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Stomach adenocarcinoma (STAD) is one of the most common cancers in the
world. However, the prognosis of STAD remains poor, and the therapeutic effect of
chemotherapy and immunotherapy varies from person to person. MicroRNAs (miRNAs)
play vital roles in tumor development and metastasis and can be used for cancer
diagnosis and prognosis. In this study, hsa-miR-100-5p was identified as the only
dysregulated miRNA in STAD samples through an analysis of three miRNA expression
matrices. A weighted gene co-expression network analysis (WGCNA) was performed
to select hsa-miR-100-5p-related genes. A least absolute shrinkage and selection
operator (LASSO) Cox regression analysis was performed to establish a miR-100-5p-
related prognostic signature. Kaplan–Meier analyses, nomograms, and univariate and
multivariate Cox regression analyses were used to evaluate the prognostic signature,
which was subsequently identified as an independent risk factor for STAD patients.
We investigated the tumor immune environment between low- and high-risk groups
and found that, among component types, M2 macrophages contributed the most
to the difference between these groups. A drug sensitivity analysis suggested that
patients with high-risk scores may be more sensitive to docetaxel and cisplatin
chemotherapy and that patients in the low-risk group may be more likely to benefit from
immunotherapy. Finally, external cohorts were evaluated to validate the robustness of
the prognostic signature. In summary, this study may provide new ideas for developing
more individualized therapeutic strategies for STAD patients.

Keywords: stomach adenocarcinoma, hsa-miR-100-5p, prognosis, LASSO, WGCNA

Abbreviations: AUC, area under the curve; BP, biological process; CC, cellular component; CI, confidence interval;
CIBERSORT, cell-type identification by estimating relative subsets of RNA transcripts; DEMs, differentially expressed
miRNAs; DFS, disease-free survival; ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumors using
Expression data; GEO, Gene Expression Omnibus; GO, Gene Ontology; GSEA, gene set enrichment analysis; HR, hazard
ratio; IC50, the half maximal inhibitory concentration; ICB, immune checkpoint blockade; KEGG, Kyoto Encyclopedia
of Genes and Genomes; LASSO, least absolute shrinkage and selection operator; MF, molecular function; OS, overall
survival; PCA, principal component analysis; ROC, receiver operating characteristic curve; STAD, stomach adenocarcinoma;
TAMs, tumor-associated macrophages; TCGA, The Cancer Genome Atlas; TIME, tumor immune microenvironment;
TIMER, Tumor Immune Estimation Resource; TMB, tumor mutation burden; UMAP, uniform manifold approximation
and projection; WGCNA, weighted gene co-expression network analysis.
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INTRODUCTION

Gastric cancer is the fifth most common cancer and the third
most common cause of cancer death in the world (Smyth
et al., 2020). Approximately 90%–95% of gastric cancers are
adenocarcinoma. Surgery is the only curative option, and
recurrence is common, even after complete resection (Johnston
and Beckman, 2019). For most stomach adenocarcinoma (STAD)
patients, the diagnosis is received after the most opportune
surgical window has passed (Song et al., 2017). Moreover, the
prognosis of advanced STAD remains poor despite the use
of chemotherapy and biological agents (Coutzac et al., 2019).
Chemotherapy and immunotherapy are valid, revolutionary
approaches for treating patients with cancer. However, the
therapeutic effects are still limited and vary from person to
person because of drug resistance or low sensitivity. Hence,
it is essential to identify novel molecular biomarkers to
improve the prognosis, prediction of recurrence, and treatment
response of STAD.

MicroRNAs (miRNAs) are small non-coding RNAs that
regulate gene expression by recognizing cognate sequences
and interfering with transcriptional, translational, or epigenetic
processes. Previous studies have revealed that many miRNAs
are dysregulated in cancers and play important roles in
tumor proliferation, apoptosis, metastasis, and angiogenesis
(Lee and Dutta, 2009). In addition, miRNAs are considered
potential biomarkers and therapeutic targets for gastric cancer
(Shin and Chu, 2014).

The tumor immune microenvironment (TIME) is the
cellular milieu where the tumor is located and is composed
of the extracellular matrix, blood and/or lymphatic vessels,
fibroblasts, immune cells, and inflammatory cells (Quail
and Joyce, 2013). Cross talk between infiltrating immune
cells and cancer cells ultimately leads to an environment
that fosters tumor development and invasion (Hinshaw
and Shevde, 2019). Therapeutics targeting predominant
components of the TIME may increase the likelihood of
improving patient outcomes. Therefore, the main components
and regulatory mechanism of the TIME in STAD need to be
further investigated.

In the present study (Figure 1), hsa-miR-100-5p was
identified as the only miRNA aberrantly expressed in STAD
samples. Comprehensive analyses were performed to explore
the prognostic capacity of this potential marker for predicting
the overall survival of STAD patients. Subsequently, hsa-
miR-100-5p-related genes were selected, and a prognostic
signature was established. A nomogram featuring integrated
clinical features was developed to predict the overall
survival (OS) of STAD patients and improve prognostic
risk stratification. Next, the potential regulatory mechanism
resulting in the difference in the TIME between low- and
high-risk groups was further investigated. The sensitivity
of the patients to chemotherapy and immunotherapy was
evaluated. Finally, external cohorts were evaluated to validate the
robustness of the hsa-miR-100-5p-related prognostic signature.
This study may assist in improving therapeutic strategies
for STAD patients.

MATERIALS AND METHODS

Data Collection and Preparation
The miRNA expression profiles of STAD samples and adjacent
normal tissues were acquired from The Cancer Genome
Atlas (TCGA) database (TCGA-STAD1) and Gene Expression
Omnibus (GEO) database [GSE78091, GSE93415 (Sierzega et al.,
2017)2]. The gene expression profiles and corresponding clinical
information of STAD patients were obtained from the TCGA
and GEO databases [TCGA-STAD, GSE26253 (Lee et al., 2014),
GSE15460 (Subhash et al., 2018), and GSE84437 (Yoon et al.,
2020), Supplementary Table 1]. Counts and fragments per
kilobase million (FPKM) of STAD samples were downloaded
from TCGA database on April 13, 2021, and FPKM values
were subsequently normalized as transcripts per kilobase millions
(TPMs) and transformed as log2(TPM + 1). For samples from
the GEO database, the gene expression level was transformed by
log2 using the script from GEO2R (Barrett et al., 2013).

Differential Expression Analysis
Differentially expressed miRNAs (DEMs) between STAD samples
and adjacent normal tissues obtained from TCGA database were
screened using the R package “DESeq2” (Love et al., 2014) based
on the count matrix with thresholds of |log2FoldChange| > 1.0
and adjusted p-values (padj) < 0.05. GEO2R, an R-based web
application that helps users analyze GEO data, was utilized
to screen the DEMs between tumor and normal samples
from GSE78091 and GSE93415 with the same conditions
(Barrett et al., 2013).

Identification and Validation of
Hsa-miR-100-5p-Related Genes
Weighted gene co-expression network analysis (WGCNA) was
used to establish a scale-free co-expression network using R
package “WGCNA” to identify the most correlated gene module
with hsa-miR-100-5p (Langfelder and Horvath, 2008). RNA22,
one of the popular miRNA target prediction algorithms, was
utilized to get the potential target genes of hsa-miR-100-
5p (Loher and Rigoutsos, 2012). The hsa-miR-100-5p-related
candidate genes were identified from the intersection of “hsa-
miR-100-5p-related module” and “hsa-miR-100-5p targets.” To
validate the candidate genes as robust hsa-miR-100-5p-related
genes, STAD samples with both miRNA and gene expression
profiles were assigned into two clusters by employing R package
“ConsensusClusterPlus” and were subsequently analyzed using
principal component analysis (PCA) and uniform manifold
approximation and projection (UMAP) (Dorrity et al., 2020).

Construction and Evaluation of
Hsa-miR-100-5p-Related Signatures
A total of 348 STAD patients with the corresponding clinical
information retrieved from the TCGA database were randomly
assigned into a training cohort (244 patients) and a validation

1https://portal.gdc.cancer.gov/
2https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Flowchart of this study.

cohort (104 patients) at a 7:3 ratio by using the R package
“caret.” The baseline clinical characteristics of the two cohorts
are summarized in Supplementary Table 2. The validation
cohort and the entire cohort were used as the internal validation
cohorts. Besides, the cohorts obtained from GSE26253 and
GSE84437 were used as the external validation cohorts. The
least absolute shrinkage and selection operator (LASSO) Cox
regression analysis was performed based on the training cohort
and hsa-miR-100-5p-related genes through R package “glmnet”
(Engebretsen and Bohlin, 2019). Signatures were screened by
selecting the optimal penalty parameter λ correlated with the
minimum 10-fold cross-validation. The coefficients (β) were
extracted from the LASSO Cox regression algorithm and the
risk score of each patient was calculated by using the following
formula: risk score = expression of gene1 × βgene1 + expression
of gene2 × βgene2 + . . .expression of genen × βgenen. Patients
in each cohort were divided into high- and low-risk groups
according to the optimal risk score cutoff value determined by R
package “survminer.” Kaplan–Meier (K-M) curves were plotted
to demonstrate the survival difference between the high- and
low-risk groups. Receiver operating characteristic (ROC) curves
and the area under the curve (AUC) were used to evaluate the
predictive performance of gene signatures.

Development and Assessment of a
Prognostic Nomogram
A nomogram interacting with the risk score and clinical factors
was established based on multivariate Cox regression analysis
using R packages “survival” and “regplot” (Iasonos et al., 2008;

Zhang et al., 2018). Calibration curves were adopted to evaluate
the accuracy of the nomogram in predicting 3- and 5-year
survival rates of STAD patients. Survival net benefits of each
variable were estimated with decision curve analysis (DCA) using
R package “ggDCA” (Vickers and Elkin, 2006).

Functional Enrichment Analysis
The R package “clusterProfiler” was utilized to perform the
Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis, and gene set
enrichment analysis (GSEA) (Yu et al., 2012). The collection
of annotated gene sets in “h.all.v7.4.symbols.gmt” in Molecular
Signatures Database (MSigDB3) was chosen as the reference
gene sets in GSEA (Liberzon et al., 2015). The results of
enrichment analysis were visualized using R package “enrichplot”
and adjusted p-value < 0.05 was chosen as the cutoff criterion.

Comprehensive Analysis of Immune
Infiltration of the Tumor
Microenvironment
The immune scores of STAD samples were generated to
estimate the levels of infiltrating immune cells by using
“Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data” (ESTIMATE) algorithm
(Yoshihara et al., 2013). The fraction of immune cell
types for each sample was quantified through TIMER

3https://www.gsea-msigdb.org/gsea/index.jsp
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(Li et al., 2017), quanTIseq (Finotello et al., 2019), and
CIBERSORT (Newman et al., 2019) algorithms.

Estimation of Drug Sensitivity and
Response to Immune Checkpoint
Blockade
The sensitivity of each patient to chemotherapy drugs was
estimated and the half maximal inhibitory concentration
(IC50) was quantified using R package “pRRophetic” (Geeleher
et al., 2014). Tumor mutation burden (TMB) for each patient
was calculated via the R package “maftools” (Mayakonda
et al., 2018). The response to immune checkpoint blockade
(ICB) was predicted by the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm using python (version 3.8.6) script
(Jiang et al., 2018).

Biospecimens and Real-Time
Polymerase Chain Reaction Analysis of
the miRNAs
A total of seven pairs of gastric tumors and adjacent normal
tissues were obtained from Shanghai East Hospital Biobank.
All patients had signed informed consent for donating their

specimens to Shanghai East Hospital Biobank. Total RNA
was extracted via TRIpure Total RNA Extraction Reagent
(ELK Biotechnology, Hubei, China, EP013) according to the
manufacturer’s instructions, following reversed transcribed using
EntiLinkTM 1st Strand cDNA Synthesis Kit (ELK Biotechnology,
EQ003). Quantitative real-time polymerase chain reaction
(qRT-PCR) was performed using QuantStudio 6 Flex (Life
Technologies, Carlsbad, CA, United States) and EnTurboTM

SYBR Green PCR SuperMix (ELK Biotechnology, EQ001). The
primer sequences of hsa-miR-100-5p and small nuclear RNA U6
are listed in Supplementary Table 3. The relative expression level
was calculated using the 2−11CT method and normalized to U6
as the internal control.

Statistical Analysis
Statistical tests were conducted through R (version 4.0.3).
Comparisons between two groups were performed via Wilcoxon
rank-sum test. Categorical variables were compared with chi-
square tests in the training and validation cohorts. Kaplan–Meier
curves for overall survival were generated and the difference
between groups was compared with the log-rank test. Univariate
and multivariate Cox regression analyses were performed to
determine the independent prognostic value of hsa-miR-100-5p

FIGURE 2 | The abnormal expression and prognostic value of hsa-miR-100-5p in stomach adenocarcinoma (STAD). (A) Venn diagrams of differentially expressed
miRNAs. (B) The relative expression level of hsa-miR-100-5p was downregulated in gastric cancer compared with adjacent normal tissues. (C) Multivariate Cox
analysis of miR-100-5p and clinical features. (D,E) Kaplan–Meier survival analyses of miR-100-5p in STAD patients on overall survival (D) and disease-free survival
(E). *p < 0.05; ***p < 0.001.
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or the risk score-integrated clinical characteristics. Correlation
analysis was conducted using the Pearson correlation test. The
random-effects meta-analysis model was used to calculate a
pooled hazard ratio (HR) via the R package “meta.” p < 0.05 was
considered statistically significant.

RESULTS

Hsa-miR-100-5p Was Downregulated in
Stomach Adenocarcinoma Samples and
Was Associated With the Prognosis of
Stomach Adenocarcinoma Patients
In our present study, we identified differentially expressed
miRNAs in STAD samples and adjacent normal tissues.
Compared with normal tissues, 184, 37, and 20 upregulated
miRNAs and 94, 309, and 91 downregulated miRNAs were

identified in the STAD samples based on the miRNA expression
profiles extracted from the TCGA-STAD, GSE78091, and
GSE93415 datasets, respectively. We selected the overlapping
miRNAs with the same expression pattern. As the Venn
diagram shows, hsa-miR-100-5p was the only miRNA that
exhibited a downregulated expression pattern in the different
expression matrices (Figure 2A). We further validated the
results above by using biospecimens and found that the
relative expression of hsa-miR-100-5p was significantly lower
in gastric tumors than that in adjacent normal tissues
(Figure 2B). Then, we performed Cox analysis to explore
connections between hsa-miR-100-5p expression and OS and
other multivariable clinical features in STAD patients. As shown
in Supplementary Table 4, the univariate analysis revealed some
related factors: age (HR=1.02, p = 0.017), pathological stage
(HR = 1.62, p<0.001), T stage (HR = 1.36, p = 0.002), N
stage (HR = 1.35, p<0.001), M stage (HR = 1.56, p<0.001),
and hsa-miR-100-5p expression (HR = 1.12, p = 0.007). The

FIGURE 3 | Selection of miR-100-5p-related candidate genes. (A) The cluster dendrogram of genes in TCGA-STAD. Each branch in the figure represents one gene;
meanwhile, every color below represents one co-expression module. (B) Analysis of the scale-free fit index for a variety of soft-thresholding powers. (C) The
relationships between miR-100-5p expression and various gene modules. (D) The correlation between gene significance for miR-100-5p and module membership in
the blue module. (E) Candidate genes were screened by taking interaction with hsa-miR-100-5p targets and genes in the hsa-miR-100-5p-related module.
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multivariate analysis revealed that hsa-miR-100-5p expression
(HR = 1.11, p = 0.035) was an independent risk factor for
the overall survival of STAD patients (Figure 2C). According
to the optimal cutoff point, STAD patients were assigned
to low and high hsa-miR-100-5p expression groups. Kaplan–
Meier curves showed that patients who had high hsa-miR-
100-5p expression levels exhibited worse overall survival
(Figure 2D) and disease-free survival (Figure 2E) than
those with low hsa-miR-100-5p expression. These findings
suggested that hsa-miR-100-5p may play a crucial role in
STAD development.

Selection and Validation of
Hsa-miR-100-5p-Related Genes
A WGCNA was performed with gene expression profiles to
establish a scale-free co-expression network. A total of 18

gene modules were generated with the optimal soft threshold
set at a power of 4 and the merge cut height set to
0.6 (Figures 3A,B and Supplementary Figure 1A). Among
these gene modules, the blue module shows the highest
correlation with hsa-miR-100-5p expression and was considered
the “hsa-miR-100-5p-related module” (r = 0.65, p = 8e−43)
(Figure 3C). In addition, the relationship between the genes
related to hsa-miR-100-5p expression and included in the
blue module, which consisted of 2,669 genes, exhibited a
highly positive correlation (R = 0.96, p<2.2e−16) (Figure 3D).
By examining the interaction between the “has-miR-100-5p-
related module” and potential targets of hsa-miR-100-5p, we
found 271 genes considered hsa-miR-100-5p-related candidate
genes (Figure 3E).

We subsequently confirmed that 271 candidate genes were
robust hsa-miR-100-5p-related genes based on STAD samples
in TCGA, since simultaneous miRNA and gene expression

FIGURE 4 | Validation of the candidate genes as robust miR-100-5p-related genes. (A) Consensus clustering was utilized to assign 348 samples in TCGA-STAD
into two clusters based on the candidate genes. (B,C) PCA analysis (B) and UMAP analysis (C) demonstrated that the two clusters showed absolute dissimilarity.
(D) The expression levels of hsa-miR-100-5p were significantly different between the two clusters.
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profiles were available for these samples. Consensus clustering
was employed to assign 348 samples into two clusters according
to the expression of the 271 candidate genes with an optimal k of 2
(Figure 4A and Supplementary Figures 1B,C). PCA and UMAP
analyses demonstrated that these candidate genes had good
discriminating ability, and the two clusters exhibited absolute
dissimilarity (Figures 4B,C). Moreover, the expression level
of hsa-miR-100-5p between the two clusters was significantly
different (p = 9.4e−22, Figure 4D). Hence, the 271 candidate
genes were considered hsa-miR-100-5p-related genes.

Construction and Validation of the
Hsa-miR-100-5p-Related Prognostic
Signature
Based on the results obtained with the training cohort,
LASSO Cox regression analysis was performed to identify
the most robust prognostic genes among the hsa-miR-100-
5p-related genes (Figure 5A). A 10-fold cross-validation was
subsequently performed to overcome the overfitting effect,
and an optimal λ value of 0.0613 was selected (Figure 5B).
As a result, a panel of nine genes remained on the basis
of their individual coefficients (Figure 5C). A correlation
network involving the nine genes in the training cohort is

shown in Figure 5D. The multivariate Cox regression analysis
revealed that TNFAIP8L1 was an independent protective factor
for the overall survival of STAD patients (Figure 5E). The
hsa-miR-100-5p-related prognostic risk score for each patient
in every cohort was calculated using the following formula:
risk score = (LBH×0.03841) + (LETM1× −0.13428)+
(LOX × 0.10214)+ (CYP1B1 × 0.01567)+ (NID2 × 0.02408)
+ (TNFAIP8L1 × −0.13329)+ (FZD4 × 0.02059)+ (MOCS1
× 0.04101) + (PDGFRL × 0.02987). Then, patients were
assigned into low- and high-risk groups according to the optimal
cutoff risk score in each cohort. As shown in Figure 6A, the
Kaplan–Meier survival analysis performed on the training cohort
data demonstrated that patients in the high-risk group exhibited
unfavorable overall survival compared with patients in the low-
risk group (p < 0.0001). Similarly, in the validation cohort and
the entire cohort, patients in the high-risk group exhibited a poor
clinical outcome (Figures 6B,C).

Evaluation of the Prognostic Signature
and Clinical Features of Stomach
Adenocarcinoma
Univariate and multivariate Cox regression analyses were
performed to evaluate whether the risk signature was an

FIGURE 5 | Establishment of an hsa-miR-100-5p-related prognostic signature. (A) The changing trajectory of each variable in LASSO Cox regression. (B) Selection
of the optimal lambda value. (C) The coefficients of nine selected genes. (D) Co-expression network of selected genes. (E) Multivariate Cox analysis of nine selected
genes based on the training cohort. **p < 0.01.
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FIGURE 6 | Validation and evaluation of the prognostic signature. (A–C) Kaplan–Meier curves of low- and high-risk groups in the training cohort (A), validation cohort
(B), and entire cohort (C). (D,E) Univariate (D) and multivariate (E) Cox regression analysis of the risk score and clinical features. (F) ROC curves of the risk score
and traditional clinical characteristics.

independent prognostic factor for STAD. In the univariate
Cox regression analysis, the HR of the risk score and
the 95% confidence interval (CI) were 6.82 and 3.21–14.47,
respectively (p<0.001) (Figure 6D). The HR was 5.82, and
the 95% CI was 2.45–13.84 in multivariate Cox regression
analysis (p<0.001) (Figure 6E). These results indicated that
the hsa-miR-100-5p-related signature was unrelated to clinical
characteristics, including age, sex, tumor grade, and pathological
stage. ROC curves were plotted to better evaluate the uniqueness
and susceptibility of the prognostic signature in predicting the
overall survival of STAD patients. As shown in Figure 6F, the
AUC value of the risk score was higher than that of the clinical
features, suggesting that the risk score can better predict the
prognosis of STAD patients.

Development and Assessment of a
Prognostic Nomogram
To provide a quantitative tool for predicting the survival rate of
patients with STAD, a nomogram comprising the risk score and
clinical characteristics was introduced (Figure 7A). Calibration
curves showed that the predicted versus observed rates of 3- and
5-year overall survival exhibited ideal consistency (Figure 7B).
In addition, DCA curves graphically illustrated that, at two
different time points, the nomogram performed better than
clinical features such as age, sex, tumor grade, and pathological

stage (Figure 7C). These results indicated that the nomogram
exhibited predominant predictive ability and can be used to
improve the prognostics of STAD patients.

Estimation of the Tumor Immune
Microenvironment
The TIME is involved in the development and metastasis of
cancer, affecting the prognosis of patients (Ren et al., 2018; Melaiu
et al., 2019). To investigate the effect of the prognostic signature
on the TIME of STAD, we estimated the immune score and
tumor-infiltrating cells in the low- and high-risk groups. The
high-risk group exhibited a higher immune score than the low-
risk group (Figure 8A). Subsequently, the fraction of immune cell
types in each sample was evaluated with the TIMER algorithm,
and the resulting landscape is displayed in Figure 8B. We
compared each cell type between the two groups and found that
the fraction of macrophages in the high-risk group was distinctly
greater than that in the low-risk group (p < 0.001), while
the fractions of neutrophils and myeloid dendritic cells showed
the opposite trend (Figure 8C). By employing the quanTIseq
algorithm, we discovered that the presence of M2 macrophages
but not M1 macrophages led to a high immune score in the
high-risk group (Figure 8D). To validate our findings, the
CIBERSORT algorithm was used, and the results showed that
the presence of M2 macrophages led to significant differences in
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FIGURE 7 | Construction and validation of the prognostic nomogram. (A) Nomogram for 3- and 5-year survival predictions. (B) Calibration curves for validating the
accuracy of the 3- and 5-year survival predictions. (C) DCA analyses of the nomogram and clinical features at two different time points.

the TIME between the low- and high-risk groups (Figure 8E).
Moreover, activated dendritic cells but not resting dendritic cells
played an important role in the TIME; however, the fractions
of neutrophils were not significantly different between the two
groups (Figure 8E). Taken together, the results showed that M2
macrophages and activated dendritic cells play a crucial role in
the TIME of STAD.

Exploration of the Potential Regulatory
Mechanisms in the High- and Low-Risk
Groups
To explore the potential regulatory mechanisms resulting in
differences in the TIME between the low- and high-risk groups,
the gene expression profiles of these two groups were analyzed.
A total of 121 downregulated and 2,337 upregulated genes
were identified in the high-risk group, compared with the
corresponding gene expression level in the low-risk group
(Figure 9A). A functional annotation analysis revealed that these
genes are mainly involved in extracellular matrix organization
and receptor ligand activity (Figure 9B). A KEGG pathway
analysis indicated that the pathways including “neuroactive
ligand–receptor interaction” and “ECM–receptor interaction”
are significantly enriched with these genes (Figure 9C). By setting

the gene signatures in “h.all.v7.4.symbols.gmt” as the reference
gene set, a GSEA was performed, and the results showed that
hallmarks such as the epithelial–mesenchymal transition and
inflammatory response were significantly enriched in the high-
risk group, while DNA repair and unfolded protein response were
dynamically correlated with the low-risk group (Figures 9D,E).

Prediction of Cancer Chemotherapy and
Immunotherapy
Chemotherapy drugs, including doxorubicin, mitomycin C,
docetaxel, cisplatin, and paclitaxel, have proven to be helpful for
gastric cancer treatment, and some of these drugs are in clinical
trials (Miranda et al., 2014; Zheng et al., 2017; Bando et al.,
2018; Hemati et al., 2019; Yoshida et al., 2019). We compared
the differences in the estimated IC50 levels between the low-
and high-risk groups. Our data showed that the estimated IC50
values of docetaxel (p = 0.013) and cisplatin (p = 0.003)
were significantly higher in the low-risk group, indicating that
patients in the high-risk group were more sensitive to docetaxel
and cisplatin chemotherapy (Figure 10A). However, there was
no distinct difference in the estimated IC50 levels of the other
three drugs. PD-L1 expression level and tumor mutation burden
are widely used biomarkers for predicting the response to
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FIGURE 8 | Investigation of the TIME between the low- and high-risk groups. (A) The immune score of the high-risk group was higher than that of the low-risk
group. (B) The landscape of tumor-infiltrating cells of STAD samples. (C–E) The fractions of tumor-infiltrating cells between the low- and high-risk groups were
estimated by TIMER (C), quanTIseq (D), and CIBERSORT (E).

immunotherapy (Zhu and Lang, 2017; Chan et al., 2019). We
observed that there was no significant difference in PD-L1
expression between the low- and high-risk groups, while the level
of TMB was distinctly higher in the low-risk group than in the
high-risk group (Figures 10B,C). In addition, the TIDE score was
introduced to evaluate the responses to ICB therapies, and our
data showed that patients with low-risk scores exhibited lower
TIDE scores than patients with high-risk scores (Figure 10D)
(Jiang et al., 2018). Hence, these findings indicated that patients
with high-risk scores may be more sensitive to docetaxel and
cisplatin chemotherapy, and patients with low-risk scores may be
more likely to benefit from immunotherapy.

External Validation of the
Hsa-miR-100-5p-Related Prognostic
Signature and Meta-Analysis
To validate the reliability of the hsa-miR-100-5p-related
prognostic signature, we used three additional cohorts, namely,
the GSE84437, GSE15460, and GSE26253 datasets, as external
validation cohorts. The established signature showed good
performance in predicting the survival rates of patients not
only in terms of overall survival but also disease-free survival
(Figures 11A–D). In addition, Kaplan–Meier analysis was
performed to evaluate survival differences in the pooled cohorts,

and the hsa-miR-100-5p-related signature retained its prognostic
capacity to discriminate low- and high-risk subsets with a
Z-score of zero as the cutoff value (Figures 11E,F). Meta-analysis
was performed to calculate the pooled HR and 95% CI of the
prognostic signature, and the results were 2.36 and 1.80–3.08,
respectively (Figure 11G). These results demonstrated that the
hsa-miR-100-5p-related signature was robust.

DISCUSSION

Recently, studies investigating miRNAs and tumors have
attracted widespread attention. Increasing evidence indicates
that the aberrant expression of miRNAs is related to certain
cancer types (Lee and Dutta, 2009). Hu et al. revealed that miR-
532 was overexpressed in gastric cancer tissues and promoted
tumor migration (Hu et al., 2017). Setijono et al. found that
miR-218 functioned as a tumor suppressor, while miR-129
promoted cancer progression in breast cancer (Setijono et al.,
2018). Tang et al. revealed that forced expression of miR-208a
introduced upon X-ray irradiation promoted cell proliferation
and radioresistance in lung cancer cells (Tang et al., 2016).
Stomach Adenocarcinoma is the most prevalent histology in
gastric cancer, but the prognosis remains extremely poor. In
consideration of the crucial roles of miRNAs in almost all aspects
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FIGURE 9 | Exploration of the potential regulatory mechanisms resulting in the differences of TIME between the low- and high-risk groups. (A) Volcano plot of DEGs
between the low- and high-risk groups. (B,C) GO (B) and KEGG (C) enrichment analyses of DEGs. (D,E) Hallmarks were significantly enriched in the high-risk (D)
and low-risk (E) groups.

of cancer biology, targeting specific miRNAs may be an efficient
strategy for treating cancers, including STAD. Several miRNA-
targeted therapeutics have been developed and are undergoing
clinical trials, including miR-34, which has been used to treat
solid tumors (Rupaimoole and Slack, 2017). Nevertheless, studies
on miRNAs in STAD remain limited, and further research
is necessary. In the present study, we found that hsa-miR-
100-5p was the only miRNA abnormally expressed in STAD
samples and correlated with the prognosis of STAD patients.
Inspired by these findings, we established a miR-100-5p-related
prognostic signature to aid in the clinical management of
patients with STAD.

In our study, a WGCNA was performed with the aim of
selecting a miR-100-5p-related gene module. By analyzing the
overlap of miR-100-5p targets and genes in a miR-100-5p-
related module, candidate genes were identified and subsequently
validated through PCA and UMAP. We performed LASSO Cox
regression analysis based on the training cohort and miR-100-
5p-related genes. Ultimately, a total of nine prognostic genes
were chosen on the basis of their individual coefficients. Among
these genes, LBH promotes angiogenesis in glioma through
VEGFA-mediated ERK signaling under hypoxic conditions (Jiang
et al., 2019). LETM1 contributes to cancer cell proliferation
and invasion via the PI3K/Akt signaling pathway and has been
identified as a potential biomarker to predict the prognosis of

gastric cancer and lung cancer (Piao et al., 2019; Li et al., 2020;
Zhang et al., 2020). Additionally, LOX is considered to be a
potential relapse marker for pancreatic cancer patients (Ma et al.,
2019). CYP1B1, a member of the CYP superfamily, plays a critical
role in oxidative metabolism and promotes the development
of breast cancer (Hwang et al., 2019). Previous studies have
revealed that NID2 is overexpressed in gastric cancer and can
boost gastric cancer cell invasion (Yu et al., 2019). TNFAIP8 L1,
an independent protective factor for STAD patients identified
through multivariate Cox analysis, suppresses invasion and
migration by downregulating the Wnt/beta-catenin pathway in
gastric cancer (Liu et al., 2018). Chen et al. demonstrated that
FZD4 is a novel target of miR-101 in bladder cancer cells (Chen
et al., 2019). PDGFRL, which is regarded as a tumor-suppressor
gene, inhibits the proliferation and invasion of colorectal cancer
cells in vitro (Guo et al., 2010).

Subsequently, STAD patients were assigned into low-
and high-risk groups according to the risk score calculated
by the established miR-100-5p-related prognostic signature.
Patients with high-risk scores exhibited poor clinical outcomes.
Univariate and multivariate Cox analyses revealed that risk score
was an independent prognostic risk factor for patients with
STAD. ROC analysis demonstrated that risk score was superior
to other clinical characteristics in predicting the overall survival
of STAD patients. Then, a nomogram of integrated risk score
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FIGURE 10 | Chemotherapy and immunotherapy sensitivity prediction. (A) The estimated IC50 for various chemotherapeutic drugs. (B–D) The differences of PD-L1
expression (B), TMB (C), and TIDE scores (D) between the low- and high-risk groups.

and clinical features was introduced and exhibited acceptable
consistency between the predicted and observed rates for 3-
and 5-year overall survival. Moreover, a DCA analysis revealed
that the nomogram was superior in determining survival than
traditional clinical features.

The TIME is known to foster tumor growth and metastasis.
Targeting the main components and regulatory mechanism of
the TIME would improve the anticancer immune response
and immunotherapy treatment (Pitt et al., 2016). Therefore, we
investigated the TIME of STAD using a step-by-step approach.
The immune score in the high-risk group was distinctly greater
than that in the low-risk group. Several deconvolution algorithms
were employed to estimate the tumor-infiltrating immune cells,
and the results showed that M2 macrophages accounted for the
difference in the TIME between the two groups. Previous studies
have revealed that M2-polarized tumor-associated macrophages
(TAMs) release a variety of anti-inflammatory cytokines and
chemokines that suppress dendritic cell maturation, limiting

antigen presentation (Ruffell et al., 2014; Vitale et al., 2019).
We also observed that the fraction of activated dendritic cells
in the high-risk group was significantly lower than that in the
low-risk group, which agrees with the research of Ruffell et al.
(Ruffell et al., 2014). In addition, M2-like TAMs prevent tumor
infiltration by cytotoxic T cells, which may be associated with
the worse clinical outcome of STAD patients in the high-risk
group (Vitale et al., 2019). To explore the potential regulatory
mechanism resulting in the difference in the TIME between
the two groups, several functional enrichment analyses were
performed. Differentially expressed genes (DEGs) were mainly
involved in extracellular matrix–receptor interactions and related
biological processes. A GSEA revealed that genes involved
with the epithelial–mesenchymal transition and inflammatory
responses were significantly enriched in the high-risk group. The
epithelial–mesenchymal transition is involved in tumorigenesis
and confers metastatic properties onto cancer cells, promoting
the invasion of tumors (Mittal, 2018). Inflammation is considered
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FIGURE 11 | External validation of the established hsa-miR-100-5p-related prognostic signature. (A,B) Kaplan–Meier analysis of the low- and high-risk groups on
overall survival in GSE84437 (A) and GSE15460 (B). (C,D) Kaplan–Meier curves of the low- and high-risk groups on disease-free survival in TCGA-STAD (C) and
GSE26253 (D). (E,F) Kaplan–Meier survival analyses on overall survival (E) and disease-free survival (F) in pooled cohorts. (G) Meta-analysis was performed to
calculate the pooled HR of the prognostic signature.

one of the characteristics of cancer development and reduces the
rate of survival and quality of life. Taken together, these findings
on the TIME and potential regulatory mechanisms may explain
the poor prognosis of patients in the high-risk group.

Finally, we evaluated the sensitivity of patients to
chemotherapy and immunotherapy. The results showed
that patients with higher risk scores may be more sensitive
to docetaxel and cisplatin chemotherapy. A low-risk score
was correlated with a high TMB and low TIDE score, which
indicated that patients in the low-risk group may receive greater
benefit from immunotherapy. Although chemotherapy and
immunotherapy provide variably effective treatments of human
cancer, the therapeutic outcome is not satisfactory because of
increasing resistance and a lack of biomarkers (Holohan et al.,
2013; O’Donnell et al., 2019). Our results may assist in the
development of more individualized therapeutic strategies for
treating STAD. Finally, external cohorts were used to validate

the robustness of the established miR-100-5p-related prognostic
signature. We are also aware of the limitations of this study.
The number of patients in the training cohort was slightly
fewer than ideal, and this study could have been improved if
had we merged some cohorts and removed batch effects. In
addition, the results of this study would be more convincing
with experimental validation. In addition, the molecular
mechanisms of the genes in the prognostic signature need to be
further investigated.

CONCLUSION

In conclusion, we identified the abnormal expression and
prognostic value of hsa-miR-100-5p in STAD. In addition, we
constructed an hsa-miR-100-5p-related prognostic signature that
performed well in predicting sensitivity to chemotherapy and
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immunotherapy and can be used to improve prognostic risk
stratification for STAD patients. Our study may aid in the
development of more individualized therapeutic strategies and
improve the clinical outcome of STAD patients.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

GW and LY designed the study, analyzed the data, and wrote
the manuscript. XJ and RC provided funding acquisition. MH,
RH, and YW performed the experiments and analyzed the data.
BC, XJ, and RC supervised the research, analyzed the data, and
wrote the manuscript. All authors read and approved the final
submitted manuscript.

FUNDING

This study was supported by the Outstanding Clinical
Discipline Project of Shanghai Pudong (No. PWYgy2018-02)
and the Research Project of Shanghai Municipal Health
Commission (20204Y0302).

ACKNOWLEDGMENTS

We would like to thank the TCGA and GEO databases for the
availability of the data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
736274/full#supplementary-material

Supplementary Figure 1 | (A) The relationships between different gene modules.
(B) Relative change in area under the cumulative distribution function (CDF) curve
for k = 2 to 6. (C) Tracking plot for k = 2 to 6.

REFERENCES
Bando, H., Shimodaira, H., Fujitani, K., Takashima, A., Yamaguchi, K., Nakayama,

N., et al. (2018). A phase II study of nab-paclitaxel in combination with
ramucirumab in patients with previously treated advanced gastric cancer. Eur.
J. Cancer 91, 86–91. doi: 10.1016/j.ejca.2017.11.032

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky,
M., et al. (2013). NCBI GEO: archive for functional genomics data sets-update.
Nucleic Acids Res 41, D991–D995. doi: 10.1093/nar/gks1193

Chan, T. A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S. A., Stenzinger, A.,
et al. (2019). Development of tumor mutation burden as an immunotherapy
biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56. doi: 10.1093/
annonc/mdy495

Chen, L., Long, Y., Han, Z., Yuan, Z., Liu, W., Yang, F., et al. (2019). MicroRNA-101
inhibits cell migration and invasion in bladder cancer via targeting FZD4. Exp
Ther Med 17, 1476–1485. doi: 10.3892/etm.2018.7084

Coutzac, C., Pernot, S., Chaput, N., and Zaanan, A. (2019). Immunotherapy in
advanced gastric cancer, is it the future? Crit. Rev. Oncol. Hematol. 133, 25–32.
doi: 10.1016/j.critrevonc.2018.10.007

Dorrity, M. W., Saunders, L. M., Queitsch, C., Fields, S., and Trapnell,
C. (2020). Dimensionality reduction by UMAP to visualize physical and
genetic interactions. Nat. Commun. 11:1537. doi: 10.1038/s41467-020-1
5351-4

Engebretsen, S., and Bohlin, J. (2019). Statistical predictions with glmnet. Clin.
Epigenetics 11:123. doi: 10.1186/s13148-019-0730-1

Finotello, F., Mayer, C., Plattner, C., Laschober, G., Rieder, D., Hackl, H., et al.
(2019). Molecular and pharmacological modulators of the tumor immune
contexture revealed by deconvolution of RNA-seq data. Genome Med. 11:34.
doi: 10.1186/s13073-019-0638-6

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package
for prediction of clinical chemotherapeutic response from tumor gene
expression levels. PLoS One 9:e107468. doi: 10.1371/journal.pone.01
07468

Guo, F. J., Zhang, W. J., Li, Y. L., Liu, Y., Li, Y. H., Huang, J., et al. (2010).
Expression and functional characterization of platelet-derived growth factor
receptor-like gene. World J. Gastroenterol. 16, 1465–1472. doi: 10.3748/wjg.v16.
i12.1465

Hemati, M., Haghiralsadat, F., Jafary, F., Moosavizadeh, S., and Moradi, A.
(2019). Targeting cell cycle protein in gastric cancer with CDC20siRNA and

anticancer drugs (doxorubicin and quercetin) co-loaded cationic PEGylated
nanoniosomes. Int. J. Nanomedicine 14, 6575–6585. doi: 10.2147/ijn.S211844

Hinshaw, D. C., and Shevde, L. A. (2019). The tumor microenvironment innately
modulates cancer progression. Cancer Res. 79, 4557–4566. doi: 10.1158/0008-
5472.Can-18-3962

Holohan, C., Van Schaeybroeck, S., Longley, D. B., and Johnston, P. G. (2013).
Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726.
doi: 10.1038/nrc3599

Hu, S., Zheng, Q., Wu, H., Wang, C., Liu, T., and Zhou, W. (2017). miR-532
promoted gastric cancer migration and invasion by targeting NKD1. Life Sci.
177, 15–19. doi: 10.1016/j.lfs.2017.03.019

Hwang, Y. P., Won, S. S., Jin, S. W., Lee, G. H., Pham, T. H., Choi, J. H.,
et al. (2019). WY-14643 regulates CYP1B1 Expression through peroxisome
proliferator-activated receptor α-mediated signaling in human breast cancer
cells. Int. J. Mol. Sci. 20:5928. doi: 10.3390/ijms20235928

Iasonos, A., Schrag, D., Raj, G. V., and Panageas, K. S. (2008). How to build
and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26, 1364–1370.
doi: 10.1200/jco.2007.12.9791

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med.
24, 1550–1558. doi: 10.1038/s41591-018-0136-1

Jiang, Y., Zhou, J., Zou, D., Hou, D., Zhang, H., Zhao, J., et al. (2019).
Overexpression of Limb-Bud and Heart (LBH) promotes angiogenesis
in human glioma via VEGFA-mediated ERK signalling under hypoxia.
EBioMedicine 48, 36–48. doi: 10.1016/j.ebiom.2019.09.037

Johnston, F. M., and Beckman, M. (2019). Updates on management of gastric
cancer. Curr. Oncol. Rep. 21:67. doi: 10.1007/s11912-019-0820-4

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinform. 9:559. doi: 10.1186/1471-2105-
9-559

Lee, J., Sohn, I., Do, I. G., Kim, K. M., Park, S. H., Park, J. O., et al.
(2014). Nanostring-based multigene assay to predict recurrence for gastric
cancer patients after surgery. PLoS One 9:e90133. doi: 10.1371/journal.pone.00
90133

Lee, Y. S., and Dutta, A. (2009). MicroRNAs in cancer. Annu. Rev. Pathol. 4,
199–227. doi: 10.1146/annurev.pathol.4.110807.092222

Li, H., Piao, L., Xu, D., and Xuan, Y. (2020). LETM1 is a potential biomarker that
predicts poor prognosis in gastric adenocarcinoma. ExpMol Pathol 112, 104333.
doi: 10.1016/j.yexmp.2019.104333

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 September 2021 | Volume 9 | Article 736274

https://www.frontiersin.org/articles/10.3389/fcell.2021.736274/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.736274/full#supplementary-material
https://doi.org/10.1016/j.ejca.2017.11.032
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.3892/etm.2018.7084
https://doi.org/10.1016/j.critrevonc.2018.10.007
https://doi.org/10.1038/s41467-020-15351-4
https://doi.org/10.1038/s41467-020-15351-4
https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.3748/wjg.v16.i12.1465
https://doi.org/10.3748/wjg.v16.i12.1465
https://doi.org/10.2147/ijn.S211844
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1038/nrc3599
https://doi.org/10.1016/j.lfs.2017.03.019
https://doi.org/10.3390/ijms20235928
https://doi.org/10.1200/jco.2007.12.9791
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1016/j.ebiom.2019.09.037
https://doi.org/10.1007/s11912-019-0820-4
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1371/journal.pone.0090133
https://doi.org/10.1371/journal.pone.0090133
https://doi.org/10.1146/annurev.pathol.4.110807.092222
https://doi.org/10.1016/j.yexmp.2019.104333
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-736274 September 13, 2021 Time: 12:46 # 15

Wang et al. Hsa-miR-100-5p-Related Signature in STAD

Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). TIMER: a web
server for comprehensive analysis of tumor-infiltrating immune cells. Cancer
Res. 77, e108–e110. doi: 10.1158/0008-5472.Can-17-0307

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., and
Tamayo, P. (2015). The molecular signatures database (MSigDB) hallmark gene
set collection. Cell Syst. 1, 417–425. doi: 10.1016/j.cels.2015.12.004

Liu, W., Chen, Y., Xie, H., Guo, Y., Ren, D., Li, Y., et al. (2018). TIPE1 suppresses
invasion and migration through down-regulating Wnt/β-catenin pathway in
gastric cancer. J. Cell. Mol. Med. 22, 1103–1117. doi: 10.1111/jcmm.13362

Loher, P., and Rigoutsos, I. (2012). Interactive exploration of RNA22 microRNA
target predictions. Bioinformatics 28, 3322–3323. doi: 10.1093/bioinformatics/
bts615

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
doi: 10.1186/s13059-014-0550-8

Ma, W., Li, T., Wu, S., Li, J., Wang, X., and Li, H. (2019). LOX and ACSL5 as
potential relapse markers for pancreatic cancer patients. Cancer Biol. Ther. 20,
787–798. doi: 10.1080/15384047.2018.1564565

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: efficient and comprehensive analysis of somatic variants in cancer.
Genome Res 28, 1747–1756. doi: 10.1101/gr.239244.118

Melaiu, O., Lucarini, V., Cifaldi, L., and Fruci, D. (2019). Influence of the tumor
microenvironment on NK cell function in solid tumors. Front. Immunol.
10:3038. doi: 10.3389/fimmu.2019.03038

Miranda, M. B., Hartmann, J. T., Al-Batran, S. E., Kripp, M., Gencer, D., Hochhaus,
A., et al. (2014). Mitomycin C and capecitabine in pretreated patients with
metastatic gastric cancer: a multicenter phase II study. J. Cancer Res. Clin.
Oncol. 140, 829–837. doi: 10.1007/s00432-014-1619-1

Mittal, V. (2018). Epithelial mesenchymal transition in tumor metastasis. Annu.
Rev. Pathol. 13, 395–412. doi: 10.1146/annurev-pathol-020117-043854

Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F.,
et al. (2019). Determining cell type abundance and expression from bulk tissues
with digital cytometry. Nat. Biotechnol. 37, 773–782. doi: 10.1038/s41587-019-
0114-2

O’Donnell, J. S., Teng, M. W. L., and Smyth, M. J. (2019). Cancer immunoediting
and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16,
151–167. doi: 10.1038/s41571-018-0142-8

Piao, L., Yang, Z., Feng, Y., Zhang, C., Cui, C., and Xuan, Y. (2019). LETM1 is
a potential biomarker of prognosis in lung non-small cell carcinoma. BMC
Cancer 19:898. doi: 10.1186/s12885-019-6128-9

Pitt, J. M., Marabelle, A., Eggermont, A., Soria, J. C., Kroemer, G., and Zitvogel,
L. (2016). Targeting the tumor microenvironment: removing obstruction to
anticancer immune responses and immunotherapy. Ann. Oncol. 27, 1482–1492.
doi: 10.1093/annonc/mdw168

Quail, D. F., and Joyce, J. A. (2013). Microenvironmental regulation of tumor
progression and metastasis. Nat. Med. 19, 1423–1437. doi: 10.1038/nm.3394

Ren, B., Cui, M., Yang, G., Wang, H., Feng, M., You, L., et al. (2018). Tumor
microenvironment participates in metastasis of pancreatic cancer. Mol. Cancer
17:108. doi: 10.1186/s12943-018-0858-1

Ruffell, B., Chang-Strachan, D., Chan, V., Rosenbusch, A., Ho, C. M., Pryer, N.,
et al. (2014). Macrophage IL-10 blocks CD8+ T cell-dependent responses to
chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells.
Cancer Cell 26, 623–637. doi: 10.1016/j.ccell.2014.09.006

Rupaimoole, R., and Slack, F. J. (2017). MicroRNA therapeutics: towards a new era
for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16,
203–222. doi: 10.1038/nrd.2016.246

Setijono, S. R., Park, M., Kim, G., Kim, Y., Cho, K. W., and Song, S. J. (2018).
miR-218 and miR-129 regulate breast cancer progression by targeting Lamins.
Biochem. Biophys. Res. Commun. 496, 826–833. doi: 10.1016/j.bbrc.2018.
01.146

Shin, V. Y., and Chu, K. M. (2014). MiRNA as potential biomarkers and therapeutic
targets for gastric cancer. World J. Gastroenterol. 20, 10432–10439. doi: 10.3748/
wjg.v20.i30.10432

Sierzega, M., Kaczor, M., Kolodziejczyk, P., Kulig, J., Sanak, M., and Richter, P.
(2017). Evaluation of serum microRNA biomarkers for gastric cancer based on
blood and tissue pools profiling: the importance of miR-21 and miR-331. Br. J.
Cancer 117, 266–273. doi: 10.1038/bjc.2017.190

Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C., and Lordick, F. (2020).
Gastric cancer. Lancet 396, 635–648. doi: 10.1016/s0140-6736(20)31288-5

Song, Z., Wu, Y., Yang, J., Yang, D., and Fang, X. (2017). Progress in the treatment
of advanced gastric cancer. Tumour. Biol. 39:1010428317714626. doi: 10.1177/
1010428317714626

Subhash, V. V., Yeo, M. S., Wang, L., Tan, S. H., Wong, F. Y., Thuya, W. L.,
et al. (2018). Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is
dependent on nuclear accumulation of p53 tumor suppressor. Sci. Rep. 8:12248.
doi: 10.1038/s41598-018-30686-1

Tang, Y., Cui, Y., Li, Z., Jiao, Z., Zhang, Y., He, Y., et al. (2016). Radiation-induced
miR-208a increases the proliferation and radioresistance by targeting p21 in
human lung cancer cells. J. Exp. Clin. Cancer Res. 35:7. doi: 10.1186/s13046-
016-0285-3

Vickers, A. J., and Elkin, E. B. (2006). Decision curve analysis: a novel method for
evaluating prediction models. Med. Decis. Making 26, 565–574. doi: 10.1177/
0272989x06295361

Vitale, I., Manic, G., Coussens, L. M., Kroemer, G., and Galluzzi, L. (2019).
Macrophages and metabolism in the tumor microenvironment. Cell Metab 30,
36–50. doi: 10.1016/j.cmet.2019.06.001

Yoon, S. J., Park, J., Shin, Y., Choi, Y., Park, S. W., Kang, S. G., et al. (2020).
Deconvolution of diffuse gastric cancer and the suppression of CD34 on the
BALB/c nude mice model. BMC Cancer 20:314. doi: 10.1186/s12885-020-
06814-4

Yoshida, K., Kodera, Y., Kochi, M., Ichikawa, W., Kakeji, Y., Sano, T., et al. (2019).
Addition of docetaxel to oral fluoropyrimidine improves efficacy in patients
with stage III gastric cancer: interim analysis of jaccro gc-07, a randomized
controlled trial. J. Clin. Oncol. 37, 1296–1304. doi: 10.1200/jco.18.01138

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat. Commun. 4:2612. doi: 10.1038/
ncomms3612

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. Omics 16, 284–287.
doi: 10.1089/omi.2011.0118

Yu, Z. H., Wang, Y. M., Jiang, Y. Z., Ma, S. J., Zhong, Q., Wan, Y. Y., et al. (2019).
NID2 can serve as a potential prognosis prediction biomarker and promotes
the invasion and migration of gastric cancer. Pathol. Res. Pract. 215:152553.
doi: 10.1016/j.prp.2019.152553

Zhang, Y., Chen, L., Cao, Y., Chen, S., Xu, C., Xing, J., et al. (2020). LETM1
promotes gastric cancer cell proliferation, migration, and invasion via the
PI3K/Akt signaling pathway. J. Gastric Cancer 20, 139–151. doi: 10.5230/jgc.
2020.20.e12

Zhang, Z., Cortese, G., Combescure, C., Marshall, R., Lee, M., Lim, H. J., et al.
(2018). Overview of model validation for survival regression model with
competing risks using melanoma study data. Ann. Transl. Med. 6:325. doi:
10.21037/atm.2018.07.38

Zheng, P., Chen, L., Yuan, X., Luo, Q., Liu, Y., Xie, G., et al. (2017). Exosomal
transfer of tumor-associated macrophage-derived miR-21 confers cisplatin
resistance in gastric cancer cells. J. Exp. Clin. Cancer Res. 36:53. doi: 10.1186/
s13046-017-0528-y

Zhu, X., and Lang, J. (2017). Soluble PD-1 and PD-L1: predictive and prognostic
significance in cancer. Oncotarget 8, 97671–97682. doi: 10.18632/oncotarget.
18311

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wang, Yang, Hu, Hu, Wang, Chen, Jiang and Cui. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 15 September 2021 | Volume 9 | Article 736274

https://doi.org/10.1158/0008-5472.Can-17-0307
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1111/jcmm.13362
https://doi.org/10.1093/bioinformatics/bts615
https://doi.org/10.1093/bioinformatics/bts615
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1080/15384047.2018.1564565
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.3389/fimmu.2019.03038
https://doi.org/10.1007/s00432-014-1619-1
https://doi.org/10.1146/annurev-pathol-020117-043854
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41571-018-0142-8
https://doi.org/10.1186/s12885-019-6128-9
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1038/nm.3394
https://doi.org/10.1186/s12943-018-0858-1
https://doi.org/10.1016/j.ccell.2014.09.006
https://doi.org/10.1038/nrd.2016.246
https://doi.org/10.1016/j.bbrc.2018.01.146
https://doi.org/10.1016/j.bbrc.2018.01.146
https://doi.org/10.3748/wjg.v20.i30.10432
https://doi.org/10.3748/wjg.v20.i30.10432
https://doi.org/10.1038/bjc.2017.190
https://doi.org/10.1016/s0140-6736(20)31288-5
https://doi.org/10.1177/1010428317714626
https://doi.org/10.1177/1010428317714626
https://doi.org/10.1038/s41598-018-30686-1
https://doi.org/10.1186/s13046-016-0285-3
https://doi.org/10.1186/s13046-016-0285-3
https://doi.org/10.1177/0272989x06295361
https://doi.org/10.1177/0272989x06295361
https://doi.org/10.1016/j.cmet.2019.06.001
https://doi.org/10.1186/s12885-020-06814-4
https://doi.org/10.1186/s12885-020-06814-4
https://doi.org/10.1200/jco.18.01138
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1016/j.prp.2019.152553
https://doi.org/10.5230/jgc.2020.20.e12
https://doi.org/10.5230/jgc.2020.20.e12
https://doi.org/10.21037/atm.2018.07.38
https://doi.org/10.21037/atm.2018.07.38
https://doi.org/10.1186/s13046-017-0528-y
https://doi.org/10.1186/s13046-017-0528-y
https://doi.org/10.18632/oncotarget.18311
https://doi.org/10.18632/oncotarget.18311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Comprehensive Analysis of the Prognostic Significance of Hsa-miR-100-5p and Its Related Gene Signature in Stomach Adenocarcinoma
	Introduction
	Materials and Methods
	Data Collection and Preparation
	Differential Expression Analysis
	Identification and Validation of Hsa-miR-100-5p-Related Genes
	Construction and Evaluation of Hsa-miR-100-5p-Related Signatures
	Development and Assessment of a Prognostic Nomogram
	Functional Enrichment Analysis
	Comprehensive Analysis of Immune Infiltration of the Tumor Microenvironment
	Estimation of Drug Sensitivity and Response to Immune Checkpoint Blockade
	Biospecimens and Real-Time Polymerase Chain Reaction Analysis of the miRNAs
	Statistical Analysis

	Results
	Hsa-miR-100-5p Was Downregulated in Stomach Adenocarcinoma Samples and Was Associated With the Prognosis of Stomach Adenocarcinoma Patients
	Selection and Validation of Hsa-miR-100-5p-Related Genes
	Construction and Validation of the Hsa-miR-100-5p-Related Prognostic Signature
	Evaluation of the Prognostic Signature and Clinical Features of Stomach Adenocarcinoma
	Development and Assessment of a Prognostic Nomogram
	Estimation of the Tumor Immune Microenvironment
	Exploration of the Potential Regulatory Mechanisms in the High- and Low-Risk Groups
	Prediction of Cancer Chemotherapy and Immunotherapy
	External Validation of the Hsa-miR-100-5p-Related Prognostic Signature and Meta-Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


