at 24 h 
after OGD/R or HI injury for western blots. As seen in 
Fig. 5, the OGD/R group showed significant decrease in 
PI3K (0.34 ± 0.07 vs. 1.09 ± 0.46 p < 0.01), phospho-Akt 
(0.21 ± 0.10 vs. 0.86 ± 0.42, p < 0.01), phospho-mTOR 
(0.46 ± 0.21 vs. 2.58 ± 1.28, p < 0.001), phospho-4EBP1 
(0.24 ± 0.09 vs. 1.00 ± 0.40, p < 0.01), and phospho-p70S6k 

(0.57 ± 0.33 vs. 1.63 ± 0.53, p < 0.01) compared with the 
control group. Treatment with NGR1 (10 µmol/l) increased 
the expression levels of PI3K (1.06 ± 0.40, p < 0.01 vs. the 
OGD/R group), phospho-Akt (0.88 ± 0.46, p < 0.01 vs. the 
OGD/R group), phospho-mTOR (1.83 ± 0.43, p < 0.01 vs. 
the OGD/R group), phospho-4EBP1 (1.05 ± 0.54, p < 0.01 
vs. the OGD/R group), and phospho-p70S6k (1.55 ± 0.83, 
p < 0.05 vs. the OGD/R group). However, pretreatment 

Fig. 4   Expression of PI3K 
during OGD/R and HIBD. 
Representative Western blots for 
PI3K in primary cortical neu-
rons and in HI rats. a PI3K was 
expressed at low levels 12, 24, 
48 h after OGD/R. b Compared 
with the contralateral hemi-
sphere, PI3K was expressed 
at low levels in the ipsilateral 
hemisphere 24 and 48 h after 
HI. (*p < 0.05; **p < 0.01 com-
pared with control/sham groups, 
n = 5, mean ± SEM)

Fig. 5   Effects of NGR1 and ICI 182780 on PI3K-Akt-mTOR-
4EBP-1/p70S6K expression 24 h after OGD/R. Representative West-
ern blots a for PI3K, phospho-Akt/Akt, phospho-mTOR/mTOR, 
phospho-p70S6K/p70S6K, and phospho-4EBP-1/4EBP-1 in pri-
mary cortical neurons. Western blot results showed that the expres-
sion of PI3K (b), phospho-Akt (c), phospho-mTOR (d), phospho-

p70S6K (e), and phospho-4EBP1 (f) was reduced in the OGD/R 
group compared with the control group. NGR1 (10 mmol/l) enhanced 
the expression of PI3K phospho-Akt, phospho-mTOR, phospho-
p70S6K, and phospho-4EBP1 in vitro. Pretreatment with ICI 182780 
before NGR1 treatment could block the promoting effect. *p < 0.05; 
**p < 0.01; ***p < 0.001; n = 5, mean ± SEM
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with ICI 182780 before NGR1 treatment in vitro resulted 
in the down-regulation of PI3K (0.49 ± 0.32, p < 0.05 vs. 
the OGD/R + NGR1 group), phospho-Akt (0.30 ± 0.15, 
p < 0.05 vs. the OGD/R + NGR1 group), phospho-mTOR 
(0.42 ± 0.25, p < 0.01 vs. the OGD/R + NGR1 group), phos-
pho-4EBP1 (0.33 ± 0.18, p < 0.01 vs. the OGD/R + NGR1 
group), and phospho-p70S6k (0.60 ± 0.39, p < 0.05 vs. 
the OGD/R + NGR1 group) protein expression com-
pared with the OGD + NGR1 group. As shown in Fig. 6, 
there was significant decrease in PI3K (0.36 ± 0.16 vs. 
1.00 ± 0.35, p < 0.01), phospho-Akt (0.18 ± 0.09 vs. 
0.52 ± 0.15, p < 0.01), phospho-mTOR (0.79 ± 0.22 vs. 
1.92 ± 0.82, p < 0.01), phospho-4EBP1 (0.21 ± 0.18 vs. 
0.96 ± 0.34, p < 0.01), and phospho-p70S6k (0.76 ± 0.49 
vs. 2.40 ± 1.00, p < 0.01) compared with the sham group. 
Treatment with NGR1 (15 mg/kg) increased the expres-
sion levels of PI3K (0.98 ± 0.42, p < 0.01 vs. the HI group), 
phospho-Akt (0.41 ± 0.05, p < 0.05 vs.the HI group), phos-
pho-mTOR (1.5 ± 0.41, p < 0.05 vs. the HI group), phos-
pho-4EBP1 (0.70 ± 0.30, p < 0.05 vs. the HI group), and 
phospho-p70S6k (1.81 ± 0.29, p < 0.05 vs. the HI group). 
However, pretreatment with ICI 182780 before NGR1 
treatment in vivo resulted in the down-regulation of PI3K 
(0.37 ± 0.09, p < 0.01 vs. the HI + NGR1 group), phospho-
Akt (0.19 ± 0.17, p < 0.05 vs. the HI + NGR1 group), phos-
pho-mTOR (0.82 ± 0.16, p < 0.05 vs.the HI + NGR1 group), 

phospho-4EBP1 (0.22 ± 0.14, p < 0.05 vs. the HI + NGR1 
group), and phospho-p70S6k (0.85 ± 0.47, p < 0.05 vs. the 
HI + NGR1 group) protein expression compared with the 
HI + NGR1 group. The results indicated that NGR1 might 
regulate the PI3K-Akt-mTOR signal pathway via ERs in 
hypoxic–ischemic brain injury.

NGR1 Downregulated JNK Signal Pathway 
via Estrogen Receptors in Vitro and in Vivo

The phosphorylation of JNK and c-JUN were examined 24 h 
after OGD/R or HI injury. Western blot analysis showed 
that OGD/R injury resulted in remarkably increased expres-
sion of both phospho-JNK (1.38 ± 0.56 vs. 0.34 ± 0.14, 
p < 0.01) and phospho-c-JUN (1.56 ± 0.63 vs. 0.31 ± 0.24, 
p < 0.01) in primary cortical neurons compared with the 
control group. NGR1 treatment significantly decreased the 
expression levels of phospho-JNK(0.63 ± 0.33, p < 0.01 
vs. the OGD/R group) and phospho-c-JUN(0.72 ± 0.57, 
p < 0.05 vs. the OGD/R group), and the effects of NGR1 
were blocked by ICI 182780. Pretreatment with ICI 182780 
before NGR1 treatment led to higher levels of phospho-JNK 
(1.18 ± 0.36) and phospho-c-JUN (1.65 ± 0.40) than those in 
OGD/R + NGR1 group (p < 0.05) (Fig. 7a–c).

Similarly, in the HI group, the expression of phos-
pho-JNK (0.99 ± 0.44 vs. 0.28 ± 0.20, p < 0.001) and 

Fig. 6   Effects of NGR1 and ICI 182780 on PI3K-Akt-mTOR-
4EBP-1/P70S6K expression 24  h after HI. Representative Western 
blots a for PI3K, phospho-Akt/Akt, phospho-mTOR/mTOR, phos-
pho-P70S6K/P70S6K, and phospho-4EBP-1/4EBP-1 in  vivo. West-
ern blot results showed that the expression of PI3K (b), phospho-Akt 
(c), phospho-mTOR (d), phospho-p70S6K (e), and phospho-4EBP1 

(f) was significantly decreased in the HI group compared with the 
sham group. NGR1 (15  mg/kg) enhanced the expression of PI3K 
phospho-Akt, phospho-mTOR, phospho-p70S6K, and phospho-
4EBP1 in  vivo. Pretreatment with ICI 182780 before NGR1 treat-
ment could block the promoting effects. *p < 0.05; **p < 0.01; n = 5, 
mean ± SEM



1220	 Neurochemical Research (2018) 43:1210–1226

1 3

phospho-c-JUN (1.26 ± 0.56 vs. 0.41 ± 0.22, p < 0.001) 
increased in the ipsilateral hemisphere compared with 
the sham group, and NGR1 attenuated the activation of 
phospho-JNK (0.47 ± 0.28, p < 0.01 vs. the HI group) and 
phospho-c-Jun (0.70 ± 0.24, p < 0.05 vs. the HI group). Pre-
treatment with ICI 182780 before NGR1 treatment led to 
higher levels of phospho-JNK (0.94 ± 0.25, p < 0.01 vs. the 
HI + NGR1 group) and phospho-c-JUN (1.19 ± 0.30 p < 0.05 
vs. the HI + NGR1 group) than those in the NGR1 group 
(Fig. 7d–f).

The results indicated that NGR1 might inhibit the activity 
of JNK/c-JUN signal pathway by acting ERs and reduced the 
neuronal apoptosis.

NGR1 Exerted Neuroprotective Effects via Estrogen 
Receptors and PI3K

The preceding results showed that NGR1 could exert neu-
roprotective effects by regulating the PI3K-Akt-mTOR/
JNK signal pathways, but these effects could be reversed by 
blocking the ERs. Previous research [60–64] showed that 
PI3K could interact with ERs. To further explore the rela-
tionship between NGR1, PI3K and ERs, LY294002 (PI3K 
inhibitor) and 740Y-P (PI3K agonist) were used.

As shown in Fig.  8, with a optimum concentration 
of LY294002 treatment (20  µmol/l) [40] (Fig.  8a), the 
OGD + NGR1 + LY294002 group showed lower cell viability 

(46.99 ± 17.50 vs. 75.53 ± 18.94%, p < 0.05) and more LDH 
leakage (39.40 ± 7.40 vs. 28.18 ± 6.40%, p < 0.05) than the 
NGR1 treatment group, which suggested that the neuro-
protective effects of NGR1 were inhibited (Fig. 8c, d). At 
the same time, the phosphorylation of Akt (0.18 ± 0.12 vs. 
0.46 ± 0.18, p < 0.05) and mTOR (0.31 ± 0.16 vs. 0.88 ± 0.28, 
p < 0.01) was lower in the OGD/R + NGR1 + LY294002 
group than that in the OGD/R + NGR1 group, while the 
phosphorylation of JNK (0.96 ± 0.32 vs. 0.49 ± 0.17, 
p < 0.05) was higher than that in the OGD/R + NGR1 group 
(Fig. 8e–h). To further explore the role of ERs in the PI3K 
signal pathway, the optimal concentration of 740Y-P was 
tested and found to be 20 µmol/l (Fig. 8b); this concentra-
tion was used in the following investigation. The results 
showed that ICI 182780 could reverse the neuroprotec-
tive effects of NGR1 and aggravate neural injury. How-
ever, when 740Y-P was used in the OGD/R + NGR1 + ICI 
182780 group, the expression of phospho-Akt (0.46 ± 0.17 
vs. 0.16 ± 0.11, p < 0.01) and phospho-mTOR (0.99 ± 0.39 
vs. 0.35 ± 0.23, p < 0.01) was activated and the expression 
of phospho-JNK (0.18 ± 0.17 vs. 1.28 ± 0.50, p < 0.001) 
was inhibited compared with the OGD/R group (Fig. 8e–h). 
Simultaneously, the results showed higher cell viability 
(69.70 ± 17.52 vs. 47.34 ± 21.36%, p < 0.05) and less LDH 
leakage (24.27 ± 9.30 vs. 38.97 ± 10.20%, p < 0.05) in the 
OGD/R + NGR1 + ICI 182780 + 740Y-P group compared 
with the OGD/R + NGR1 + ICI 182780 group(Fig. 8c, d). 

Fig. 7   Effects of NGR1 and ICI 182780 on JNK-c-JUN expression 
24 h after OGD/R and HI. Representative Western blots for phospho-
JNK/JNK and phospho-c-JUN/c-JUN in primary cortical neurons (a) 
and for phospho-JNK/JNK and phospho-c-JUN/c-JUN in  vivo (d). 
Western blot analysis showed that compared with the OGD/R or HI 

group, NGR1 inhibited the expression of phospho-JNK and phospho-
c-JUN in vitro (b, c) and in vivo (e, f). Pretreatment with ICI 182780 
before NGR1 treatment could block the inhibiting effects of NGR1. 
*p < 0.05; **p < 0.01; n = 5, mean ± SEM
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These results indicated that ERs might regulate the activa-
tion of Akt-mTOR/JNK through interaction with PI3K, and 
NGR1 might cause PI3K activation to decrease cell damage 
after OGD/R by targeting ERs.

Discussion

HIE is a common neurologic disease in newborns, but there 
is currently a lack of promising therapy [3]. Many studies 
have shown that estrogen provides neuroprotective effects 
in experimental cerebral ischemia [20, 21]. These protec-
tive effects are mediated by ligand interactions with two 

Fig. 8   Effects of LY294002/740Y-P during OGD/R. a The opti-
mal concentration of LY294002 was 20  µmol/l. b The optimal 
concentration of 740Y-P was 20  µmol/l. LY294002 treatment 
could accelerate LDH leakage c and reduce cell viability d in the 
OGD/R + NGR1 + LY294002 group compared to the NGR1 treatment 
group. 740Y-P treatment could promote cell viability and inhibit 
LDH leakage in the OGD/R + NGR1 + ICI 182780 + 740Y-P group 
compared to the OGD/R + NGR1 + ICI 182780 group. (*p < 0.05, 
n = 6, mean ± SEM). Representative Western blots e for phospho-

Akt/Akt (f), phospho-mTOR/mTOR (g) and phospho-JNK/JNK (h) 
in primary cortical neurons. In the OGD/R + NGR1 + LY294002 
group, the phosphorylation of Akt and mTOR was lower than that 
in the OGD/R + NGR1 group, with a higher phosphorylation of JNK 
than that in the OGD/R + NGR1 group; In the OGD/R + NGR1 + ICI 
182780 + 740Y-P group, Akt/mTOR phosphorylation was higher 
and JNK phosphorylation was lower than that in the OGD/R group. 
*p < 0.05; ** p < 0.01; ***p < 0.001; n = 5, mean ± SEM
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primary classical ERs, ERα and ERβ [65]. Research has 
shown that the distribution patterns of ERα and ERβ are 
similar in male and female brains. Especially in the cortical 
and hippocampal regions [66], sex differences were found 
to be absent [67]. However, studies suggested that estrogen 
exhibited universal protection against experimental ischemia 
injury via ERs in female but not male brains [68]. The dif-
ferences may be due at least in part to the fact that circu-
lating estrogens have free access to all brain regions. As a 
phytoestrogen, NGR1 has been found to exhibit a number of 
treatment effects and exert direct anti-inflammatory and anti-
apoptotic effects on cardiomyocytes [26], vascular endothe-
lial cells [69], podocytes [70], and neurons [18, 44] through 
acting ERs. Some scholars reported that NGR1 treatment 
significantly improved cognitive function in the APP/PS1 
double-transgenic mouse model of Alzheimer’s disease [71]. 
One study demonstrated neuroprotective effects of NGR1 
in an adult rat model of cerebral ischemia/reperfusion [18]. 
However, research has revealed that the immature brain 
responded differently to treatment than the mature brain in 
laboratory animals [3]. In fact, therapies designed to ame-
liorate brain injury in adults may worsen outcomes in neo-
nates [72]. Hence, effective therapies for neonatal HIE need 
to be explored. Although some preliminary experimental 
results are available [19], whether NGR1 exerts short-term 
or long-term protective effects and the underlying mecha-
nisms are largely unknown. Therefore, the evaluation of the 
early effects and long-term therapeutic effects of NGR1 is 
of great clinical significance.

In the present study, a series of experiments were 
designed to explore the neuroprotective effects and under-
lying mechanisms of NGR1 in a neonatal hypoxic-ischemic 
injury model. The pivotal findings are as follows. (1) NGR1 
significantly attenuated neuronal injury in the neonatal HI 
model in vitro and in vivo. Most importantly, NGR1 had 
contributed to the long-term recovery of neurological func-
tion in the HI rats. (2) NGR1 exerted neuroprotective effects 
through regulating the PI3K-Akt-mTOR/JNK signal path-
ways by targeting ERs.

HIE [11] can develop as a result of circulatory and energy 
metabolism disorders, leading to a series of pathophysio-
logical processes, including oxidative stress, mitochondrial 
impairment, apoptosis, and necroptosis. These injuries in the 
developing brain often lead to lasting neurological impair-
ments, such as cerebral palsy, epilepsy, mental retardation, 
and learning and memory disorders. Therefore, reducing 
neuronal death and promoting neuronal survival and prolif-
eration are important strategies for reducing the occurrence 
of long-term neurological sequelae [26]. Our results indi-
cated that NGR1 possessed protective effects both in vitro 
and in vivo. NGR1 was observed significantly to improve 
neuronal cell viability and reduce the LDH leakage rate 4 
and 24 h after OGD/R (Fig. 1). The inhibition of cortical 

neuronal apoptosis was observed 24 h after HI injury and the 
decrease of infarct volume was examined 48 h after HI injury 
in HI + NGR1 group (Fig. 2). These findings are consistent 
with a recent study in an adult cerebral ischemia–reperfusion 
brain injury model, which found that NGR1 therapy reduced 
brain damage after ischemia [18]. However, that study used 
a higher concentration of NGR1 (25 mmol/l in vitro and 
20 mg/kg in vivo) than our study (10 mmol/l in vitro and 
15 mg/kg in vivo). There may be two reasons for the differ-
ence. (1) We used cells from different culture days and rats 
of different ages. (2) NGR1 was administered after OGD/R 
or HI in our study, not as a pretreatment. Importantly, our 
results indicated that NGR1 contributed to the long-term 
recovery of neurological function in the neonatal HI model 
in addition to reducing apoptosis. NGR1 treatment reduced 
brain atrophy 6 weeks after HI injury (Fig. 2). Moreover, the 
results of beam walking (5 weeks after HIE) and the water 
maze test (5–6 weeks after HIE) showed that NGR1 signifi-
cantly restored limb coordination and improved learning and 
memory in the impaired rats (Fig. 3).

Hypoxic–ischemic brain injury directly results in a 
large amount of neuronal death. Therefore, reducing neu-
ronal death and promoting neuronal survival and prolif-
eration are important strategies for reducing the occur-
rence of long-term neurological sequelae [26]. Apoptosis 
is reported to be responsible for a significant proportion of 
the HI-induced neuronal loss [72], and multiple apoptosis-
related signal pathways, such as PI3K-Akt-mTOR/JNK, 
are involved in neuronal death after stroke [34, 40, 41]. 
Our results showed significant inhibition of the PI3K-Akt-
mTOR-4EBP1/p70S6k signal pathway at 24 h following 
OGD/R or HI injury (Figs. 5, 6). At the same time, JNK—
another important signaling protein downstream of Akt, 
which can be inhibited by Akt directly or indirectly—was 
significantly activated. These results suggested that neu-
ronal apoptosis might be related to the inhibition of PI3K-
Akt-mTOR and the activity of JNK-c-JUN during HIBD. 
Some other researchers [44, 49–51, 73, 74] have found 
similar results indicating that cerebral ischemia induced 
the robust activation of JNK signaling and inhibition of 
PI3K-Akt-mTOR pathway activity. NGR1 treatment could 
increase the expression of PI3K, phospho-Akt, and phos-
pho-mTOR (Figs. 5, 6) and reduce the activity of the JNK 
signaling pathway 24 h after OGD/R or HI brain injury 
(Fig. 7). These results indicated that NGR1 could likely 
reduce neuronal apoptosis by regulating the activity of the 
PI3K-Akt-mTOR/JNK signal pathways. NGR1 treatment 
could improve the cell survival rate in vitro and reduce 
infarct volume and promote long-term neurobehavioral 
recovery and improvement in vivo by inhibiting neuronal 
apoptosis. Previous studies showed that mTOR acceler-
ated angiogenesis [75] and neuronal regeneration [76] in 
many neurologic injuries in addition to reducing neuronal 
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apoptosis. Perhaps the long-term protective effects of 
NGR1 were also related to its activation of mTOR and 
promotion of neuroregeneration.

We further explored whether NGR1 achieved its neuro-
protective effects via ERs. As a predominant phytoestrogen 
extracted from P. notoginseng, NGR1 was previously found 
to perform its function through acting ERs [13, 15, 18, 19]. 
Mounting evidence showed that ERα and ERβ expression 
was reduced during neuronal ischemia [19, 77]. Kracz-
kowski [78] indicated that the downregulation of ERs might 
be related to the ontogenesis of brain µ-opioid receptors dur-
ing HIBD. As an ERs agonist, NGR1 may act on ERα/β 
and improve the role of ERs during HIBD [18, 19]. Our 
results indicated that pretreatment with ICI 182780 reduced 
the survival rate of cortical neurons in vivo and increased 
brain edema and cerebral infarction volume in vitro com-
pared with the HI + NGR1 group. Moreover, the long-term 
protective effects of NGR1 were suppressed by ICI 182780. 
These results suggested that NGR1 exerted its protective 
effects via ERs.

Studies on a variety of cells—such as endothelial cells 
[79], MCF-7 breast cancer cells [80], and neurons [81–83]—
have found that ERs can interact directly with PI3K or bind 
to the PI3K p85 subunit through scaffold proteins such as 
CAV-1, connective proteins such as Src and Shc, and growth 
factors, then activate the downstream Akt, causing a series 
of signal pathway cascades, such as the Akt-mTOR/JNK 
signal pathway [60–63]. Our results showed that pretreat-
ment with ICI 182780 could inhibit the activity of PI3K-
Akt-mTOR and increase the activity of the JNK signal 
pathway. These results suggested that NGR1 regulated the 
PI3K-Akt-mTOR/JNK signal pathways via acting ERs. In 
order to further validate this finding, we used LY294002 
(PI3K inhibitor) and 740Y-P (PI3K agonist) to perform 
related experiments. The results (Fig. 8) revealed that the 
protective effects of NGR1 were significantly inhibited 
after adding LY294002, the expression of phospho-Akt and 
phospho-mTOR decreased and that of JNK increased in 
the OGD/R + NGR1 + LY294002 group. However, 740Y-P 
could reverse the inhibition of NGR1’s neuroprotective 
effects induced by ICI182780. Simultaneously, phospho-
Akt expression increased and phospho-JNK expression 
decreased in the 740Y-P agonist group. These results sug-
gested that NGR1 might exert a neuroprotective effects by 
targeting ERs and regulating PI3K.

In conclusion, the present study demonstrated that NGR1 
inhibited neuronal apoptosis and promoted neuronal sur-
vival, exerting an important neuroprotective effects against 
HIBD in neonates through targeting ERs and regulating 
the PI3K-Akt-mTOR/JNK signal pathway. Our findings 
suggested that NGR1 might be a potent new therapeutic 
compound for neonatal hypoxia–ischemia brain damage 
treatment.
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