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Abstract

Hierarchical genotyping approaches can provide insights into the source, geography and temporal distribution of bacterial 
pathogens. Multiple hierarchical SNP genotyping schemes have previously been developed so that new isolates can rapidly be 
placed within pre-computed population structures, without the need to rebuild phylogenetic trees for the entire dataset. This 
classification approach has, however, seen limited uptake in routine public health settings due to analytical complexity and the 
lack of standardized tools that provide clear and easy ways to interpret results. The BioHansel tool was developed to provide 
an organism-agnostic tool for hierarchical SNP-based genotyping. The tool identifies split k-mers that distinguish predefined 
lineages in whole genome sequencing (WGS) data using SNP-based genotyping schemes. BioHansel uses the Aho-Corasick 
algorithm to type isolates from assembled genomes or raw read sequence data in a matter of seconds, with limited compu-
tational resources. This makes BioHansel ideal for use by public health agencies that rely on WGS methods for surveillance of 
bacterial pathogens. Genotyping results are evaluated using a quality assurance module which identifies problematic samples, 
such as low-quality or contaminated datasets. Using existing hierarchical SNP schemes for Mycobacterium tuberculosis and 
Salmonella Typhi, we compare the genotyping results obtained with the k-mer-based tools BioHansel and SKA, with those of the 
organism-specific tools TBProfiler and genotyphi, which use gold-standard reference-mapping approaches. We show that the 
genotyping results are fully concordant across these different methods, and that the k-mer-based tools are significantly faster. 
We also test the ability of the BioHansel quality assurance module to detect intra-lineage contamination and demonstrate that 
it is effective, even in populations with low genetic diversity. We demonstrate the scalability of the tool using a dataset of ~8100 
S. Typhi public genomes and provide the aggregated results of geographical distributions as part of the tool’s output. BioHansel 
is an open source Python 3 application available on PyPI and Conda repositories and as a Galaxy tool from the public Galaxy 
Toolshed. In a public health context, BioHansel enables rapid and high-resolution classification of bacterial pathogens with low 
genetic diversity.

DATA SUMMARY
BioHansel is a Python 3 application available as PyPI, 
Conda and Galaxy Tool Shed packages. It is an open 
source application distributed under the Apache License, 

Version 2.0. The source code is available at https://​
github.​com/​phac-​nml/​biohansel. The BioHansel user 
guide is available at https://​bio-​hansel.​readthedocs.​io/​
en/​readthedocs/.
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INTRODUCTION
Public health, animal health, food safety and environmental 
authorities around the world are actively working to opera-
tionalize whole genome sequencing (WGS) technologies 
for their infectious disease diagnostics, surveillance, and 
outbreak detection and response programmes. Data analysis 
is one of the biggest challenges facing the adoption of WGS 
for these applications due to its complexity and the need for 
bioinformatics support for analysis and interpretation of the 
data [1, 2]. For example, in a foodborne pathogen outbreak 
situation, there are extreme pressures upon public health 
investigators to rapidly and accurately identify the outbreak 
source in order to avoid potentially severe health, financial and 
legal repercussions of incorrect source attribution. Genomic 
epidemiology of outbreak-related pathogens using WGS 
involves contextualizing the bacterial isolates in a broader 
population [3–5], which requires a plethora of software tools. 
The results of the WGS analysis then must be distilled into a 
readily communicable format for epidemiologists, clinicians 
and food safety officials [6]. Genomic data analysis pipelines 
that serve these mission-critical programmes must implement 
robust, reproducible and computationally tractable analytical 
methods that generate accurate and informative results for 
end-users without extensive bioinformatics expertise [6].

Numerous analytical approaches exist to quantify the relat-
edness between bacterial isolates using WGS data, with 
gene-by-gene and SNP-based approaches being the two most 
commonly used in public health [2, 7–9]. The most appro-
priate approach is determined based on the biology of the 
organism and the specific purpose of the resulting analysis 
[7, 10]. An SNP-based approach provides maximal resolu-
tion between organisms with low levels of genetic diversity 
because the analysis includes intergenic regions and does 
not compress multiple genetic changes into a single allele. 
To perform SNP-based analyses of genomic data, the raw 
sequence reads typically must be mapped against a common 
reference sequence using one of the numerous tools available 
for short-read alignment [9, 11, 12]. Variant calling is then 
performed on the quality-filtered reference-mapped reads, 
considering both the individual base quality and mapping 
scores [9, 11, 13]. An SNP-based approach can compre-
hensively identify all variants with respect to the reference 
sequence, but requires significant computational resources 
and the results obtained can differ depending on the software 
and parameter settings used [14]. There are numerous SNP 
identification pipelines available including CFSAN [15], Lyve-
SET [11], snippy [16] and SNVPhyl [9]. Each pipeline has 
its own complex set of parameters and working hypotheses. 
Additionally, in a recent review of 41 different SNP identifica-
tion pipelines, it was demonstrated that the selection of the 
appropriate reference genome for SNP calling was shown to 
have a dramatic effect on the variants identified, in addition 
to the variability introduced by the pipeline [12]. The need 
to map to a common reference sequence limits portability of 
the results because the optimal reference could be different 
depending on the scope of the analysis (whole species, 
serotype or sub-lineage). Furthermore, isolate relatedness is 

examined using a phylogenetic tree that must be recomputed 
every time a new isolate is added: this is very computationally 
expensive and can limit scalability.

Hierarchal SNP genotyping approaches divide populations 
into lineages and sub-lineages based on pre-defined muta-
tions which are used to place new isolates phylogenetically 
without the need to construct a new phylogeny each time. 
Additionally, they provide a nested hierarchical nomencla-
ture that is easily incorporated into line lists and spreadsheet 
databases that are common tools utilized by epidemiologists 
during outbreak investigations. Hierarchical nomenclatures 
have been developed for multiple bacterial pathogens with 
low genetic diversity such as Mycobacterium tuberculosis 
(MTB) [4], Salmonella enterica subsp. enterica serovar Typhi 
(S. Typhi) [3], Salmonella enterica subsp. enterica serovar 
Heidelberg [17] and Bordetella pertussis [18]. However, there 
is currently no generic and flexible tool available to perform 
hierarchical SNP genotyping. Consequently, the usability of 
novel SNP genotyping schemes is severely limited unless the 
authors also create a tool that can specifically support their 
scheme. Of the tools that are currently available, SnapperDB 
implements a hierarchical SNP genotyping nomenclature 
termed an ‘SNP address’, which is dynamically updated as 
new isolates are incorporated into the central database [8]. 
SnapperDB does not incorporate a model of evolution and 
its analytical results cannot be replicated without using an 
identical central database of isolates [8]. This is in contrast 
to gene-by-gene approaches for which there are many tools, 
including ARIBA [19], chewBBACA [20], MentaLiST [21] 
and SRST2 [22], that can readily incorporate new schemes. 
SNP genotyping pipelines need to become similarly portable 
in order to be adopted by cross-jurisdictional programmes.

Impact Statement

Hierarchical genotyping approaches provide multi-
resolution nomenclatures that assist in surveillance 
and outbreak detection, and that contribute contextual 
information on pathogen lineages to provide insights 
into their source, geography and temporal distribution. 
Predefined hierarchical SNP genotyping schemes have 
been developed for numerous organisms, but uptake 
of these approaches has been limited due to the lack of 
tools to readily incorporate new schemes and update 
them as new lineages are identified. To successfully 
apply these techniques in a public health context, the 
typing results must be readily interpretable, reliable and 
easy to communicate. BioHansel addresses these needs 
by requiring minimal parameters from the user and 
providing clear genotyping results that have been verified 
by the built-in quality assurance module. BioHansel is an 
organism-agnostic tool for fast, flexible and readily inter-
pretable hierarchical genotyping of haploid genomes, 
requiring minimal computational resources.
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The massive volume of genomic data being produced also 
necessitates the development of faster and more scalable 
approaches for comparing genomes [5, 23]. Many of these 
faster methods for genome comparisons are based on k-mers, 
which are small subsequences of a known, defined length. 
Mash was amongst the first k-mer-based tools able to rapidly 
estimate the genetic relatedness between two genomes, 
doing so in a fraction of the time required by alignment-
based methods [23]. Numerous other k-mer tools have been 
developed over the last few years to identify sequence varia-
tions between genomes. One such toolset is the Split K-mer 
Analysis (SKA) suite, which is designed as a comprehensive 
set of k-mer-based tools for routine genomic epidemiology 
analysis of highly similar genomes [5]. The k-mer-based 
approach to genome comparison in SKA is highly congruent 
with mapping-based approaches and requires substantially 
fewer computational resources [5].

Contamination is another important and frequently 
encountered concern when using WGS for microbial 
genomic applications. Contamination can confound 
subtype assignment and be troublesome to detect [24, 25]. 
Mixed infections, which present similarly to contamina-
tion, can also be difficult to detect [26, 27]. The most 
common sources of contamination include improperly 
isolated genomic material, environmental contamination, 
the libraries used to prepare the genomic material for 
sequencing and DNA barcode ‘cross-talk’ generated during 
the sequencing step [3–5]. Contamination detection pipe-
lines are therefore commonly applied to newly generated 
WGS data prior to analysis. These pipelines normally assign 
reads to taxa using fast phylotyping tools such as Kraken 
[28], Centrifuge [29] or Kaiju [30]. However, these tools 
typically cannot reliably assign taxa beyond the species level 
and thus are unsuitable for identifying genomic contamina-
tion from the same lineage [31, 32]. In contrast to the many 
tools available to detect contamination between species, 
there are fewer tools available for identifying intra-lineage 
contamination in microbial populations with low sequence 
diversity [27]. To the best of our knowledge, ConFindr 
is the only organism-agnostic tool which identifies both 
inter- and intra-species contamination by searching for the 
presence of multiple variant bases per position in a set of 
conserved single-copy ribosomal protein-coding genes, or 
in a user-defined gene schema [24]. Illumina sequence data 
contain noise in addition to low levels of contamination 
[33] that can occur within a flow cell, so ConFindr uses 
a requirement of three polymorphic sites to reduce false 
positive results [24]. However, ConFindr is unable to detect 
contamination between very closely related isolates which 
do not have genetic diversity in their ribosomal multilocus 
sequebcing type (rMLST) loci [24]. Due to the hierarchical 
nature of SNP genotyping schemes and the fact that they are 
a curated set of markers for delineating populations with 
low genetic diversity, the presence of incompatible sets of 
SNPs can readily indicate issues with a given sample such 
as contamination, mixed infection or recombination events. 
Incompatible SNPs can represent base heterozygosity or the 

presence of SNP states that should only occur in known 
combinations in specific lineages. Thus, a hierarchical SNP-
based genotyping scheme can provide the means to detect 
contamination and reliably identify mixed infections even 
between the most closely related genotypes in a pathogen 
population that has very low genetic diversity.

Here we present BioHansel, an organism-agnostic, k-mer-
based genotyping tool that can readily incorporate new and 
updated hierarchical SNP genotyping schemes. BioHansel 
was designed with a focus on producing easily interpret-
able results, so as to eliminate the need for end users to 
have extensive bioinformatics expertise. BioHansel reports 
provide the user with the hierarchical genotype call, along 
with clearly interpretable quality control (QC) messages 
as to the presence of intra-strain contamination or low 
confidence in the genotyping result. In this study we 
benchmark the genotyping and contamination detection 
performance of two k-mer based tools, BioHansel and SKA 
[5], and two reference mapping tools, Genotyphi [3] and 
TBProfiler [34], using two published SNP schemes used for 
genotyping: S. Typhi and MTB. Furthermore, we demon-
strate the scalable nature of BioHansel by genotyping ~8100 
public S. Typhi read sets and highlighting temporal and 
geographical trends in the data. The results of the global 
S. Typhi analysis are provided with BioHansel genotyping 
reports to contextualize each genotype.

METHODS
BioHansel design and implementation
BioHansel is a fast and flexible k-mer-based genotyping tool 
designed to support a wide variety of hierarchical geno-
typing schemes. The software is implemented in Python 
3 with open-source Python library dependencies. The 
tool uses the Aho-Corasick algorithm [35], implemented 
in the pyahocorasick Python library (https://​github.​com/​
WojciechMula/​pyahocorasick), to search assemblies or raw 
Illumina fastq reads in linear time for a predefined set of 
variable-length k-mers. The software provides three levels 
of result reporting: a simplified report containing a geno-
type call along with the reliability of that result, a results 
summary providing information about specific k-mers 
identified in relation to those expected for the targeted 
pathogen, and a report with additional details such as the 
target k-mer frequency, for troubleshooting purposes.

BioHansel takes a query DNA sequence or sequences, and a 
genotyping scheme as input. A small BioHansel-compatible 
genotyping scheme, based on variant positions against 
a reference genome, is presented in Fig.  1. In a typical 
BioHansel genotyping scheme, lineage-defining SNP posi-
tions are encoded as pairs of short DNA sequences each 
containing one of two possible nucleotides of the variant 
base surrounded by a genome sequence that is conserved 
across the whole pathogen population targeted by the 
genotyping scheme. SKA utilizes a similar concept, which 
is defined as a split k-mer pair with a variable base [6]. 
BioHansel also requires that lineage designations adhere 

https://github.com/WojciechMula/pyahocorasick
https://github.com/WojciechMula/pyahocorasick
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to a strict hierarchical structure, in which each clade (or 
lineage) must be defined by at least one exclusive variant 
shared by all clade members. Each nested sub-clade must 
possess the variant(s) defining the parent clade, as well as 
additional exclusive variant(s) shared amongst all members 
of the sub-clade. In the example shown in Fig. 1, samples 
A and B belong to the parent clade 1, as they both contain 
the variant base A in position 50, which is not present in 
any other clade, and therefore serves as the distinguishing 
variant defining clade 1 (e.g. genotype 1). Samples A and 
B further represent sub-clades 1.1 and 1.2 respectively, 
defined by additional variants at genome positions 500 
and 670 (Fig. 1). In BioHansel, the k-mer that is present 
in the genotype/lineage being defined is called the positive 
k-mer, and the paired k-mer that is present at that genome 
position in the rest of the pathogen population (outside of 
the defined genotype/lineage) is called the negative k-mer. 
In the given example, the positive k-mer for genotype 1 
contains the variant base A in the middle of the conserved 
flanking sequences, while the middle base is a T in the 
paired negative k-mer (Fig. 1). BioHansel uses the presence 

of both positive and negative k-mers in a scheme to support 
the quality assurance module.

Developing a new scheme is highly complex and requires 
extensive expertise in phylogenomics. However, adapting 
existing hierarchical SNP schemes to work with BioHansel 
only requires a phylogenetic tree showing the evolutionary 
relationships between the defined genotypes, and knowing 
the position of each genotype-defining SNP in the genome 
along with its conserved flanking sequences (Fig. 1). We 
adapted two previously published hierarchical genotyping 
schemes for MTB [4] and S. Typhi [3] using split k-mers 
centred on the SNPs defining each genotype. We selected 
a k-mer length of 33 for the BioHansel schemes, which is 
short enough to fit within a single Illumina read while still 
providing sufficient specificity. However, BioHansel does 
not impose a fixed k-mer length, and although not required 
in these instances, BioHansel also supports the use of indels 
in the genotype-defining k-mers. The nomenclature of the 
MTB and Typhi schemes required some modifications 
so that the schemes followed a strict hierarchy, which is 

Fig. 1. Phylogenetic representation of a BioHansel-compatible hierarchical SNP genotyping scheme based on genome-wide variant 
positions. Samples A and B belong to the same parent genotype 1 so they contain the same defining SNP at position 50. The other 
genotyping SNPs are exclusive to their corresponding type. Genotyping split k-mers for BioHansel are derived by extracting the 
sequence from the reference sequence around the variant position. The positive k-mer is used to define the presence of a genotype 
level and should only be found in members of a genotype. The negative k-mer would be present in members which are not part of the 
genotype. A BioHansel scheme uses the genome position of the variant as the unique ID for the split k-mer pair combined with the pair’s 
corresponding genotype.
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required for BioHansel. The published scheme genotypes 
are maintained for reporting through the inclusion of a 
metadata table which maps the adapted genotypes to the 
genotypes present in the original schemes [4, 5]. When 
adapting an existing SNP scheme for use in BioHansel, the 
selected k-mers should have highly conserved sequences 
flanking the variant base. However, BioHansel does support 
the inclusion of degenerate bases in k-mers, which can be 
necessary if multiple polymorphisms are present across 
the population in the genome sequence surrounding a 
genotype-defining SNP base.

A key feature of BioHansel is that it allows genotypes to 
be defined by multiple redundant k-mer targets in each 
scheme, contrary to MLST schemes where each locus is 
independent and missing data can prevent the call of an 
MLST type. This redundancy allows for a certain propor-
tion of missing data in a successful genotype call. Unlike 
MLST, split k-mer hierarchal typing is not suitable for high 
genetic diversity or recombinant organisms, as the quality 
of the data is assessed by the presence of both positive and 

negative k-mers. For example, when a high proportion of 
the scheme k-mers are missing in some genotypes in the 
population, BioHansel’s ability to assess the quality of these 
genotype calls is limited. As a default, BioHansel allows 
up to 5% of scheme k-mers to be missing from a dataset 
for a successful genotype call, but this is configurable by 
the user. Recombinant organisms similarly are not suited 
to this analytical approach since BioHansel assumes strict 
vertical inheritance.

The overall BioHansel workflow is presented in Fig. 2, using 
an example based on the small scheme described in Fig. 1. 
BioHansel takes as input fasta- or fastq-formatted sequence 
data, along with a fasta-formatted scheme file listing the 
genotyping split k-mers, as well as an optional metadata 
table. If raw Illumina data (in fastq format) are provided, a 
filtering step is performed to remove low-frequency k-mers 
which are probably the result of sequencing noise. Geno-
type assignment uses only the identified positive k-mers, 
and the overall genotype is determined by the most resolved 
genotyping k-mer(s) identified; i.e. the k-mer(s) associated 

Fig. 2. BioHansel genotyping workflow. Query sequence data in fasta or fastq format are provided to the tool with a corresponding 
scheme and optional scheme metadata table. The scheme provides a set of k-mers and places them in a hierarchy. BioHansel searches 
for the specified k-mers in the query data. Fastq data are filtered based on coverage to remove low-abundance k-mers. BioHansel 
examines all the identified positive k-mers to find the most resolved genotype, the deepest in the hierarchy, which will be the overall 
genotyping call. The genotyping results are then evaluated through the QA/QC module to determine if a sample has an adequate number 
of scheme k-mers to consider the result as reliable. The identified k-mers are examined for consistency with the scheme hierarchy. In 
the current example, where the dataset possesses the DNA bases A, G, T, G and A in the five target positions defined in the genotyping 
scheme (see also Fig. 1), a genotype designation of 1.1 is consistent with the hierarchy, since the positive k-mers for both genotype 
1 and genotype 1.1 would be present. A sample would be inconsistent if any of the parent genotype k-mers were missing or if the 
negative version of the k-mer was present. The QA/QC module in BioHansel also can identify intra-strain contamination by looking for 
the presence of both positive and negative versions of the same k-mer, or the presence of positive k-mers from other genotypes. In the 
current example, if the positive k-mer for genotype 2 was also identified, it would indicate a contaminated sample.
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with the genotype(s) that have the highest number of 
hierarchical levels. In the example shown in Fig. 2, posi-
tive k-mers are identified for both genotype 1 and 1.1. 
BioHansel reports the highest resolution genotype found 
for a given query. Since positive k-mers were found for both 
genotype 1 and genotype 1.1 in the example given in Fig. 2, 
that query sample was determined to be genotype 1.1. The 
negative k-mers are only used for QC purposes: assessing 
the completeness of the dataset for the pathogen targeted 
by the scheme, the reliability of the final genotype call and 
the presence of contamination.

Our focus in designing BioHansel was to provide readily 
interpretable results to users with limited bioinformatics 
experience. Therefore, we developed a QC module to give 
information on the reliability of user-supplied sequence 
data along with BioHansel’s genotyping results. BioHan-
sel’s reports provide information about scheme coverage, 
genotype consistency and contamination (Fig. 2). Using 
both positive and negative k-mers, BioHansel determines 
how many of the split k-mer pairs were identified in the 
sample as a measure of scheme coverage. One of the 

strengths of using hierarchical schemes is the ability to 
identify incompatible combinations of SNPs which may 
be indicative of contamination or recombination events. 
The QC module leverages the hierarchical nature of the 
schemes to look for inconsistencies in the genotyping call, 
which could indicate a problem with the sample. If the 
query sample was missing the positive k-mer for genotype 
1, but contained the positive k-mer for 1.1, then the sample 
would be listed as inconsistent since there is not support 
for the parent genotype in the lineage. The presence of 
incompatible genotyping targets in the same sample is 
reported as intra-strain contamination, for example when 
positive k-mers that are outside the hierarchy for the 
identified genotype are detected in the dataset. Similarly, 
if both the positive and the negative k-mers for the same 
SNP position are identified, this is flagged as potential 
contamination. Following the example shown in Fig. 2, the 
presence of positive k-mers for positions 50, 500 and 901 
in the same query sample would generate a contamination 
flag warning that both genotype 1.1 and genotype 3 may 
be present in the sample.

Fig. 3. Maximum-likelihood phylogenetic trees of benchmarking isolates representing the diversity of genotypes defined in the MTB (a) 
and Typhi (b) schemes. Each tree is labelled such that each isolate is labelled with its genotype and a colour representing the first level 
of the corresponding scheme. Bars, approximatively 120 SNPs (a) and 38 SNPs (b), indicating that the genetic diversity of the S. Typhi 
population represented by these genotypes is approx. 3× lower than that of MTB.
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Benchmarking strain selection
A testing panel of isolates was selected for both the Typhi 
and MTB schemes with one representative sample selected 
per available genotype from NCBI. Candidates for each 
genotype were identified from https://​tbdr.​lshtm.​ac.​uk/ for 
MTB and https://​pathogen.​watch/ for S. Typhi. The panel 
includes 58 MTB genotypes and 67 S. Typhi genotypes 
(Table S1, available in the online version of this article). 
Where there were multiple representatives per genotype, a 
random isolate was selected which was over 40× coverage 
(Table S1). Phylogenetic analyses were done using the 
SNVPhyl pipeline (Workflow SNVPhyl v1.1 Paired-End, 
released in Galaxy) [9]. Variants from the datasets listed 
in Table S1 were identified against the reference genomes 
used for each scheme; from strain CT18 (GenBank Acces-
sion NC_003198) for S. Typhi, and from strain H37Rv 
(GenBank Accession NC_000962.3) for MTB, using the 
following parameters: minimum coverage=8; minimum 
mean mapping quality=30 (default); SNV abundance 
ratio=0.75 (default); SNV density filtering search window 
size=20, and using default settings for all other parameters 
. The maximum-likelihood phylogeny (Fig. 3) was gener-
ated using 17092 sites (MTB) or 6288 sites (S. Typhi) over 
the core genome representing 87.55% (MTB) or 88.91% (S. 
Typhi) of the genome sequence of the respective reference 
strains. Using the raw Illumina reads, the genotype for each 
isolate was determined using either TBProfiler v. 2.8.12 [34] 
or genotyphi [3] (Table S1). Coverage levels, quality and 
read length varied considerably across the benchmarking 
strains. To enable more consistent benchmarking, we 

developed synthetic read sets using assemblies from the 
original samples. We assembled each sample using unicy-
cler v. 4.6.0 [36] and then generated synthetic Illumina 
reads using ART Illumina v. 2.5.8 [37] with 250 bp MiSeq 
v. 1 reads, with 350 bp inserts, at the desired coverage levels 
(1× to 50×, as described below).

Genotyping benchmarking
We compared the computational resource requirements of 
the read mapping-based tools genotyphi and TBProfiler 
against the k-mer-based tools BioHansel v. 2.5.0 and SKA 
v. 1.0.0 [5]. We measured the accuracy of the k-mer-based 
tools by comparing their genotyping results to those of 
genotyphi and TBProfiler. Note that while we designed 
BioHansel to be a genotyping tool based on predefined 
sets of k-mers, SKA is a set of tools designed to perform 
generic k-mer-based analysis of genomic data for organisms 
with small haploid genomes [5]. The feature of SKA that is 
most comparable to BioHansel is the typing module, which 
will report MLST types based on a profile and set of allele 
sequences [5]. In order to compare BioHansel genotyping 
with the SKA typing module, we converted the BioHansel-
compatible Typhi and MTB schemes into an MLST format 
where each variant position was treated as a locus with its 
positive k-mer labelled as allele 1 and its negative k-mer as 
allele 0. The k-mers identified by the SKA typing module 
were manually inspected for concordance with the ground 
truth genotype. A Nextflow workflow has been developed 
for performing the computational resource benchmarking 

Fig. 4. Boxplots of the runtime (a) and peak memory usage (b) comparison of four tools, BioHansel, Genotyphi, SKA and TBProfiler, on 
synthetic Illumina fastq data with a fixed coverage of 50×. BioHansel and SKA results are based on datasets representing both MTB and 
Typhi schemes (N=129) while genotyphi and TBProfiler results are only based on datasets representing either the Typhi (N=67) or the 
MTB (N=62) scheme, respectively.

https://tbdr.lshtm.ac.uk/
https://pathogen.watch/
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and is available online at: https://​github.​com/​peterk87/​
nf-​bh-​typing-​comparison.

Intra-strain contamination benchmarking
We examined the ability of BioHansel v. 2.5.0 and ConFindr 
v. 0.7.1 [24] to detect intra-strain contamination using the 
same synthetic MTB and S. Typhi datasets used for the 
genotyping benchmarking. We constructed seven levels 
of contamination in read sets with 50× genome coverage 
depth, yielding the following levels of contamination: 1× 
(2%), 2× (4%), 5× (10%), 10× (20%), 15× (30%), 20× (40%) 
and 25× (50%), using reads generated by ART Illumina 
v. 2.5.8. BioHansel genotyping was performed using the 
default parameters. ConFindr v. 0.7.1 was run using the 
default parameters with the exception of an explicit flag 
of –rmlst to maintain consistency between the two schemes, 
since there is a core gene MLST scheme for Salmonella but 
not for Mycobacterium. ConFindr was run on the forward 
and reverse (R1 and R2) synthetic read sets separately, 
and the detection of contamination was considered valid 
(ContamStatus=TRUE) for each read set when a minimum 
number of three contaminating single nucleotide variants 
(SNVs) were detected in both R1 and R2.

Global S. Typhi data analyses
All 8139 public isolates identified as S. Typhi by SISTR [38] 
in Enterobase [39–41] as of May 2020 were genotyped using 
BioHansel and assessed for contamination using BioHansel. 
The biosamples’ geographical metadata were downloaded 
directly from NCBI and standardized through manual cura-
tion. The genotyping results were summarized to generate 
a BioHansel-compatible metadata table listing the earliest 
and latest collection dates and primary geographical loca-
tion associated with a given genotype. This metadata table is 
included with BioHansel and genotype-specific information 

is provided to the user when they run the built-in Typhi 
scheme in BioHansel.

RESULTS AND DISCUSSION
Genotyping benchmarking
The genotyping results of SKA and BioHansel were 
completely concordant with the results obtained from 
TBProfiler and genotyphi for the panel of public isolates from 
MTB and S. Typhi (Table S1). Thus, both k-mer methods 
using the selected 33 bp split k-mers provided the same 
genotyping results as traditional reference mapping-based 
SNP calling procedures (Table S1). We then examined the 
runtimes and peak memory usage of the four tools against 
genotype synthetic WGS datasets (Fig. 4). Both k-mer tools 
were considerably faster than the reference mapping-based 
SNP calling tools, with BioHansel taking on average 16 s to 
process a sample and SKA requiring 109 s, while the read 
mapping-based approaches, genotyphi and TBProfiler, took 
an average of 285 and 297 s, respectively. BioHansel was 
19 times faster than both reference mapping approaches at 
processing WGS datasets, while SKA was 2.6 times faster. 
BioHansel used the least memory with an average of 52 MB, 
but SKA used the most at 805 MB. Genotyphi had similar 
memory usage to TBProfiler, with an average of 510 and 525 
MB, respectively. Since SKA does not have multi-threading 
support, we only examined single thread performance for 
all the tools. SKA also requires a sketching stage before the 
typing module can be used, so the timing results for this 
tool represent both sketching and typing. Even when in a 
single-threaded mode, BioHansel was found to genotype 
WGS datasets seven times faster than SKA while using 95% 
less memory.

The k-mer-based tools SKA and BioHansel are designed 
for different purposes: SKA is designed as a set of multiple 

Fig. 5. Bar plot of contamination detection of BioHansel and ConFindr using datasets with different levels of contamination (1–25× 
coverage depth of contaminant genotype) in a fixed level of 50× Illumina genome coverage depth. Results are aggregated for 852 MTB 
and 168 Typhi pair-wise combinations where both ConFindr and BioHansel could detect contamination at the 25× coverage depth (50% 
contamination).

https://github.com/peterk87/nf-bh-typing-comparison
https://github.com/peterk87/nf-bh-typing-comparison
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tools for analysis of bacterial genomes, while BioHansel 
is designed as a specialized hierarchical genotyping tool 
that can use redundant k-mers to identify a genotype. SKA 
and BioHansel differ particularly in their ability to handle 
missing data. The ability of a genotyping tool to handle 
missing data allows for increased scheme resolution, since 
k-mers that are highly prevalent in a target population can 
be used for genotyping even if they are not present in all the 
samples. For example, when adapting the MTB scheme to 
work with SKA, the absence of some targets from specific 
lineages rendered the tool unable to issue a genotype call 
for isolates from these lineages, unless the scheme was 
constricted to include only the targets found in those indi-
vidual lineages. For instance, all members of MTB geno-
types 1.X.X were missing the positive and negative k-mer 
for MTB genotype 4.5 and SKA could not type any of these 
samples without that target being removed from the scheme 
before testing. No such changes were needed for BioHansel 
to type the samples. Since Illumina sequence data often do 
not cover the complete genome of an organism, and regions 
may be missing due to differences in library preparation or 
quality of DNA template [42, 43], inclusion of redundant 
genetic features for genotyping can increase the robustness 
of a genotyping scheme. SKA and BioHansel are highly 
complementary tools for analysis of low genetic diversity 
populations, since SKA is suited to performing in-depth 
genomic epidemiological analyses including variant calling 
and clustering, while BioHansel provides clearly interpret-
able genotyping and quality metrics.

Contamination benchmarking
We examined the ability of BioHansel and ConFindr to 
detect intra-lineage contamination for the genotypes 
represented in the MTB and S. Typhi datasets. The tools 
were tested on artificial WGS datasets created from a pair-
wise mixing of the different genotypes. ConFindr is able to 

detect inter-species contamination as well as intra-species 
contamination [24], but BioHansel can only detect contam-
ination within the population targeted by its genotyping 
scheme, so we restricted our analyses to the intra-lineage 
contamination detection. Both the MTB and S. Typhi 
populations have limited genetic diversity, and a tool’s 
ability to detect mixed samples decreases with the level of 
genetic divergence between the genotypes present in the 
mixed sample. ConFindr requires three or more SNPs in the 
rMLST genes [24] in order to detect contamination, so we 
first performed all pairwise combinations of each genotype 
at a 1:1 ratio to determine which genotype combinations 
are sufficiently divergent genetically to be detected by both 
ConFindr and BioHansel. The S. Typhi dataset included 
67 genotypes for a total of 2211 pair-wise comparisons. Of 
these pairs, 168 had at least three contaminating rMLST 
SNPs in both directions (R1 and R2) in the artificial read 
sets and were retained for the tool comparison experiment. 
The MTB dataset contained 58 genotypes and had a total of 
1711 pair-wise comparisons. Of these, 852 had a minimum 
of three contaminating rMLST SNPs detected in both read 
sets and were retained for the tool comparison experiment. 
The increased number of viable comparisons in the MTB 
scheme is probably because a greater genetic distance sepa-
rates each of the genotypes defined by the scheme, which 
spans two highly variant clades [44]. In contrast, the Typhi 
scheme only subtypes within a single Salmonella serotype 
and dissects several recent clonal expansions into closely 
related sub-lineages (Fig. 3).

Here we want to point out that for this very low genetic 
diversity dataset, BioHansel has an advantage over 
ConFindr since a single target conflict is enough for 
BioHansel to consider a sample contaminated, whereas 
ConFindr requires three conflicts. BioHansel uses the 
genotyping schemes for quality assurance and requires 

Fig. 6. Balloon plot of 7943 global S. Typhi isolates showing the associations between genotypes and geography at the level of continents. 
The size of a point indicates the number of samples and the colour of a point indicates the number of discrete countries contained within 
it.
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a single incompatible k-mer to detect contamination. 
Consequently, BioHansel detected contamination in all 
the genotype pairs examined in this study. In practice, 
however, if the contaminants have a high genetic diversity 
and are not covered by the BioHansel genotyping scheme, 
as in the case of inter-species contamination, BioHansel 
would probably fail to detect the contamination, as the 
genotyping k-mers are unlikely to be conserved between 
species. In contrast, ConFindr uses a mapping approach 
which is more tolerant of diversity and thus can readily 
detect inter-species contamination. BioHansel and 
ConFindr are therefore highly complementary tools 
since each tool has strengths at different levels of genetic 
divergence.

Impact of sequencing coverage on contamination 
detection
The ability to detect a contaminant in a WGS dataset depends 
on the level of contamination, so we determined the limits 
of detection of contamination for ConFindr and BioHansel 
at varying levels of contaminant genome coverage depth. We 
confirmed that neither BioHansel nor ConFindr reported any 
contamination with the simulated read sets which contained 
a single genotype. Using the genotype combinations retained 
above, which were detectable by both ConFindr and BioHansel, 
we used a fixed level of 50× coverage and examined six levels of 
contamination (Fig. 5). ConFindr is designed to detect levels of 
intra-species contamination of at least 5% (~2.5× in our artificial 
datasets), whereas a k-mer frequency of 8 (equivalent to 16% 
contamination for a 50× dataset) is required for BioHansel to 
produce a valid k-mer identification as a default setting. Both 
tools should therefore fail to detect contamination below 5% 
(2.5×). Interestingly, both tools were able to detect contamina-
tion events in 4–7% of the 852 artificial datasets of MTB and 
approx. 1 % of the 168 artificial datasets of S. Typhi at only 2× 
(4%) contaminant coverage (Fig. 5). Variation of coverage depth 
across the genome was expected due to random sampling by 
ART Illumina and seqtk, which explains why the detection 
thresholds were met in a small number of the artificial datasets. 
At 20× coverage depth, both tools detected contamination 
in >94% of the artificial datasets (Fig. 5). As expected, BioHansel 
identifies contamination in >99.5% of samples with at least 10× 
(20%) coverage of the contaminant, but surprisingly, there are 
several cases where ConFindr fails to identify contamination 
below 20× (40%) contaminant coverage, with a sharper drop in 
detection at lower contamination levels in the (less genetically 
diverse) S. Typhi datasets (Fig. 5). Intra-species contamination 
has been shown to cause errors in estimation of genetic distances 
for SNP calling and MLST workflows, especially at levels of 20% 
and greater of the total number of reads [45], and both tools 
reliably detect contamination at this level or higher. We recom-
mend that ConFindr and BioHansel be used in combination to 
detect different types of contamination, with ConFindr capable 
of identification between species and within genetically diverse 
species [24, 45], and with BioHansel providing finer scale intra-
lineage contamination detection.

Global Salmonella Typhi analysis
A total of 8139 WGS datasets identified as Salmonella Typhi by 
Enterobase were downloaded from the NCBI Sequence Read 
Archive and analysed with both genotyphi and BioHansel. We 
found that the genotyping results of a large public genotyphi 
dataset by BioHansel were >99.8% concordant with those from 
genotyphi. A total of 153 samples failed BioHansel QC, 43 had 
warnings and 7943 passed QC (Table S2). Of the samples which 
failed BioHansel QC, 61 were identified as contaminated with 
multiple genotypes, indicating that intra-lineage contamination 
is present at a relatively low level in public data for S. Typhi. 
Enterobase does filter poor quality data and inter-species 
contaminated read-sets as part of its workflow [40], so a higher 
rate of contamination may be observed if an unfiltered public 
dataset was examined. We then compared the genotyping 
results obtained by both tools for the 7943 samples that passed 
BioHansel QC, and identified only 13 instances (0.16%) where 
the genotyping results from BioHansel did not agree with those 
of genotyphi. A manual inspection of the bam files for these 
13 samples showed support for the BioHansel genotype calls. 
For example, we uncovered a problem in genotyphi with the 
identification of lineage 3.5.3, which is actually a sub-lineage of 
3.5.4 (Fig. 4). We specifically adapted the nomenclature of this 
genotype in BioHansel by nesting it under 3.5.4, as the isolates 
from lineage 3.5.3 all possess both the variant bases for 3.5.3 
and for its parent lineage 3.5.4. However, genotyphi calls all 
isolates from genotype 3.5.3 as 3.5.4 because they occur at the 
same rank according to their genotyping nomenclature. These 
results show that BioHansel’s genotyping calls are accurate and 
compare favourably with those of the current gold-standard 
method.

We then examined the genotype composition and geographical 
distribution of all these publicly available S. Typhi datasets 
(Fig. 6, Table S2). We found that the genotypes 4.3.1, 4.3.1.1 and 
4.3.1.2 account for 53 % of all the public S. Typhi datasets and are 
distributed primarily in Asia and Africa (Fig. 6). These results 
are consistent with the original analyses of S. Typhi distribution, 
which found that clade 4.3.1 (H58) was highly prevalent and 
showed a ubiquitous geographical distribution [3]. Geograph-
ical associations can be found for many lineages; for example, 
in this dataset, lineage 4.2.X is found exclusively in Oceania 
and has a very strong association with Fiji, perhaps reflecting a 
local evolution of the lineage (Fig. 6, Table S2). Typhoid fever 
is not endemic in North America and Europe [3], so none of 
the S. Typhi genotypes is specific to these geographical loca-
tions. It is therefore likely that S. Typhi isolates from North 
America and Europe represent travel-associated cases. Using 
this global S. Typhi analysis, we generated a contextual meta-
data file indicating the earliest isolation date associated with the 
public datasets of each genotype, along with the geographical 
location that predominated in each genotype (Table S2). This 
information is provided along with the BioHansel genotyping 
results of S. Typhi datasets and can be used to inform potential 
geographical and temporal associations for an isolate assigned 
to a given genotype.
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CONCLUSIONS
BioHansel is a rapid and accurate genotyping tool producing 
results that are fully concordant with those of reference mapping 
approaches. BioHansel can be used with a variety of hierarchical 
SNP typing schemes and provides a clear quality assessment 
of the typing results for public health professionals. Through 
the quality assurance module, BioHansel addresses the need for 
detection of intra-lineage contamination in low genetic diversity 
organisms. BioHansel increases the accessibility of published 
SNP genotyping schemes by removing both the requirement for 
development of a separate tool for each scheme and the neces-
sity for high-end computer equipment. Contextual information 
can also be derived from large-scale population analyses and 
can be included with BioHansel reports to provide insights for 
hypothesis generation in genomic epidemiology.
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